
Interactive Hashing

Simpli�es Zero-Knowledge Protocol Design

Rafail Ostrovsky� Ramarathnam Venkatesany Moti Yungz

(Extended abstract)

Abstract

Often the core di�culty in designing zero-knowledge protocols arises from having to

consider every possible cheating veri�er trying to extract additional information. We

here consider a compiler which transforms protocols proven secure only with respect to

the honest veri�er into protocols which are secure against any (even cheating) veri�er.

Such a compiler, which preserves the zero-knowledge property of a statistically or com-

putationally secure protocol was �rst proposed in [BMO] based on Discrte Logarithm

problem. In this paper, we show how such a compiler could be constructed based

on any one-way permutation using the recent method of interactive hashing [OVY-91].

This applies to both statistically and computationally secure protocols, preserving their

respective security. Our result allows us to utilize DES-like permutations for such a

compiler.

� University of California at Berkeley Computer Science Division, and International Computer Science

Institute at Berkeley. E-mail: rafail@melody.berkeley.edu. Supported by NSF postdoctoral fellowship

and ICSI. Part of this work was done at Bellcore and part at IBM T.J. Watson Research Center.
y Bellcore, Room 2M-344, 445 South St, Morristown, NJ 07960. E-mail: venkie@bellcore.com.
z IBM Research, T.J. Watson Research Center, Yorktown Heights, NY 10598. E-mail:

moti@watson.ibm.com.

1

1 Introduction

An interactive proof involves two communicating parties, a prover and a veri�er. The prover

is computationally unbounded; alternatively, in applications, it is a polynomial-timemachine

possessing additional private knowledge. It tries to convince the probabilistic polynomial

time veri�er that a given theorem is true.

A zero-knowledge (ZK) proof is an interactive proof with an additional privacy constraint:

the veri�er does not learn why the theorem is true [GMR]. That is, whatever the polynomial-

time veri�er sees in a ZK-proof with the unbounded prover of a true theorem x, can be

approximated by a probabilistic polynomial-time machine working solely on input x. A

statistical zero-knowledge proof (SZK proof) is one for which this true view and approximate

view are (information-theoretically) indistinguishable.

A methodology suggested in [BMO] is to design statistical or computational zero-knowledge

protocols by assuming a canonical behavior of the veri�er, and then translate such protocols

to those where cheating is allowed. The mechanism proposed there, as well as the one in
[GKa, NY] (for computational zero-knowledge proofs only) uses speci�c algebraic assump-
tions to achieve it.

The task of �nding the necessary and su�cient complexity conditions needed for various

primitives has attracted a lot of work, showing that many primitives, originally based on
speci�c algebraic functions, need only one-way functions or permutations. For example,
pseudo-random generators [BM-84], secure signature schemes [GoMiRi], computational ZK-
proofs [GMR] were shown to be equivalent to the existence of general one-way functions
[ILL, Ha-90, NY, Ro, OW]. Such e�orts, not only develop the theoretical foundations of
cryptography, but also enable the primitive implementations to be based on a larger possible

concrete choices of underlying functions, thus making them more plausible.

The method of interactive hashing has been recently developed in [OVY-91] and ap-
plied [OVY-91, NOVY] to zero-knowledge arguments and information theoretically secure
Oblivious Transfer protocols (also to commitments by/to powerful non-polynomial parties

[OVY-92]). Here we show an extended use of this method with zero-knowledge protocols
to provide a ZK-protocol design tool along the line of [BMO], but based on the existence
of any one-way permutation. In particular, assuming that one-way permutations exist, we
show that if a language L has a honest-veri�er statistical zero-knowledge proof, then L has

a (general) statistical zero-knowledge proof. We remark that our method applies to compu-

tational zero-knowledge as well. Previously, speci�c algebraic assumptions were needed in
order to implement such tools [BMO, GKa, NY].

1.1 Organization of the paper

In section 2, we give the model and de�nitions. In Section 3, we present the main result
on compiling protocols zero-knowledge against a honest veri�er to general zero-knowledge

protocols, and we show some implications. Section 4 outlines the compiler and its proof.

2

2 De�nitions

We use standard notions of Turing machines (TM) and probabilistic polynomial time TM's

(PPT), and interactive Turing machines [GMR]. We adopt the standard de�nition of com-

putational and statistical indistinguishability (see, for example, [ILL, GMR]). Let us recall

de�nitions of interactive proofs and zero-knowledge proofs, introduced and formalized in

[GMR].

We assume that prover P is a probabilistic, in�nite power, interactive TM and veri�er V

is a probabilistic, poly-time interactive TM [GMR]. We consider interactions between P and

V , where they share the same input and can communicate. We say P convinces V to accept

on x if P and V have common input x, and after the interaction V accepts. Let view of V

be the transcript of the conversation between P and V which consists of all the messages

between P and V and the portion of the random tape used by V (i.e. random coin tosses of

V).

