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Abstract

Given data streamD = {p1, p2, . . . , pm} of sizem of numbers from
{1, . . . , n}, the frequency ofi is defined asfi = |{j : pj = i}|. Thek-
th frequency momentof D is defined asFk =

∑n
i=1 f

k
i . We consider the

problem of approximating frequency moments in insertion-only streams for
k ≥ 3. For any constantc we show anO(n1−2/k log(n) log(c)(n)) upper
bound on the space complexity of the problem. Herelog(c)(n) is the it-
erativelog function. To simplify the presentation, we make the following
assumptions:n andm are polynomially far; approximation errorǫ and pa-
rameterk are constants. We observe a natural bijection between streams and
special matrices. Our main technical contribution is a non-uniform sampling
method on matrices. We call our method apick-and-drop sampling; it sam-
ples a heavy element (i.e., elementi with frequencyΩ(Fk)) with probability
Ω(1/n1−2/k) and gives approximatioñfi ≥ (1 − ǫ)fi. In addition, the esti-
mations never exceed the real values, that isf̃j ≤ fj for all j. As a result, we
reduce the space complexity of finding a heavy element toO(n1−2/k log(n))
bits. We apply our method of recursive sketches and resolve the problem with
O(n1−2/k log(n) log(c)(n)) bits.
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1 Introduction

Given a sequenceD = {p1, p2, . . . , pm} of sizem of numbers from{1, . . . , n}, a
frequency ofi is defined as

fi = |{j : pj = i}|. (1)

Thek-th frequency momentof D is defined as

Fk =

n
∑

i=1

fki . (2)

The problem of approximating frequency moments in one pass over D and
using sublinearspace has been introduced in the award-winning paper of Alon,
Matias and Szegedy [1]. In particular, they observed a striking difference be-
tween “small” and “large” values ofk: it is possible to approximateFk, k ≤ 2
in polylogarithmic space, but polynomial space is requiredwhenk > 2. Since
1996, approximatingFk has become one of the most inspiring problems in the the-
ory of data streams. The incomplete list of papers on frequency moments include
[18, 13, 3, 8, 4, 19, 10, 11, 12, 14, 17, 24, 6, 22, 23, 26, 28, 5, 7, 20, 2, 15, 16, 30, 21]
and references therein. We omit the detailed history of the problem and refer a
reader to [25, 29] for overviews.

In this paper we consider the case whenk ≥ 3. In their breakthrough paper
Indyk and Woodruff [19] gave the first solution that is optimal up to a polyloga-
rithmic factor. Numerous improvements were proposed in thelater years (see the
references above) and the latest bounds are due to Andoni, Krauthgamer and Onak
[2] and Ganguly [15]. The latest bound by Ganguly [15] is

O(k2ǫ−2n1−2/kE(p, n) log(n) log(nmM)/min(log(n), ǫ4/k−2))

where,E(k, n) = (1−2/k)−1(1−n−4(1−2/k). This bound is roughlyO(n1−2/k log2(n))
for constantǫ, k. The best known lower bound for insertion-only streams isΩ(n1−2/k),
due to Chakrabarti, Khot and Sun [8].

We consider the problem of approximating frequency momentsin insertion-
only streams fork ≥ 3. For any constantcwe show anO(n1−2/k log(n) log(c)(n))
upper bound on the space complexity of the problem. Herelog(c)(n) is the iterative
log function. To simplify the presentation, we make the following assumptions:n
andm are polynomially far; approximation errorǫ and parameterk are constants.
We observe a natural bijection between streams and special matrices. Our main
technical contribution is a non-uniform sampling method onmatrices. We call
our method apick-and-drop sampling; it samples a heavy element (i.e., element
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i with frequencyΩ(Fk)) with probability Ω(1/n1−2/k) and gives approximation
f̃i ≥ (1 − ǫ)fi. In addition, the estimations never exceed the real values,that is
f̃j ≤ fj for all j. As a result, we reduce the space complexity of finding a heavy
element toO(n1−2/k log(n)) bits. We apply our method of recursive sketches [6]
and resolve the problem withO(n1−2/k log(n) log(c)(n)) bits. We do not try to
optimize the space complexity as a function ofǫ.

