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Abstract. We consider the question of constructing pseudorandom gen-
erators that simultaneously have linear circuit complexity (in the output
length), exponential security (in the seed length), and a large stretch (lin-
ear or polynomial in the seed length). We refer to such a pseudorandom
generator as an asymptotically optimal PRG. We present a simple con-
struction of an asymptotically optimal PRG from any one-way function
f : {0, 1}n → {0, 1}n which satisfies the following requirements:

1. f can be computed by linear-size circuits;

2. f is 2βn-hard to invert for some constant β > 0, and the min-entropy
of f(x) on a random input x is at least γn for a constant γ > 0 such
that β/3 + γ > 1.

Alternatively, building on the work of Haitner, Harnik and Reingold
(SICOMP 2011), one can replace the second requirement by:

2′. f is 2βn-hard to invert for some constant β > 0 and it is regular in
the sense that the preimage size of every output of f is fixed (but
possibly unknown).

Previous constructions of PRGs from one-way functions can do with-
out the entropy or regularity requirements, but even the best such con-
structions achieve slightly sub-exponential security (Vadhan and Zheng,
STOC 2012).

Our construction relies on a technical result about hardcore func-
tions that may be of independent interest. We obtain a family of hardcore
functions H = {h : {0, 1}n → {0, 1}αn} that can be computed by linear-
sized circuits for any 2βn-hard one-way function f : {0, 1}n → {0, 1}n
where β > 3α. Our construction of asymptotically optimal PRGs uses
such hardcore functions, which can be obtained via linear-size com-
putable affine hash functions (Ishai, Kushilevitz, Ostrovsky and Sahai,
STOC 2008).
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1 Introduction

A pseudorandom generator (PRG) [7,30] is a deterministic algorithm which
stretches a short random seed into a longer output which looks random to
any computationally bounded observer. PRGs have numerous applications in
cryptography. In particular, they serve as useful building blocks for basic cryp-
tographic tasks such as (symmetric) encryption, commitment, and message au-
thentication.

A seemingly weaker primitive, which satisfies a much milder form of hardness
requirement, is a one-way function (OWF). A OWF is an efficiently computable
function which is hard to invert on a random input. We say that f is t(n)-hard
to invert (or t(n)-hard for short) if every algorithm running in time t(n) can find
a preimage of f(x) for a random x ∈ {0, 1}n with at most 1/t(n) probability, for
all sufficiently large n. We say that f is exponentially hard if it is 2βn-hard for
some constant β > 0.

Every PRG which significantly stretches its seed is also a OWF. However,
because of its crude form of security, a OWF is easier to construct heuristically
than a PRG. There are many natural candidates for a OWF (even an exponen-
tially strong OWF) which do not immediately give rise to a similar PRG. This
motivated a line of work on constructing PRGs from different types of OWFs,
which culminated in the seminal result of H̊astad, Impagliazzo, Levin and Luby
(HILL) [21] that a PRG can be constructed from an arbitrary OWF. More re-
cently, there has been another fruitful line of work on simplifying and improving
the efficiency of the HILL construction [22,17,18,19,20,16,29].

The main focus in the above works has been on optimizing efficiency un-
der minimal assumptions. The present work is motivated by the following dual
question: under which assumptions can we obtain optimal efficiency? Ideally,
we would like to obtain a PRG G : {0, 1}n → {0, 1}l(n) satisfying the following
requirements:

– G has large stretch; that is, l(n) > cn or even l(n) > nc for some constant
c > 1. A large stretch is crucial for most cryptographic applications of PRGs.

– G has linear circuit complexity; that is, the output of G can be computed by
a uniform family of (bounded fan-in) boolean circuits of size O(l(n)). This
implies linear-time computation also in other, more liberal, models such as
unbounded fan-in circuits or different flavors of RAM.

– G has exponential security; that is, there exists a constant δ > 0 such that
any algorithm running in time 2δn can distinguish between the output of G
and a truly random string of length l(n) with at most a 2−δn advantage. In
typical PRG applications, exponential security is useful for minimizing the
asymptotic length of the secret keys or the amount of true randomness.

We refer to a PRG as above as an asymptotically optimal PRG. Using this
terminology, the main question we pose in this work is the following:

Which types of one-way functions imply an asymptotically optimal PRG?
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The above question is motivated by the broad goal of obtaining efficient cryp-
tographic constructions whose security can be proved under conservative as-
sumptions. Indeed, the efficiency of encryption schemes and other cryptographic
applications of PRGs is often dominated by the efficiency of the underlying
PRG [25].