P and V form an interactive protocol for language L with security parameter k (k is the
length of the input string), if the following two conditions are satis�ed:

� Completeness: For all x 2 L, P convinces V to accept with probability greater than
1� 1

2k
, where probability is taken over coin tosses of P and V .

� Soundness: For all P 0 and for all x 62 L probability that P 0 convinces V to accept on

x is less than 1

2k
.

IP (= PSPACE) is the class of languages which can be accepted satisfying completeness
and soundness conditions.

The zero-knowledge property:

For every PPT veri�er V 0 let MV 0 be the probabilistic poly-time TM. The goal of MV 0 is
to simulate the view of V 0, i.e. the conversation between P and V 0 on x. As such, it must
produce a pair: <random tape used by V 0, conversation between P and V 0 >. We restrict
our simulators to be average-PPT TM. An interactive protocol is Statistical Zero-Knowledge
if for all V 0 there exists MV 0 2 PPT such that for all x 2 L, the distributions of the

conversation between P and V 0 on x andMV 0(x) is statistically close. If the two distributions
are computationally indistinguishable, this corresponds to Computational Zero-Knowledge.

Zero-knowledge with respect to honest veri�er:

Finally, we are ready to specify what does it mean to have a protocol which works for honest
veri�er only. An interactive protocol is Statistical Zero-Knowledge for Honest Veri�er if for
the honest V (i.e. the one speci�ed in the description of P; V) there exists MV 2 PPT such

that for all x 2 L, the distributions of the conversation between P and V on x and MV (x)

are statistically close. Similar de�nition holds for Computational Zero-Knowledge Protocols

for Honest Veri�er.

3

Let f be a length preserving function f : f0; 1g� ! f0; 1g� computable in polynomial

time.

De�nition 2.1 [One-way function.] f is one-way if for every probabilistic polynomial time

algorithm A, for all polynomials p and all su�ciently large n,

Pr[f(x) = f(A(f(x))) j x 2R f0; 1g
n] < 1=p(n):

If addition, if f is a permutation on f0; 1gn; n > 0, then we say that f is a one-way

permutation. The above de�nition is of a strong one-way function. Its existence is equivalent

to the existence of the weak one-way function [Y82]; a stronger equivalence is possible in

the case of permutations (see [GILVZ]). A weak one-way function has the same de�nition

as above, except the probability of successful inversion above is 1 � 1=nc; c > 0.

3 Main Result

We show that if there is any one-way permutation, then \honest veri�er zero knowledge" is
in fact just as strong as zero-knowledge.

Theorem 3.1 Suppose a one-way permutation exists. If a language L has an honest veri�er
statistical (respectively computational) zero knowledge protocol, then L has a statistical (respec-
tively computational) zero knowledge protocol.

We remark that our transformation is constructive and that error probabilities are pre-

served, as in [BMO], it also works for zero-knowledge proof of knowledge.

3.1 Implications

The theorem has a few implications on languages and their proof systems (beyond giving a
design tool). We discuss those briey.

� Black-box simulation:

Oren [Or] formalized the black box notion by saying that the simulator is a PPT oracle

machineM which when asked to simulate a particular veri�er bV is given that veri�er as
an oracle. Thus the same simulator works for all veri�ers. Using our method we show

that assuming any one-way permutation, black box simulation is not a restriction on
zero-knowledge, i.e.: Suppose L has a (honest veri�er) SZK (ZK) protocol and one-way

permutation exists. Then, L has a black box simulation SZK (ZK) protocol.

4

� Error probability one-sidedness :

Goldreich, Mansour and Sipser [GMS] de�ne a one-sided proof system to be one in

which completeness holds with probability 1 (that is the prover can always convince

the veri�er). An implication of our protocol tool is: If L has a (honest veri�er) SZK

proof system and one-way permutation exists. Then, L has a SZK one-sided proof

system.

4 The Protocol Compiler and its Proof

Given a zero-knowledge for honest veri�er proof system (P ; V), we have to construct another

prover/veri�er pair (P; V) such that (P; V) is still an interactive proof system for L and for

any (possibly cheating) veri�er bV there exists a simulator SbV . We specify the protocol below.

For completeness sake, �rst we recall what is interactive hashing [OVY-91], and show the

interactive hashing-based bit commitment protocol [NOVY].

Remark: The bit commitment protocol parties are e�cient, i.e. they need only perform
polynomial time computations to execute the protocol.

Commit to a bit a

1. The veri�er V selects x 2R f0; 1g
n at random and computes y f(x). V keeps both

x and y secret from P .