Overview of Main Ideas

Pick-and-drop sampling has been inspired by a very natural behavior of children.
We observed the following pattern: a child picks a toy, briefly plays with it, then
drops the toy and picks a new one. This pattern is repeated until the child picks the
favorite toy and keeps it for a long time. Indeed, children develop algorithms for
selectivity [27].

To illustrate the pick-and-drop method by example, assume thatm = r ∗ t
wherer = ⌈n1/k⌉ and considerr× t matrixM with entriesmi,j = pk(i−1)+j . For
m ≤ n we aim to solve the following promise problem with probability 2/3:

• Case1: all frequencies are either zero or one.

• Case2: z appears in every row ofM exactly once (thusfz = r). All other
frequencies are either zero or one.

Consider the following sampling method. Pickr i.i.d. random numbersI1, . . . , Ir,
whereIi is uniformly distributed on{1, 2, . . . , t}. For eachi = 1 . . . r − 1 we
check if there is a duplicate ofmi,Ii in the rowi+ 1. If the duplicate is found then
we output “Case2” and stop; otherwise we repeat the test fori + 1. That is, the
i-th sample is “dropped,” and the(i + 1)-th sample is “picked”. We repeat this
experimentT times independently and output “Case1” if no duplicate is found.
Note that if the input represents Case1 then our method will always output “Case
1.” Consider Case2 and observe that ifmi,Ii = z then our method will output
“Case2”. Indeed, sincez appears in every row, the duplicate ofz will be found.
The probability to missz entirely is

(

1−
1

t

)rT

. (3)

Recall thatm ≤ n,m = rt, r = ⌈n1/k⌉. If T = O(n1−2/k) with sufficiently large
constant then the probability of error(3) is smaller than1/3. We conclude that
our promise problem can be resolved withO(n1−2/k log(n)) space. Note how our
solution depends onr. In general, the matrix should be carefully chosen.
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Unfortunately the distribution of the frequent element in the stream can be
arbitrary. Also our algorithm must recognize “noisy” frequencies that are large
but negligible. Clearly, the sampling must be more intricate but, luckily, not by
much. In particular, the following method works. We introduce a local counter
for each sample that counts the number of timesmi,Ii appears in the suffix of the
i-th row (this counting method is used in [1] for the entire stream). We maintain
a global sample (and a global counter) as functions of the local samples and coun-
ters. Initially the global sample is the local sample of the first row. Under certain
conditions, the global sample can be “dropped.” If this is the case then the local
sample of the current row is “picked” and becomes the new global sample. The
global sample is “dropped” when the local counter exceeds the global one. Also,
the global sample is dropped if the global counter does not grow fast enough. We
use functionλq whereλ is a parameter andq is the number of rows that the global
counter survived. If the global counter is smaller thanλq then the global sample is
“dropped.”

In our analysis we concentrate on the case when1 is the heavy element, but
it is possible to repeat our arguments for anyi. Our main technical contribution
is Theorem 2.1 that claims that1 will be outputted with probabilityΩ(f1t ) for
sufficiently largef1. Interestingly, Theorem 2.1 holds for arbitrary distributions
of frequencies. In Theorem 3.6 we show that there existr, t, λ such that a bound
similar to (3) holds. We combine our new method with [6] and obtain our main
result in Theorem 3.8.

2 Pick-and-Drop Sampling

Let M be a matrix withr rows andt columns and with entriesmi,j ∈ [n]. For
i ∈ [r], j ∈ [t], l ∈ [n] define:

di,j = |{j′ : j ≤ j′ ≤ t,mi,j′ = mi,j}|, (4)

fl,i = |{j ∈ [t] : mi,j = l}|, (5)

fl = |{(i, j) : mi,j = l}|, (6)

Fk =

n
∑

l=1

fkl , Gk = Fk − fk1 . (7)

Note that there is a bijection betweenr × t matricesM and streamsD of size
r × t with elementspit+j = mi,j where the definitions(2), (1) and(6), (7) define
equivalent frequency vectors for a matrix and the corresponding stream. W.l.o.g,
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we will consider streams of sizer× t for somer, t and will interchange the notions
of a stream and its corresponding matrix.
Let {Ij}rj=1 be i.i.d. random variables with uniform distribution on[t]. Define for
i = 1, . . . , r:

si = mi,Ii, ci = di,Ii (8)

