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Abstract. In their ground-breaking paper, Indyk and Woodruff (STOC 05)
showed how to compute the k-th frequency moment Fj, (for £ > 2) in space
O(poly-log(n,m) - n'~ X ), giving the first optimal result up to poly-logarithmic
factors in n and m (here m is the length of the stream and n is the size of the
domain.) The method of Indyk and Woodruff reduces the problem of Fj, to the
problem of computing heavy hitters in the streaming manner. Their reduction
only requires polylogarithmic overhead in term of the space complexity and is
based on the fundamental idea of “layering.” Since 2005 the method of Indyk
and Woodruff has been used in numerous applications and has become a stan-
dard tool for streaming computations.

We propose a new recursive sketch that generalizes and improves the reduc-
tion of Indyk and Woodruff. Our method works for any non-negative frequency-
based function in several models, including the insertion-only model, the turnstile
model and the sliding window model. For frequency-based functions with sublin-
ear polynomial space complexity our reduction only requires log(® (n) overhead,
where log(c>(n) is the iterative log function. Thus, we improve the reduction of
Indyk and Woodruff by polylogarithmic factor. We illustrate the generality of our
method by several applications: frequency moments, frequency based functions,
spatial data streams and measuring independence of data sets.
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1 Introduction

The celebrated paper of Alon, Matias and Szegedy [1] defined the following streaming
model:

Definition 1. Let m,n be positive integers. A stream D = D(n,m) is a sequence of
size m of integers p1, . . ., pm, where p; € {1,...,n}. A frequency vector is a vector of
dimensionality n with non-negative entries f;,i € [n| defined as:

fi={i:1<j<m,p; =i}

Definition 2. A k-th frequency moment of D is defined by Fy,(D) = Zie[n] fE. Also
Fyo = max;e(n] fz

Alon, Matias and Szegedy [1] initiated the study of approximating frequency mo-
ments with sublinear memory. Their surprising and fundamental results imply that
for K < 2 it is possible to approximate F} with polylogarithmic space; and
that polynomial space is necessary for k£ > 2. Today, research on frequency
moments is one of the central directions for streaming; many important discov-
eries have been made since [1]. The incomplete list of relevant work includes
(2241931140411 641701812002 11274251709126/28130/511 3124]].

Indyk and Woodruff in their ground-breaking paper [23] gave the first optimal, up
to polylogarithmic factor, algorithm for F},. Their presented a two-pass algorithm with

-3 ) and then shown how their two-

space complexity of O (6%2 . (log2 n)(log6 m)-n
pass algorithm can be converted to one-pass algorithm with additional poly-log multi-
plicative factors. Let us describe, very informally, the fundamental approach of Indyk
and Woodruff [23]. They split the frequency vector into “layers,” where each layer
contains all entries with frequencies between, e.g., ¥* and v**! for a carefully chosen
~v > 1. Then they approximate the contribution of each layer by sampling the stream
and by finding the heavy elements that contribute to the layer. Their elegant analysis
shows that such a procedure ensures a good approximation with high probability. The
method of Indyk and Woodruff reduces the problem of Fj, to the problem of computing
heavy hitters in the streaming manner. Their reduction requires polylogarithmic over-
head in term of the space complexity. Since 2005 the method of Indyk and Woodruff
has been used in numerous applications and has become a standard tool for streaming
computations.

Our method has been inspired by the algorithm of Indyk and Woodruff. Specifically,
we ask:

Question 1. For which functions w : R + R, it is possible to reduce the problem
of computing >_"" , w(f;) to the problem of finding all j € [n] such that w(j) =
2037, w(f;))? More generally, given an implicit vector V, when it is possible to
reduce the problem of approximating |V'| (the L1 norm) to the problem of finding heavy
elements?

In this paper we answer Question [T] for all non-negative functions w. For streaming ap-
plications, recursion can be helpful if it is possible to reduce computations to a single
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instance of a smaller problem. We show that it is possible to reduce such a problem on
a vector of size n to a single computation of a random vector of size approximately
3n. In particular, O(log(n)) overhead is sufficient for any frequency-based function.
Our main technical result is shown in Theorem [l For frequency-based functions that
require polynomial space our reduction only requires log(c) (n) overhead. This result is
shown in Theorem[dl We illustrate the generality of our method by several applications:
frequency moments, frequency based functions, spatial data streams and measuring in-
dependence of data sets.