2. The prover P selects h1; h2; : : : hn�1 2 f0; 1g
n such that each hi is a random vector

over GF [2]

such that h1; h2; : : : hn�1 are linearly independent over GF [2]

3. For j from 1 to n� 1

� P sends hj to V .

� V sends rj B(hj; y) to P (where B(u; v) is the bit resulting as the inner product
of u and v).

4. At this point there are exactly two vectors y0; y1 2 f0; 1g
n such that for i 2 f0; 1g,

rj = B(yi; hj) for all 1 � j � n� 1. y0 is de�ned to be the lexicographically smaller of

the two vectors. Both P and V compute y0 and y1. Let

d =

(
0 if y = ya
1 if y = y1�a

5. V computes d and sends it to R (d is \encrypting" the commitment bit a and given
the inversion of one of y0; y1 and d, a is uniquely determined).

5

This committal reveals to P nothing about the committed bit (in the information-

theoretic sense). On the other hand, V cannot later decommit to a value other than the one

it committed without inverting a one-way permutation on a random challenge.

Next we present the compiler.

Compiler Protocol

1. V picks a sequence ai; 1 � i � 2t of random bits, and commits to them using Interactive

Hashing. The commitment can be done in parallel for all bits.

2. P chooses at random t-subset of f1; : : : ; 2tg and asks V to decommit bits aj for j in

the subset. Let a0
i
; i � t be the subsequence of unopened bits.

3. P picks t bits b1; : : : ; bt at random and sends them to V .

4. V lets ci = bi � a0
i
and C = c1c2c3 : : : ct be its secret random (tape) string.

5. P; V execute an old (P ; V) protocol with V , running an V , but using C as its secret
coinips. Moreover, for every message sent from V to P is accompanied by a zero-

knowledge argument that V would really have sent this message if its coinips were C.
(Remark: Such a proof is possible and users are engaged in Interactive Hashing based

on one-way permutation [NOVY] as a subroutine).

More speci�cally, V begins by sending the message �1 that would have been the �rst
message V sent on coins C, and proves that indeed it has done this. The prover checks
this proof, and if it is incorrect it aborts. Otherwise it sends whatever response �1
the old prover P would have sent. This continues till the proof ends. (The available
strongly committed bits, and the speci�cation of the original protocols are the witness

to the proofs communicated).

4.1 Proof of correctness

We have to prove completeness, soundness and the zero-knowledge property.

Completeness: For all x in L, the prover can still convince the veri�er, since the success

probability of the new P is essentially equivalent to the old one (by the simple fact that it
is following the protocol).

Soundness: Interactive hashing hides committed bits in the information-theoretic sense,
and thus the prover does not get any information about the random tape of the veri�er

(other then what follows from the original protocol during the initialization stage). Since all
the subsequent rounds use zero-knowledge arguments of [NOVY] in addition to the messages

of the old protocol, the soundness follows.

6

Zero-knowledge property: The simulator below proves this. We concentrate on statis-

tical zero-knowledge here. The computational case is similar.

First, our new simulator runs the old simulator for honest veri�er in order to obtain a

pair (C;�1�1 : : : �m�m) consisting of coin tosses of the honest veri�er C = �c1�c2 : : : �ct and the

transcript �1�1 : : : �m�m of the conversation between the prover and the honest veri�er. The

new simulator, will now transform (with very high probability) this old transcript for honest

veri�er into one which is statistically close to the conversation between new prover/veri�er

pair as follows:

(1) It runs bV for step 1 to get its commitment of a1; : : : ; a2t, using interactive hashing.

(2) At this point, the simulator uses the backtracking capability to run the protocol twice in

order to learn what are the "unopened" bits. That is, it asks to reveal a random subset

of t bits. Then it puts the veri�er into the state it was in before the subset of t bits

was requested to be revealed (but after the commitments) and now requests to open the

complementary set of bits.

(3) Having the ai, the simulator now picks bi = ai � �ci for all i = 1; : : : ; t as being the
prover's response (modifying bits) of step 3, and has thus makes C be the secret random
string for the new V .

Recall that the simulator has in its possession the old conversation with coins �xed to C.
The zero-knowledge arguments executed at each round force cheating veri�er to generate a
conversation which is statistically close to the one we produced by using the honest veri�er
(with additional ZK arguments). The new simulator runs bV and gets what is supposed
to be V 's �rst message if it had C, together with a proof (i.e. a zero-knowledge argument

based on interactive hashing and assuming one-way permutations exist) that this is indeed
the case. It examines the proof and if it is found incorrect the simulator aborts as the prover
would have. But if not, then with very high probability, the message bV sent is really the
message �1 that the simulator expected at this stage. And to this message it can respond:
it just has to send �1. Continuing in this way the simulator soon has a transcript of the

entire conversation, which (retracing through the argument) is statistically close to the real
conversation. That is, the simulator generates exactly the correct conversation except if:

� bV manages to break the commitment scheme (i.e. invert a one-way permutation), or

� if it is able to cheat the prover in a zero-knowledge argument (which as well implies it
can invert a one-way permutation, given the underlying construction).