Let λ be a parameter. Define the following recurrent random variables:

S1 = s1, C1 = c1, q1 = 1. (9)

Also (for i = 2, . . . r) if

(Ci−1 < max{λqi−1, ci}) (10)

then define
Si = si, Ci = ci, qi = 1; (11)

otherwise, define

Si = Si−1, Ci = Ci−1 + fSi,i, qi = qi−1 + 1 (12)

Theorem 2.1. LetM be ar × t matrix. There exist absolute constantsα, β such
that if

α(λr +
G3

λt
+
G2

t
) ≤ f1 ≤ βt (13)

then

P (Sr = 1) ≥
f1
2t
. (14)

Proof. DenoteQ = {(i, j) : mi,j = 1}. For (i, j) ∈ Q define

Ti,j = (Ai,j ∪Bi,j ∪Hi,j), (15)

where fori > 1:
Ai,j = ((Ci−1 ≥ di,j) ∩ (Si−1 6= 1)), (16)

for i < r:

Bi,j =

(

r
⋃

h=i+1

(

di,j +

h−1
∑

u=i+1

f1,u < ch

))

, (17)

Hi,j =

(

r
⋃

h=i+1

(

di,j +

h−1
∑

u=i+1

f1,u < (h− i)λ

))

, (18)
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andA1,j = Br,j = Hr,j = ∅. We have

((si = 1) ∩ (Si−1 6= 1) ∩ Ai,Ii) ⊆ ((si = 1) ∩ (Ci−1 < ci)) ⊆

((Si = 1) ∩ (qi = 1)). (19)

Consider the case whenSi = 1 andqi = 1 and

di,Ii +

h−1
∑

u=i+1

f1,u ≥ max(λ(h − i), ch)

for all h > i. In this caseSh will be defined by(12) and not by(11); in particular,
Sh = Si = 1. Therefore,

((Si = 1) ∩ (qi = 1) ∩Bi,Ii ∩Hi,Ii) ⊆ (

r
⋂

h=i

(Sh = 1)). (20)

DefineV1 = ((s1 = 1)∩T1,I1) and, fori > 1, Vi = ((si = 1)∩(Si−1 6= 1)∩Ti,Ii).
If follows from (2), (20) that, for anyi ∈ [r]:

Vi ⊆ (Sr = 1), (21)

Vi ∩ Vj = ∅. (22)

Thus,
r
∑

i=1

P (Vi) = P (∪ri=1Vi) ≤ P (Sr = 1). (23)

For anyi > 1:

P (Vi) ≥ P ((si = 1) ∩ Ti,Ii)− P (si = Si−1 = 1).

Also,

r
∑

i=2

P (si = Si−1 = 1) ≤
r
∑

i=2

P ((si = 1) ∩ (∪h 6=i(sh = 1))) ≤

(
r
∑

i=1

P (si = 1))2 =

(

f1
t

)2

.

For any fixed(i, j) ∈ Q eventsIi = j andTi,j are independent. Indeed,Ai,j
is defined by{Si−1, Ci−1} that, in turn, is defined by{I1, . . . , Ii−1}. Similarly,
Bi,j is defined by{Ii+1, . . . , Ir}. Note thatHi,j is a deterministic event. By
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definition, {I1, . . . , Ii−1, Ii+1, . . . , Ir} are independent ofIi; thus eventIi = j
andTi,j = (Ai,j ∪Bi,j ∪Hi,j) are independent. Thus,

r
∑

i=1

P ((si = 1) ∩ Ti,Ii) =
∑

(i,j)∈Q

P ((Ii = j) ∩ Ti,j) =

∑

(i,j)∈Q

P (Ii = j)P (Ti,j) =
1

t

∑

(i,j)∈Q

P (Ti,j). (24)

Thus,

P (Sr = 1) ≥
1

t

∑

(i,j)∈Q

P (Ti,j)−

(

f1
t

)2

.

Lemma 2.2 implies that
∑

(i,j)∈Q P (Ti,j) ≥ 0.8f1. Thus ifβ < 0.3 then:

P (Sr = 1) ≥
f1
t
(0.8 −

f1
t
) ≥

f1
2t
.

Here we only use the second part of(13). The first part is used in the proof of
Lemma 2.2.