The correctness of the basic step in our algorithm follows from elementary analysis.
We then employ the basic step recursively and show that log(n) recursive calls can give
an algorithm that reduces the problem of approximating the sum to the problem of find-
ing heavy hitters. Further, it is possible to reduce the number of recursive calls log(n) to
loglog(n) by applying the same argument, but stopping after O(loglog(n)) steps. At
the depth O(log log(n)) of the recursion, the number of positive frequencies in a corre-
sponding vector is polylogarithmically smaller than n, with constant probability. Thus,
any algorithm that works in polylog(n, m)n® space (where 0 < « < 1 is a constant)
will approximate such a vector with negligible cost. Employing such an algorithm at the
bottom of loglog(n) recursion reduces the log(n) factor to a poly(loglog(n)) factor.
Further, the same idea may be repeated at least constant number of times; this is how
we achieve our final bound. The simplest variant of the argument requires only pairwise
independence, giving an algorithm that requires only 4-wise independence.

1.1 Roadmap

In Section 2] we introduce the basic argument and extend it to a special case, stuitable
for streaming applications, case in Section[3l In Sectiondl we describe a generic algo-
rithm for recursive computations. In Section[3] we discuss our result and demonstrate its
generality by explaining several applications.

2 Recursive Sketches

In this paper we denote by [V'| the Ly normof V., i.e., [V =3, v5-

Definition 3. Heavy elements

Let V' be a vector of dimensionality n with non-negative entries v; > 0. Let 0 < o < 1.
An element v; is a a-heavy with respect to V if: v; > a|V|. A set S C [n] is a a-core
w.rt. V ifi € S for any a-heavy v;.

Lemma 1. Let V € R be a fixed vector and let S be an o-core w.r.t. V. Let H be a
random vector with uniform zero-one entries h;, i € [n| that are pairwise-independent.

Define
X = Z’Ui +22h1v2
€S i¢S
Then P(|X — V]| Z e]V]) < &.
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Proof. Clearly, E(X) = |V|. By the properties of variance, by pairwise independence
of h; and by the definition of a-core:

Var(X —4Zv2Var Zv < alV|2.
¢S ¢S

Thus, by Chebyshev inequality:
PIX = V]| = €lV]) <

Corollary 1. Let V € RI™ be a random vector and let S be an a-core w.r.t. V. Let H
be a random vector independent of V' and S with uniform zero-one entries h;,i € [n]
that are pairwise-independent. Define

X:ZU,'—FQZ}LZ‘U,'.
ies i¢S
Then
P(IX = [V|[z €]V]) <

Proof. For any fixed V and S the main claim is true since H is independent of V' and
S and by Lemmal[Il Thus, the corollary follows.

Recursive Computations. Let ¢ be a parameter. Let Hy,..., Hy be i.i.d. random
vectors with zero-one entries that are uniformly distributed and pairwise independent.
For two vectors of dimensionality n define Had(V, U) to be their Hadamard product;
i.e., Had(V,U) is a vector of dimensionality n with entries v;u;. Define:

Vo=V, and V; = Had(Vj_1,H;) for j=1,...,¢.

Denote by v/ and k! the i-th entry of V; and H; respectfully. Let Sy, ..., S be a
sequence of subsets of [n] such that S; is an a-core of V. Define the sequence

X;=> vl 42> hlthl, j=0,...,0—1
iGSj i¢$’j
and Xy = |V,|.
Fact 2

¢
P % = V112 v < (o e

Proof. Consider fixed j < k. It follows from the definitions that H; is independent
of V; and S;. Applying Corollary[Iland the union bound we obtain the proof.