A natural conjecture is that an asymptotically optimal PRG can be con-
structed from any OWF f : {0, 1}n → {0, 1}n which can be computed by linear-
size circuits and is exponentially hard to invert. However, this conjecture does
not seem to follow from the current state of the art. A recent result of Vadhan
and Zheng [29] (improving on [18,20]) comes close to proving the conjecture.
Combined with linear-size computable pairwise independent hash functions [25],
the result from [29] implies a PRG construction which satisfies the first two re-
quirements but falls short of the third. More concretely, the construction adds a
polylog(n) multiplicative overhead to the seed length.

A recent PRG construction of Applebaum [3] satisfies the first two require-
ments and has the additional feature of a constant output locality (namely, each
output bit depends on a constant number of input bits). This construction relies
on variants of a one-wayness assumption due to Goldreich [12]. Roughly speak-
ing, this assumption asserts that a randomly chosen function from the class of
functions having constant output locality is one-way with high probability.

A construction of an asymptotically optimal PRG based on an exponential
version of an indistinguishability assumption due to Alekhnovich [1] follows from
the work of Applebaum, Ishai, and Kushilevitz [6] (see also [25,3]). The question
of constructing asymptotically optimal PRGs under more general assumptions
remained open.

1.1 Our Contribution

We prove the above conjecture for one-way functions f that are either “regular”
(in the sense that every output f(x) has the same number of preimages) or alter-
natively have a “random enough output” on a random input x. More concretely,
we prove the following result:

Theorem 1 (Asymptotically Optimal PRGs). Suppose that f : {0, 1}n →
{0, 1}n is 2βn-hard to invert for some β > 0. Suppose that either f is regular
or the min-entropy of f(x) is larger than γn for some constant γ such that
γ > 1 − β/3 (and for sufficiently large n). Then there exists an exponentially
strong PRG G : {0, 1}n → {0, 1}2n that can be computed by linear-size circuits
using O(1) oracle calls to f .

Using a standard tree-based PRG extension, the above theorem yields an asymp-
totically optimal PRG with an arbitrary polynomial stretch; see the full version
of this paper for further details.

The above entropy requirement seems quite mild and in some cases of interest
it can be proved unconditionally. In particular, there are natural variants of
Goldreich’s OWF candidate [12] that can be shown to have fractional entropy
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that tends to 1 with the locality degree (see [9] and the full version of this paper),
whereas the expected hardness of inverting does not seem to decrease (and may
even grow) with the locality.

Hardcore Functions. Our construction of asymptotically optimal PRGs is ob-
tained via a technical result about hardcore functions that may be of independent
interest. Recall that a hardcore predicate b is a function that outputs a single bit
b(x) which is hard to predict even given f(x). A hardcore function for a one-way
function f is a function h (which can output more than one bit) whose output
h(x) is hard to distinguish from random even when f(x) is known. More pre-
cisely, we allow h to be picked at random from a function family H and provide
a description of h as an additional input to the distinguisher. Hardcore functions
are a fundamental cryptographic object, with applications to pseudoentropy and
pseudorandomness. Goldreich and Levin [15] introduced the first hardcore pred-
icates and functions for general OWFs, showing that a random linear function
is hardcore and so is the linear function defined by a random Toeplitz matrix.

We consider families of linear functions H = {hi : {0, 1}n → {0, 1}m} over the
binary field. We refer to such a family as a bilinear uniform output hash family
if it satisfies two properties. First, for any x �= 0, the random variable hi(x) (in-
duced by a uniformly random choice of the index i) is uniformly distributed over
{0, 1}m. Second, H forms a subgroup of the (additive) group of linear functions
from F

n
2 to F

m
2 . Using a result of Holenstein, Maurer, and Sjödin [23], we show

that any such family of functions is hardcore for any sufficiently hard OWF.

Theorem 2 (Bilinear Uniform-Output Hash Families are Hardcore).
Let H = {h : {0, 1}n → {0, 1}αn} be a bilinear uniform output hash family and
let f : {0, 1}n → {0, 1}n be a 2βn-hard one-way function. Then H is a family of
exponentially strong hardcore functions for f if β > 3α.