Lemma 2.2. There exist absolute constantsα, β such that(13) implies
∑

(i,j)∈Q

P (Ti,j) > 0.8f1.

It follows from Lemmas 2.9, 2.17, 2.14 and the union bound that there exists at
least0.97f1 pairs(i, j) ∈ Q such thatP (Ai,j ∪ Bi,j ∪Hi,j) ≤ 0.02. Recall that
Ti,j = (Ai,j ∪Bi,j ∪Hi,j); the lemma follows.

2.1 Events of typeA

For (i, j) ∈ Q s.t. i > 1 and forl > 1 define:

Yl,(i,j) = 1Ai,j1(Si−1=l),

Yl,i =
∑

j∈[t],(i,j)∈Q

Yl,(i,j),

Yl =

r
∑

i=2

Yl,i,

Y =

n
∑

l=2

Yl,
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Fact 2.3. Ci ≤ fSi . Also, ifqi = 1 thenCi ≤ fSi,i.

Proof. Follows directly from(11), (12). It is sufficient to prove that, for anyi,
there exists a setQi such thatCi = |Qi| and simultaneouslyQi is a subset of
{(i′, j) : mi′,j = Si, i

′ ≤ i}. We prove the above claim by induction oni. For
i = 1 the claim is true since we can defineQ1 = {(1, j) : j ≥ I1}. For i > 2
the description of the algorithm implies the following. Ifqi = 1 then we can put
Qi = {(i, j) : j ≥ Ii}. If qi > 1 then defineQi = Qi−1 ∪ {(i, j) : mi,j = Si}.
Note that in this caseSi = Si−1. The second part follows from the description of
the algorithms: ifpi = 1 thenCi = ci, Si = si andci = di,Ii(si) ≤ fsi,i.

Fact 2.4.

1. Yl,i ≤ fl,

2. If qi−1 = 1 thenYl,i ≤ fl,i−1.

Proof. Let (i, j) ∈ Q be such thatdi,j > fl; then:

Yl,(i,j) = 1(Ci−1≥di,j)1(Si−1=l) = 1(fl≥Ci−1)1(Ci−1≥di,j)1(Si−1=l).

We use Fact 2.3 for the last equality. Thus,Yl,(i,j) = 0. Definition of di,j implies
|{j : (i, j) ∈ Q, di,j ≤ fl}| ≤ fl for any fixedi andl. Thus,

Yl,i =
∑

j∈[t],(i,j)∈Q

Yl,(i,j) ≤ fl.

Part2 following by repeating the above arguments and using the second statement
of Fact 2.3.

Definition 2.5. Let1 ≤ r1 ≤ r2 ≤ r and l ∈ [n]. Call a pair [r1, r2] an l-epoch if

∀i = r1, . . . , r2 : Si = l,

and
qr1 = qr2+1 = 1,

and
∀i = r1 + 1, . . . , r2 : qi = qi−1 + 1.

Lemma 2.6. Let [r1, r2] be anl-epoch. Ifr2 > r1 then

r2 − r1 ≤
1

λ

r2−1
∑

i=r1

fl,i.

8



Proof. First, observe thatqr2−1 = r2 − r1. Second,qi > 1 implies thatSi is
defined by(12) and not by(11) for all r1 < i ≤ r2. In particular,Cr1 ≤ fl,r1 and
for r1 < i ≤ r2 we haveCi = Ci−1 + fl,i. Thus,

Cr2−1 ≤
r2−1
∑

i=r1

fl,i.

Third,Cr2−1 ≥ λqr2−1 since(10) must be false fori = r2. Therefore,

r2 − r1 = qr2−1 ≤
1

λ
Cr2−1 ≤

1

λ

r2−1
∑

i=r1

fl,i.

Lemma 2.7. Yl ≤
f2l
λ + fl.

Proof. Observe that the set{i : Si = l} is a collection of disjointl-epochs. Recall
thatYl =

∑r
i=2 Yl,i andYl,i is non-zero only ifSi−1 is equal tol. Thus we can

rewriteYl as:

Yl =
∑

(r1,r2)is an l-epoch

(

r2+1
∑

i=r1+1

Yl,i

)

.

For any epoch such thatr2 > r1 we have by Lemmas 2.4 and 2.6:

r2
∑

i=r1+1

Yl,i ≤ (r2 − r1)fl ≤
fl
λ

r2−1
∑

i=r1

fl,i.