Consider the following recursive definition:

Yy = X, 72yj+l+z Ryl
i€S;
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Lemma 3. For any ¢, v, vector V and a = Q(Z; ):
P(Yo— V]| 2 IV <02

Proof. Denote Err} = |V;| — X and Err? = |V;| — Y;. We can rewrite

X, = 2Vl + Y1 200
i€S;

Thus X; —Y; = 2(|Vj11| — Yj41) = 2Err?,; and
(Brr?] = 1Y, — [Vil| < 1X; - Vil +1X; — Y| = | Brel| + 2| e, .

By definition Erré = Erri = 0. Thus we can rewrite:

¢
|Errd| < |Erry| + 2|Err?| < - Z \Err
j=0
Choose € = 10(;“) ; we have by Fact[2t
¢ .
P([Yo = [VI| 2 ~[V]) = P(|Erg| = 4V]) < PO 2| Errj| > 4|V]) <
§=0
6 ¢ ¢
P ((ZWEW; >W|> n (ﬂ (1Brr}l < evj|)>> +P (U (1X; = V31l 2 e|vj|>> <
j=0 j=0 Jj=0
¢
. +1
S 2wl =100+ |+ @Y
7=0

For j > 0 we note that |V;| is a random variable defined as:
J
=3 (1)
1€[n] t=1
Since all H; are mutually independent, we conclude that

Zzﬂ\vj =Z 9 (Zw (EE(hE))) =j§i;2f (Zmz ) (¢ +1IV].

j=0 i€ [n] i€ [n]

Thus, and by Markov inequality, we have
d) .
P> 2 [V;| > 10(6 + 1)|V]) < 0.1.
§=0
Also, (d’t,})a < 0.1 for sufficiently large o = Q(;z ). Thus,

P(IYo - V]| > 4V]) < 0.2
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3 An Extension: Approximate and Random Cores

There are many ways to extend our basic result. We will explore one direction, when the
cores are random and contain approximations of heavy hitters with high probabilityﬂ].
We consider vectors from a finite domain [m]™.

Definition 4. Let (2 be a finite set of real numbers. Define Pairsy to be a set of all sets
of pairs of the form:

{(il,wl),...,(it,wt)}, 1< <io <oty §n,z’j EN,U)]‘ € 0.

Further define

n
Pairs =0 U (U Paz'rst> )

t=1

Definition 5. A non-empty set QQ € Pairsy, i.e.,, Q = {(i1,w1), ..., (it, w)} for some
t € [n], is (a, €)-cover w.r.t. vector V. € [M]™ if the following is true:

1. V5 € [t](1 = e)vy; Swj < (14 €)vy,.
2. Vi € [n] ifv; is c-heavy then 3j € [t] such that i; = i.

Definition 6. Let D be a probability distribution on Pairs. Let V' € [m|™ be a fixed
vector. We say that D is §-good w.r.t. V' if for a random element () of Pairs with distri-
bution D the following is true:

P(Q is (e, €)-cover of V) > 1 — 6.

Definition 7. Let g be a mapping from [M)" to a set of all distributions on Pairs. We
say that g is §-good if for any fixed V. € [M]"™ the distribution g(V') is §-good w.r.t.
V. Intuitively, g represents an output of an algorithm that finds heavy hitters (and their
approximations) of input vector Vw.p. 1 — 4.

Definition 8. For non-empty QQ € Pairs define Ind(Q) to be the set of indexes of
Q. Formally, for Q € Pairs, denote Ind(Q) = {i : 35 < t such that for j-th pair
(15, w;) of Q itis true that i; = i}. Fori € Ind(Q) denote by wq (i) the corresponding
approximation, i.e. if i = i; then wq (i) = wj. (Note that since ij < ;41 this is a valid
definition.) For completeness, denote wq (i) = 0 for i ¢ Ind(Q) and Ind(0) = 0.

Now we are ready to repeat the arguments from the previous section.

Corollary 2. Let V € R be a random vector. Let g be a 5-good mapping and let Q
be a random element of Pairs that is chosen according to a distribution g(V'). Let H
be a random vector independent of V' and Q with uniform zero-one entries h;,i € [n]
that are pairwise-independent. Define

X' = Z v; + 2 Z h;v;.
i€Ind(Q) i¢Ind(Q)

! In this section we limit our discussion to finite sets and discrete distributions. This limitation
is artificial but sufficient for our applications; on the other hand it simplifies the presentation.
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Then c
PIX'=V[[zelV]) < , +4.