A construction of linear-size computable pairwise independent hash functions
was given by Ishai, Kushilevitz, Ostrovsky and Sahai [25]. Observing that the
construction can be instantiated so that each function in the family is affine,
and constructing linear uniform-output hash families from such families, we can
use the above theorem to obtain linear-size computable hardcore functions with
a long output. Using such a hardcore function, the construction of an asymptot-
ically optimal PRG proceeds in a simple way. In the high entropy case, we first
extract the randomness from the output of f by applying a (linear-size) pair-
wise independent hash function (appealing to the Leftover Hash Lemma [21]).
Then, we extract sufficient pseudorandomness from the input of f by apply-
ing the (linear-size) hardcore function to the input x. If f has sufficiently high
min-entropy and is hard enough to invert, these techniques combine so that the
output has length cn for c > 1. From this PRG, we can use standard PRG ex-
tension techniques to obtain an asymptotically optimal PRG with an arbitrary
polynomial stretch.

In the case where the OWF f is regular, we combine the hardcore function
result with a PRG construction of Haitner, Harnik and Reingold [17,19] (the
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HILL construction [21] yields a similar result for regular f with known preimage
size).

1.2 Related Work

Pseudorandom Generators. Following the pioneering works of Blum and
Micali [7] and Yao [30], who constructed a PRG from a one-way permutation,
Goldreich, Krawczyk and Luby [14] constructed a PRG from any regular OWF
with unknown preimage size (a OWF is regular if every output of f has the
same preimage size). H̊astad, Impagliazzo, Levin and Luby [21] gave the first
construction of a PRG from any OWF. The first effort towards simplifying and
improving the HILL construction was made by Holenstein [22], who also ex-
plicitly considered the case of exponentially strong OWFs. Haitner, Harnik and
Reingold [17,18,19] improved the construction of [14] by relying only on pairwise
independent hash functions ([14] had required n-wise independent hash func-
tions) and by reducing the seed length. More recently, Haitner, Reingold and
Vadhan [20] further improved the seed length of PRGs from general OWFs. The
most efficient general constructions to date are given in the aforementioned work
of Vadhan and Zheng [29], who also noted that combining their construction with
the pairwise independent hash functions of [25] gives a linear-stretch linear-size
PRG from any exponentially hard OWF. (This construction does not depend
on the hash functions being affine.) As discussed above, this construction still
falls short of our main goal because of its polylogarithmic overhead to the seed
length, but otherwise it is stronger in several important aspects. In particular,
it does not require f to satisfy any entropy or regularity requirement.

Constructions of PRGs in NC0 (i.e., with constant output locality) were first
given by Applebaum, Ishai, and Kushilevitz [5] under standard assumptions.
Note that any NC0 function can be realized by linear-size circuits (in the output
length). However, the PRGs in NC0 from [5] have sublinear stretch. Linear-
stretch PRGs in NC0 were constructed in [6] under an indistinguishability as-
sumption due to Alekhnovich [1]. Under an exponentially strong version of the
assumption from [1], this construction yields an asymptotically optimal PRG.

A family of linear-stretch PRGs in NC0 whose security is based on a nat-
ural one-wayness assumption was given by Applebaum [3], who under similar
assumptions also obtained a PRG with polynomial stretch in NC0. However, the
security level of the PRGs constructed in [3] does not meet the third requirement
of an asymptotically optimal PRG, even under exponential one-wayness assump-
tions. Furthermore, the underlying OWFs in these constructions are restricted
to special distributions over NC0 functions, whereas our construction does not
require the underlying OWF to be in NC0 (nor does it yield a PRG in NC0).

Finally, Applebaum, Bogdanov, and Rosen [4] (following earlier works of
Cryan and Miltersen [11] and Mossel, Shpilka, and Trevisan [26]) present a broad
class of randomized constructions of small-bias PRGs in NC0, namely PRGs in
NC0 which provably fool all linear distinguishers. Such small-bias PRGs may
serve as plausible candidates for asymptotically optimal PRGs, though their
security does not seem to follow from any natural one-wayness assumption.
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Goldreich’s One-Way Function. Goldreich [12] put forward the following
graph-based one-way function candidate: Consider a d-ary (nonlinear) predicate
P and a bipartite graph G = (V,E) with left nodes u1, . . . , un, right nodes
v1, . . . , vn, and right degree d. Define f : {0, 1}n → {0, 1}n by labeling the left
(input) nodes of G with the bits of x. We define the jth output bit of f on x,
f(x)j , as P (xi1 , . . . , xid), where ui1 , . . . , uid are the input nodes that are in the
neighborhood of vj , the jth output node of G. We note that f can be computed
by linear-size circuits as long as d is a constant. Goldreich conjectured that most
functions f as above are one-way.