Since all epochs are disjoint we have

Yl =
∑

(r1<r2)is an l-epoch

(

r2+1
∑

i=r1+1

Yl,i

)

+
∑

(r1=r2)is an l-epoch

Yl,r2+1 =

∑

(r1<r2)is an l-epoch

(

r2
∑

i=r1+1

Yl,i

)

+
∑

(r1,r2)is an l-epoch

Yl,r2+1 ≤

fl
λ

∑

(r1<r2)is an l-epoch

(

r2−1
∑

i=r1

fl,i

)

+
∑

(r1,r2)is an l-epoch

fl,r2+1 ≤

f2l
λ

+ fl.

9



Lemma 2.8. P (Yl > 0) ≤ fl
t .

Proof. SinceIi are independent and0 ≤
fl,i
t ≤ 1 we can apply Fact 2.10:

P (∩ri=1(mi,Ii 6= l)) =
r
∏

i=1

(1−
fl,i
t
) ≥ (1−

fl
t
).

Thus,

P (Yl > 0) ≤ P (∪ri=1(mi,Ii = l)) ≤
fl
t
. (25)

Lemma 2.9. There exists an absolute constantα such that(13) implies thatP (Ai,j) ≤
0.01 for at least0.99f1 pairs (i, j) ∈ Q.

Proof. ¿From Lemmas 2.7, 2.8:

E(Yl) ≤
fl
t
(
f2l
λ

+ fl),

E(Y ) =
n
∑

l=2

E(Yl) ≤
G3

λt
+
G2

t
.

If follows that
∑

(i,j)∈Q 1Ai,j = Y . Recall that by(13):

|Q| = f1 ≥ α(
G3

λt
+
G2

t
) ≥ αE(

∑

(i,j)∈Q

1Ai,j ).

Fact 2.11 implies that there exists an absolute constantα such that the lemma is
true.

The following fact is a well known. For completeness we present the proof.

Fact 2.10. Letα1, . . . , αr be real numbers in[0, 1]. Then

r
∏

i=1

(1− αi) ≥ 1− (
r
∑

i=1

αi).

Proof. If
∑r

i=1 αi ≥ 1 then

r
∏

i=1

(1− αi) ≥ 0 ≥ 1− (
r
∑

i=1

αi).

10



Thus we can assume that
∑r

i=1 αi < 1. We will prove the claim by induction onr.
Forr = 2 we obtain(1−α1)(1−α2) = (1−α1−α2x+α1α2) ≥ (1−α1−α2).
For r > 2, we have, by induction,

r
∏

i=1

(1− αi) ≥ (1− (

r−1
∑

i=1

αi))(1 − αr) ≥ 1− (

r
∑

i=1

αi).

Fact 2.11. LetX1, . . . ,Xu be a sequence of indicator random variables. LetS =
{i : P (Xi = 1) ≤ ν}. If E(

∑u
i=1Xi) ≤ µu then|S| ≥ (1− µ

ν )u.

Proof. Indeed,
µu ≥

∑

i/∈S

P (Xi = 1) ≥ ν(u− |S|).

2.2 Events of typeB

For (i, j) ∈ Q let Z(i,j) = 1Bi,j . Let Z =
∑

(i,j)∈Q Z(i,j). We use arguments that
are similar to the ones from the previous section. To stress the similarity we abuse
the notation and denote byYl,h,(i,j) the indicator of the event thath > i+1, sh = l
and

(

di,j +

h−1
∑

u=i+1

f1,u

)

< ch.

DefineYl,h =
∑

(i,j)∈Q Yl,h,(i,j), Yl =
∑r

h=1 Yl,h.

Fact 2.12. Yl ≤ fl.

Proof. Repeating the arguments from Fact 2.4 we havech1sh=l ≤ fl,h and thus
Yl,h ≤ fl,h.

Fact 2.13. P (Yl > 0) ≤ fl
t .

Proof. The proof is identical to the proof of Lemma 2.8.

Lemma 2.14.There exist absolute constantsα, β such that(13) implies thatP (Bi,j) ≤
0.01 for at least0.99f1 pairs (i, j) ∈ Q.