Proof. Consider a fixed vector V{y and an event that IV = Vj. Conditioned on this event,
the distribution g(V) is fixed and §-good w.r.t. V. Consider the event that Q = Qo,
where Qo is an (a, €)-cover w.r.t. V. Conditioned on this event, Ind(Q) is an a-cover
w.r.t. Vp. Since H is independent of @ the claim is true for any such V by Lemmalll
and by union bound. Thus, the corollary follows.

Recursive Computations Let ¢ be a parameter. Let Hy,..., Hy be ii.d. random

vectors with zero-one entries that are uniformly distributed and pairwise independent.
Define:
Vo=V, and V; = Had(Vj_1,H;) for j=1,...,¢.

Denote by v? J and hj the i-th entry of V; and H respectfully. Let g be a §-good mapping
and let Q; be a random element of Palrs with dlstrlbutlon g(V;). Define w; (i) = wq, ().
Define the sequence:

Xi= > w42 Y W, j=0,...4-1,
i€Ind(Q;) i¢Ind(Q;)

and X, = |V;|. From Corollary 2] and by repeating the arguments from Fact 2l we
obtain

Fact 4
¢
et
P (1X] = Vill = elvil)) < (& + (o +9)-
§=0
Consider the following recursive definition. Let Y = Y(V;) be a random variable that
depends on random vector V, and such that for any fixed Vi:
PG = Vol = e[ Vo) < 0.

Also, define for j =0,...,¢ — 1:

+1 j
Y/ =2V, + Y (1—2n"huwl.
zeInd(QJ)

Lemma 5. For any ¢, v, vector V; for a = Q(¢3) and § = Q(¢)

P(Yg = [VI[ z V) 0.2
Proof. Denote Err} = |Vj|— X/, Err? = |V;|-Y/ and Err? = Ziemd(Qj) lw;(4)—

v!|. We can rewrite

Xl Y a-m
zelnd(QJ)
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Thus | X} — Y/| < 2|Err? |+ |Erry| and
|Brr| = Y] = [Vill X} = VIl + X} = V]| < |Brrj| + |Brr}| + 2| B, .

Thus we can rewrite:

¢ ¢
|Errd| < |Erry|+|Errd|+2|Brr?| < -+ < QkErTi—&—Z Qj\Err]l\—&—Z 2j|Err?|.
=0 =0
Choose € = 4/, ) and denote Z = 2XErr? + Z?:o 27| Err}| + Zf:o 27| Errd).
Then

P(|Yg = V|| 2 ~|V]) = P(|Errg| > y[V]) < P(Z 2 1|V]) <

b 3
P ((z > ~|V]) N (ﬂ (\Err}\ < e|vj|)> n (ﬂ |Errd| < €|V ) |Errj| < e|V¢)> T
j=0 j=0

¢
P (|Err| > €|Vy]) + P U (1Errj| = eV;]) | + P | | (1Errd| = €V5))

©-

Note that by the definition of Y, we have P(\Errg\ > €|Vy|) < 4. Also, by the
definition of (); and union bound,

]
P(|J(ErS| = e[Vi]) < (¢ +1)d.
j=0

Thus and by Fact 4t

¢
P(Yy = [V > 4V]) < P [ D 27|V > 10(6 + 1) V| +(¢+2)(;+25).
=0

The lemma follows by repeating the concluding arguments from Lemmal[3l

4 A Generic Algorithm

Let D be a stream as in Definition [Il For a function H : [n] — {0,1}, define Dy
to be a sub-stream of D that contains only elements p € D such that H(p) = 1.
Let V = V(D) be an implicit vector of dimensionality n defined by a stream, e.g., a
frequency moment vector from Definition[Il We say that a vector V' is separable if for
any H, we have Had(V (D), H) = V(Dg). Let HH(D, o, €, §) be an algorithm that
produces (v, €)-cover w.r.t. V(D) w.p. 1 — 4, i.e., produces d-good distribution w.r.t.
V(D) for some suitable finite set of Pairs, as defined in Definition 4l
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Algorithm 6 . Recursive Sum[0](D, ¢)