Thus, we are done.

Conclusions: To summarize, we have presented a uniform way to compile honest-veri�er

zero-knowledge protocols into general zero-knowledge ones. This gives a design method

which seems to be easier than considering all possible veri�ers as a starting design point.

The proof has some implications to properties of languages and their proofs, and it further
demonstrates a wider applicability of the recent notion of interactive hashing.

7

References

[BM-84] M. Blum, and S. Micali \How to Generate Cryptographically Strong Sequences Of

Pseudo-Random Bits" SIAM J. on Computing, Vol 13, 1984, pp. 850-864.

[BMO] Bellare, M., S. Micali and R. Ostrovsky, \The (True) Complexity of Statistical Zero

Knowledge" STOC 90.

[BCC] G. Brassard, D. Chaum and C. Cr�epeau, Minimum Disclosure Proofs of Knowledge,

JCSS, v. 37, pp 156-189.

[BCY] Brassard, G., C. Cr�epeau, and M. Yung, \Everything in NP can be Argued in Perfect

Zero Knowledge in a Bounded Number of Rounds," ICALP 89. (also in Theoretical

Computer Science, special issue of ICALP 89).

[Dam] I. B. Damgaard, Collision Free Hash Functions and Public Key Signature Schemes ,

Eurocrypt, 1987.

[GKa] Goldreich, O. and A. Kahn, personal communication.

[GILVZ] O. Goldreich, R. Impagliazzo, L. Levin, R. Venkatesan, and D. Zuckerman, Security
Preserving Ampli�cation of Hardness, FOCS 90.

[GMS] Goldreich, O., Y. Mansour, and M. Sipser, \Interactive Proof Systems: Provers that
never Fail and Random Selection," FOCS 87.

[GMW1] Goldreich, O., S. Micali, and A. Wigderson, \Proofs that Yield Nothing but their
Validity", FOCS 86.

[GMR] Goldwasser, S., S. Micali, and C. Racko�, \The Knowledge Complexity of Interactive
Proofs," SIAM J. Comput., 18(1), 186-208 (February 1989).

[GoMiRi] Goldwasser, S., S. Micali, and R. Rivest, \A Digital Signature Scheme Secure
Against Adaptive Chosen-Message Attacks," SIAM J. Comput., 17(2), 281-308 (April
1988).

[Ha-90] J. Hastad, \Pseudo-Random Generators under Uniform Assumptions" STOC 90

[ILL] I. Impagliazzo, L. Levin and M. Luby, Pseudo-random generation from one-way func-

tions, Proc. 21st Symposium on Theory of Computing, 1989, pp. 12-24.

[NOVY] M. Naor, R. Ostrovsky, R. Venkatesan, and M. Yung. \Perfect Zero-Knowledge

Arguments for NP Can Be Based on General Complexity Assumptions", Advances in

Cryptology { Crypto '92, Lecture Notes in Computer Science, Springer, to appear.

[NY] Naor, M. and M. Yung, \Universal One-Way Hash Functions and their Cryptographic

Applications," STOC 89.

8

[Or] Oren Y., \On The Cunning Power of Cheating Veri�ers: Some Observations About

Zero Knowledge Proofs", FOCS 87.

[OVY-91] R. Ostrovsky, R. Venkatesan, and M. Yung. \Fair Games Against an All-Powerful

Adversary", SEQUENCES '91, Positano, June, 1991 (Proc. Springer Verlag). Full

version in: Computational Complexiity, DIMACS Series on Discrete Mathematics and

Theoretical Computer Science (to appear), Ed. J. Cai, 1993.

[OVY-92] R. Ostrovsky, R. Venkatesan, M. Yung, Secure Commitment Against A Powerful

Adversary, STACS 92, Springer Verlag LNCS Vol. 577, p. 439-448, 1992.

[OW] R. Ostrovsky, A. Wigderson One-Way Functions are Essential for Non-Trivial Zero-

Knowledge, The second Israel Symposiumon Theory of Computing and Systems (ISTCS93)

1993.

[Ro] J. Rompel \One-way Functions are Necessary and Su�cient for Secure Signatures"

STOC 90.

[Y82] A. C. Yao, Theory and Applications of Trapdoor functions, Proceedings of the 23th
Symposium on the Foundation of Computer Science, 1982, pp 80-91.

9