Proof. DenoteY =
∑n

l=1 Yl. If follows thatZ ≤ Y andE(Z) ≤ E(Y ). By Facts

2.13 and 2.12 if follows thatE(Yl) ≤
f2l
t . Thus by(13):

E(Z) ≤ E(Y ) ≤
F2

t
=
G2

t
+ f1

f1
t

≤ (α+ β)f1.

We repeat the arguments from Lemma 2.9.
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2.3 Events of typeH

Definition 2.15. LetU = {u1, . . . , ut} andW = {w1, . . . , wt} be two sequences
of non-negative integers. Let(i, j) be a pair such that1 ≤ i ≤ t and1 ≤ j ≤ ui.
Denote(i, j) as aloosingpair (w.r.t. sequencesU,W ) if there existsh, i ≤ h ≤ t
such that:

−j +
h
∑

s=i

(us − ws) < 0.

Denote any pair that is not a loosing pair as a awinning pair.

In this section we consider the following pair(U,W ) of sequences. Fori =
1, . . . , r let ui = f1,i andwi = λ.

Fact 2.16. If (i, j) is a winning pair w.r.t.(U,W ) thenHi,j′ does not occur where
j′ is such thatmi,j′ = 1 anddi,j′ = f1,i − j + 1.

Proof. By Definition 2.15, for everyi ≤ h ≤ r:

− j +

h
∑

l=i

ul ≥
h
∑

l=i

wl. (26)

Since
∑h

l=iwi = (h−i+1)λ anddi,j′ = f1,i−j+1 we have for everyi ≤ h ≤ r:

di,j′ +

h
∑

l=i+1

dl,1 = fi,1 − j + 1 +

h
∑

l=i+1

fl,1 =

−j + 1 +
h
∑

l=i

ul ≥ −j +
h
∑

l=i

ul ≥
h
∑

l=i

wl = (h− i+ 1)λ.

Substituteh by h− 1 (for h > i):

di,j′ +
h−1
∑

l=i+1

dl,1 ≥ (h− i)λ.

ThusHi,j′ does not occur, by(18).

Lemma 2.17. There exists an absolute constantα such that(13) implies thatHi,j

does not occur for at least0.99f1 pairs (i, j) ∈W .

12



Proof. By Lemma 2.20 there exist at least

r
∑

i=1

(ui − wi)

winning pairs(i, j) w.r.t. the (U,W ). Also,
∑r

i=1 ui =
∑r

i=1 f1,i = f1 and
∑r

i=1 wi = λr. Thus there exist at leastf1 − λr winning pairs(i, j) w.r.t. the
(U,W ). In the statement of Fact 2.16 the mapping fromj to j′ is a bijection; thus
there exist at leastf1 − λr pairs(i, j′) s.t.mi,j′ = 1 andHi,j′ does not occur. By
(13) we havef1 ≥ αλr and the lemma follows.

Definition 2.18. LetU = {u1, . . . , ut} andW = {w1, . . . , wt} be two sequences
of non-negative integers. Let1 ≤ h < t. LetU ′,W ′ be two sequences of sizet− h
defined byp′i = ui+h, q′i = wi+h for i = 1, . . . , t − h. DenoteU ′,W ′ ash-tail of
the sequencesU,W .

Fact 2.19. If (i, j) is a winning pair w.r.t. h-tail of U,W then (i + h, j) is a
winning pair w.r.t.U,W . If (i, j) is a winning pair w.r.t.h-tail of U,W then(i, j)
is a winning pair w.r.t.U,W .

Proof. Follows directly from Definitions 2.15 and 2.18.

Lemma 2.20. If
∑t

s=1(us − ws) > 0 then there exist at least
∑t

s=1(us − ws)
winning pairs.

Proof. We use induction ont. For t = 1, any pair(1, j) is winning if 1 ≤ j ≤
u1 − w1. Considert > 1 and apply the following case analysis.

1. Assume that there exist1 ≤ h < t such that
∑h

s=1(us − ws) ≤ 0. Con-
sider theh-tail of U,W . By induction and by Fact 2.19, there exist at least
∑t

s=h+1(us − ws) ≥
∑t

s=1(us − ws) winning pairs w.r.t.U,W .