1. Generate ¢ = O(log(n)) pairwise independent zero-one vectors
Hy,...,Hy. Denote Dj to be a stream Dy, g,..H;-

2. Compute, in parallel, random cores QQ; = HH (D, fj , €, ;5)

3. If Fo(Vy) > 1010 then output 0 and stop. Otherwise compute pre-
cisely Yy = |Vy|.

4. Foreachj=¢ —1,...,0, compute

Vi=i— Y (12, ().
i€Ind(Q;)

5. Output Yy.

Theorem 1. Algorithm[6lcomputes (1 + €)-approximation of |V'| and errs w.p. at most
0.3. The algorithm uses O(log(n)u(n, loég(n) €, logl(n) )) memory bits, where 1 is the
space required by the above algorithm H H.

Proof. The correctness follows directly from the description of the algorithm and
Lemma [5] and Markov inequality. The memory bounds follows from the direct com-
putations.

5 Discussion and Applications

We propose a new recursive sketch that generalizes and improves the reduction of In-
dyk and Woodruff. Our method works for any non-negative frequency-based function in
several models, including the insertion-only model, the turnstile model and the sliding
window model. For frequency-based functions with sublinear polynomial space com-
plexity our reduction requires O(log(c)(n)) overhead. We believe that there are many
other potential applications for our method, e.g., the algorithms that currently employ
the method of Indyk and Woodruff. Improving the bounds for these problems is an in-
teresting direction for the future work. Reducing the factor to o(log(®)(n)) is another
important open question.

5.1 Approximating Large Frequency Moments on Streams with CountSketch
We apply our technique to the problem of frequency moments.

Fact7 Let V' be a vector of dimensionality n with non-negative entries and let ng be
a number of non-zero entries in V. Let 0 < a < 1 and let v; be such that vf >

2 21
aYicm o¥. Then v} > 0.5acknj Dt vs.

IA

Proof. If ng = 0 the fact is trivial. Otherwise, by Holder’s inequality, > i sz_

2

1—2 k 1-2 2
k k k ~— % 02
ng <§jéivj) <ng "o kvj.
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The famous Count-Sketch [15] algorithm finds all a-heavy elements. In particular, the
following is a corollary from [[15].

Theorem 2. (from [lI5]) Let a; be the frequency of the t-th most frequent element. There
exists an algorithm that w.p. 1 — & outputs t pairs (i, f!) such that (1 —€)f; < fl <
(14-€) f; and such that all elements with f; > (1—¢€)a; appear in the list. The algorithm

2

uses O((t + 2eietr sy<or I )log(m/d) log(m)) memory bits.

(eat)?

Combining with Fact[7] we obtain

Corollary 3. There exists an algorithm that w.p. 1 — & outputs O(a™1) pairs
(i, f1*) such that (1 — e)fF < fi* < (1 + €)fF and such that all ele-
ments with fF > aZje[n] fj’? appear in the list. The algorithm uses O((a™! +

}zj a=2/kn1=2/kY1og(m/8) log(m)) memory bits.

The algorithm from Corollary [ defines a J-good distribution w.r.t. to the in-
put vector V(D) over some finite sel] from Definition B Denote the algo-
rithm from Corollary Bl by CS(D, ¢, ). Thus, combining with Algorithm [ if
gives an algorithm errs w.p. §, outputs (1 + €)-approximation of Fj and uses
O(e2fz/kné_2/k log(mn) log(m) log" %% (n)log(1/8)) memory bits, nearly match-
ing the bound in [6]. Denote this algorithm by A (D, ¢, §). We can improve the bound
further recursively:

Algorithm 8. Recursive Fi.[1](D;,¢)