2. Assume that(1, u1) is a winning pair; it follows that(1, j), j < u1 is a
winning pair as well. If

∑t
s=2(us − ws) > 0 then, by induction and by Fact

2.19, there exist at least
∑t

s=2(us − ws) winning pairs of the form(i, j)
wherei > 1. In total there areu1 +

∑t
s=2(us − ws) ≥

∑t
s=1(us − ws)

winning pairs w.r.t.U,W . The case when
∑t

s=2(us − ws) < 0 is trivial.

3. Assume that(1), (2) do not hold. Thenu1 > 0. Indeed otherwiseu1−w1 ≤
0 and thus(1) is true. Also(1, 1) is a winning pair. Indeed, otherwise there
exists1 ≤ h < t such that−1+

∑h
i=1(ui−wi) < 0. All numbers are integers

thus
∑h

i=1(ui − wi) ≤ 0 and(1) is true. Thus(1, 1) is a winning pair and

13



(1, u1) is not a winning pair (by(2)). Therefore there exist1 < u ≤ u1 such
that(1, u−1) is a winning pair and(1, u) is not a winning pair. In particular,
there exists1 ≤ h < t such that

−u+

h
∑

s=1

(us − ws) < 0.

On the other hand(1, u − 1) is a winning pair thus

0 ≤ 1− u+
h
∑

s=1

(us − ws).

All numbers are integers and thus we conclude that

h
∑

s=1

(us − ws) = u− 1.

Consider theh-tail of U,W . By induction, there exists at least

t
∑

i=h+1

(ui − wi) =

t
∑

i=1

(ui − wi)− (u− 1)

winning pairs w.r.t. theh-tail of U,W . By Fact 2.19 there exist at least as
many winning pairs w.r.t.U,W of the form(i, j) wherei > 1. By properties
of u there exist additional(u−1) winning pairs of the form(1, j), j ≤ u−1.
Summing up we obtain the fact.

3 The Streaming Algorithm

Fact 3.1. Let v1, . . . , vn be a sequence of non-negative numbers and letk > 2.
Then

(

n
∑

i=1

v2i

)(k−1)

≤

(

n
∑

i=1

vki

)(

n
∑

i=1

vi

)(k−2)

Proof. Defineλi =
vi∑n

j=1 vj
. Sinceg(x) = xk−1 is convex on the interval[0,∞)

we can apply Jensen’s inequality and obtain:
(∑n

i=1 v
2
i

∑n
i=1 vi

)(k−1)

= (

n
∑

i=1

λivi)
(k−1) ≤ (

n
∑

i=1

λiv
(k−1)
i ) =

∑n
i=1 v

k
i

∑n
i=1 vi

.
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LetD be a stream. Define

ψ =
n1−(1/k)G

1/k
k

F1
, δ = 2⌈0.5 log2(ψ)⌉, t =

⌈

δF1

n1/k

⌉

, λ =

⌈

F1δ
3

n

⌉

, (27)

where we use(2) to defineFk. We will make the following assumptions:

f1 ≤ 0.1F1, t ≤ F1, F1( mod t) = 0. (28)

Then it is possible to define a matrix ar × t matrixM , wherer = F1/t and with
entriesmi,j = pir+j.

Fact 3.2. 1 ≤ δ ≤ 2n(k−1)/2k.

Proof. Indeed,G1 ≤ G
1/k
k n1−1/k by Hölder inequality and sincef1 ≤ 0.1F1 by

(28) we haveψ ≥ 0.5; thus,⌈0.5 log2(ψ)⌉ ≥ 0 and the lower bound follows. Also,

F
1/k
k is theLk norm for the frequency vector since since all frequencies are non-

negative. SinceLk ≤ L1 we conclude thatψ ≤ n1−1/k and the fact follows.

Observe that there exists a frequency vector withδ = O(1): put fj = 1 for all
i ∈ [n]. At the same time there exists a vector withδ = Ω(n(k−1)/2k): put f1 = n
andfj = 1 for j > 2. It is not hard to see that ifδ is sufficiently large then a naı̈ve
sampling method will find a heavy element. For example, in thelatter case, the
heavy element occupies half of the stream.

Fact 3.3. λr ≤ 4G
1/k
k .

Proof. Recall thatF1 = rt. The fact follows from the definitions ofλ andt.

Fact 3.4.
G2

t
≤ G

1/k
k .

Proof. Defineα = k−3
2(k−2) . We have by Hölder inequality:

Gα2 ≤ G
2α
k
k nα(1−

2
k
) = G

k−3
k(k−2)

k n
k−3
2k . (29)

Also, by Fact 3.1

G1−α
2 = G

k−1
2(k−2)

2 ≤ G
1

2(k−2)

k G
1
2
1 . (30)

Thus,

G2 ≤ G
k−3

k(k−2)

k n
k−3
2k G

1
2(k−2)

k F
1
2
1 =

G
1
k
k

F1

n1/k





G
1
k
k n

k−1
k

F1





1/2

= tG
1
k
k .
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Fact 3.5. G3
λt ≤ G

1/k
k .

Proof. By Hölder inequality,

G3 ≤ G
3/k
k n1−(3/k). (31)

Thus
G3

λt
=
n1+(1/k)G3

F 2
1 δ

4
≤
n2−(2/k)G

3/k
k

F 2
1 δ

4
≤ G

1/k
k .

Theorem 3.6. LetM be ar × t matrix such that(27) is true. Then there exist
absolute constantsα, β such that

αG
1/k
k ≤ f1 ≤ βt (32)

imply

P (Sr = 1) ≥
δ

2n1−(2/k)
. (33)

Proof. By (32) and Facts 3.5, 3.4, 3.3:

6α(λr +
G3

λt
+
G2

t
) ≤ f1 ≤ βt.

Also, (27) impliesf1/t ≥ δ
n1−(2/k) . Thus,(33) follows from Theorem 2.1.

Algorithm 1 describes our implementation of the pick-and-drop sampling.

Theorem 3.7. Denotefki > 100
∑

j 6=i f
k
j as aheavyelement. There exist a (con-

structive) algorithm that makes one pass over the stream andusesO(n1−2/k log(n))
bits. The algorithm outputs a pair(i, f̃i) such thatf̃i ≤ fi with probability 1. If
there exists a heavy elementfi then also with constant probability the algorithm
will output (i, f̃i) such that(1− ǫ)fi ≤ f̃i.

Proof. Definet as in(27). W.l.o.g., we can assume thatF1 is divisible byt. Note
that if t > F1 or f1 ≥ 0.1F1 then it is possible to find a heavy element with
O(n1−2/k) bits by existing methods such as [9]. Otherwise, a streamD defines a
matrixM for which we computeO(n1−2/k/ǫδ) independent pick-and-drop sam-
ples. Since we do not know the value ofδ we should repeat the experiment for
all possible values ofδ. Output the element with the maximum frequency. With
constant probability the output of the pick-and-drop sampling will include a(1−ǫ)
approximation of the frequencyfi. Thus, there will be no otherfj that can give
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Algorithm 1 P&D(M, r, t, λ)

Generate i.i.d. r.v.{Ij}rj=1 with uniform distribution on[t].
S1 = m1,I1 ,
C1 = d1,I1 ,
q1 = 1.
for i = 2 → r do

computesi = mi,Ii , ci = di,Ii
if (Ci−1 < max{λqi−1, ci}) then

Si = si,
Ci = ci,
qi = 1

else
Si = Si−1,
Ci = Ci + fSi,l,
qi = qi−1 + 1

end if
end for
Output (Sr, Cr).

a larger approximation and replace a heavy element. The total space will define
geometric series that sums toO(n1−2/k log(n)).

If we know F1 ahead of time then we can compute the value oft for any
possibleδ and thus solve the problem in one pass. However, one can show that
the well-known doubling technique (when we double our parameter t each time
the size of the stream doubles) will work in our case and thus one pass is sufficient
even without knowingF1.

Recall that in [6] we developed a method of recursive sketches with the following
property: given an algorithm that finds a heavy element and uses memoryµ(n), it
is possible to solve the frequency moment problem in spaceO(µ(n) log(c)(n)). In
[6] we applied recursive sketches with the method of Charikar et.al. [9]. Thus, we
can replace the method from [9] with Theorem 3.7 and obtain:

Theorem 3.8.Letǫ andk be constants. There exists a (constructive) algorithm that
computes(1 ± ǫ)-approximation ofFk, usesO(n1−2/k log(n) log(c)(n)) memory
bits, makes one pass and errs with probability at most1/3.
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