1. Generate ¢ = O(loglog(n)) pairwise independent zero-one vectors
Hy, ..., Hy. Denote Dj to be a stream Dy, p,..H,-

2. Compute, in parallel, Q; = CS(D;, ;:; , €, 101%)
Compute Yy, = Ag(Dgy,€,0.1).
4. Foreachj = ¢ —1,...,0, compute

V=2 - S (1— 20w, (0).
i€Ind(Qjy)

w

5. Output Y.

There exists a constant ¢ such that for ¢ = cloglog(n), except with a small con-
stant probability, Fy(Dy) < logﬁ’(n)' Thus, executing Ay for n’ = logf}) (n) We
obtain an approximation of Fj(Dg) using O(e2fj/,€n1*2/k log(mn)log(m)) mem-
ory bits. Since ¢ = O(loglog(n)), the complexity of the new algorithm becomes
O( 62’ji/k n'=2/klog(mlog(n))log(m)(loglog(n))*). Repeating this argument a con-
stant number of times we arrive a(’:

% Indeed, we can define the finite set {2 from Definition E] as a set of all possible outputs of
Count-Sketch executed over all vectors on [m]™. This is a finite set (for finite n, m) and thus
we can define Pairs accordingly.

3 We note that this algorithm was proposed in the previous version of the paper [LT]).
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Theorem 3. Define g1(n) = log(n) and gi(n) = log(gi—1(n)). For any constant t
there exist an algorithm computes a (1 + €)-approximation of Fy,(D), errs w.p. at most
3 and uses O(c k?e=2=(4/F)pl= % g:(n) log?(m)) memory bits, where ¢, is a constant
that depends on t.

5.2 Recursive Sketches for Frequency-Based Functions with Sublinear
Polynomial Space Complexity

Theorem[3]can be generalized to any non-negative frequency based functions with sub-
linear polynomial space complexity. In particular, we show that the problem of approx-
imating |V| and finding heavy hitters are almost equivalent.

Theorem 4. Define g1(n) = log(n) and gi(n) = log(gi—1(n)). Let V' a vector such
that it is possible to find heavy elements using space S(n) = 2(n®) for some constant
a such that 0 < a < 1. Then for any constant € and for any constant t there exist an
algorithm that computes (1 £ €)-approximation of |V|, errs w.p. at most ;’ and uses
O(ctn®gi(n)) memory bits, where ¢, is a constant that depends on t and e.

5.3 Other Models of Streaming Computations

Our method can be directly translated to any model that allows separability and
preserves non-negative values of the implicit vector. Specifically, we need the non-
negativity to apply the Markov inequality. For example, we can apply the reduction to
the turnstile model where we observe two streams D; and Ds and need to compute
the >, w(|u; — 2;|) where u; and z; are frequencies in Dy and Ds. Similarly, our
reduction will work for the sliding window model. For example, it should improve (by
polylog factor) the results for the frequency moments from [9].

5.4 Approximating Large Frequency Moments on Streams with Pick-and-Drop
Sampling

In [8] we combine our method of recursive sketches with the pick-and-drop sampling
and compute Fy, with O(n'~2/* log(n) log'® (n)) bits. We reduce the ratio between the
upper and lower bounds from O(log?(n)) to O(log(n) log(® (n)). Thus, we provide a
(roughly) quadratic improvement of the result of Andoni, Krauthgamer and Onak [2].
To the best of our knowledge, this is the best currently known result for constant € and
for insertion-only streams.

5.5 Spatial Data Streams

Recursive sketching is not limited to the frequency moments or to the insertion-only
streams. For example, the method has found applications in the work of Tirthapura and
Woodruff [29] on spatial data streams. Specifically, Tirthapura and Woodruff say “We
choose to follow [[1L1]] since it provides a simpler exposition and has several properties
we will exploit.”
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5.6 Frequency-Based Functions and Measuring Independence of Datasets

In [12] we consider zero-one frequency laws for the frequency-based functions. As
one of the key steps we employ general reduction from sums to heavy hitters. Our
method follows the ideas of Indyk and Woodruff and involves large polylogarithmic
factors. Replacing our method in [12]] we should be able to achieve polylogarithmic
improvements in space. Similar polylogarithmic improvement should be possible for
measuring independence (in terms of total variation distanced) of datasets [[LO].
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