Recent works on this class of functions [28,2,9,10,8] may be viewed as sup-
porting the possibility that they are exponentially hard; however, Bogdanov and
Qiao [8] have shown that for variants where the output stretch is a large constant
(at least exponential in the input degree), there exist instantiations that are in-
vertible in polynomial time. Applebaum’s construction of a linear-stretch PRG
in NC0 [3] uses a variant of Goldreich’s one-way function with a large constant
stretch. He demonstrates that the one-wayness of such local functions implies
that the output has sufficiently good pseudoentropy to allow the construction of
a PRG. By contrast, the one-way functions required for the constructions in this
paper are from n bits to n bits and, as discussed above, the security reduction
from [3] is not tight enough to yield an asymptotically optimal PRG.

In the full version of this paper, we show that a random d-local one-way
function from n bits to n bits, instantiated with a random and independent d-
ary predicate for each output bit of the function, has high min-entropy except
with exponentially small probability over the choice of graph and predicates.
This is useful towards instantiating the types of OWFs on which our main result
relies. Previous works (e.g., [9,10]) have examined instances with more concrete
choices of the predicate P and proved them also to have high min-entropy except
with exponentially small probability over the choice of the function.

Hardcore Functions. Goldreich and Levin [15] demonstrated that the set of all
inner product functions constitutes a family of hardcore predicates for any one-
way function. More generally, they proved that the set of all linear functions with
input in {0, 1}n and the set of Toeplitz matrices with input {0, 1}n are families
of hardcore functions for any one-way function (for appropriately sized outputs).
The central idea of their proof is that if a random XOR of a candidate hardcore
function output is hard to distinguish, then the function is indeed hardcore; they
constructed such an argument for the set of all matrices and Toeplitz matrices,
respectively, by direct calculation.

Näslund [27] showed that the family of all affine functions over GF [2n] and
the family of all linear functions over the integers modulo a prime are families
of hardcore functions for any one-way function.

Holenstein, Maurer and Sjödin [23] generalized the results of [15] to give a
complete classification of all so-called bilinear hardcore function families over
arbitrary fields; that is, the hardcore functions are additively homomorphic both
in their function inputs and in the strings that represent each function (this
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is the case when the set of hardcore functions forms an additive group). Our
construction of linear-size computable hardcore functions will rely on this result.

1.3 Definitions and Preliminaries

We denote by Un the random variable uniformly distributed over {0, 1}n. We
provide some definitions and preliminaries used in this paper; see the full ver-
sion for other definitions, such as bilinear functions, full rank bilinear functions,
one-way functions, hardcore functions, pseudorandom generators and pairwise
independent hash families. In particular, we say that a function is a β-exponential
one-way function if it is a (2βn, 2−βn) one-way function. We also say that a pair-
wise independent hash family where each function in the family is affine is an
affine pairwise independent (API) hash family.

Definition 3. Let Hn,m = {hi : {0, 1}n → {0, 1}m} be a multiset of func-
tions (that is, we allow distinct indices to represent the same function). We say
that Hn,m is a family of uniform-output hash functions if for every non-zero
x ∈ {0, 1}n, the random variables Hn,m(x) induced by a uniform choice of h
from Hn,m is uniformly distributed over {0, 1}m. If every hi ∈ Hn,m is a linear
function over the binary field (i.e., a function of the form Aix), we call Hn,m a
linear uniform-output (LUO) hash family.

Further, a LUO hash family of size 2k that can be expressed as a bilinear
function h : {0, 1}n × {0, 1}k → {0, 1}m (where the second argument represents
the index i) is denoted a bilinear uniform-output (BLUO) hash family.

We will typically consider infinite collections of families Hn,m parameterized
by the input and output length. In such a case we require the existence of a
representation length �n,m = poly(n,m) such that Hn,m contains 2�n,m (not
necessarily distinct) functions hi indexed by all binary strings of length �n,m
(which equals k in the above definitions). For convenience, we will abuse notation
and refer to hi ∈ Hn,m as both a function and the string representing it. We
assume that there is a polynomial-time evaluation algorithm that, given hi and
x, outputs hi(x). In fact, we will rely on families for which this algorithm can
be implemented by linear-size circuits.

Claim 4. Let H ′n,m be an API hash family. Then the multiset Hn,m = {hi :
hi(x) = h′i(x)− h′i(0), h′i ∈ H ′} is an LUO hash family.

The proof of the claim is immediate from the fact that for any x �= 0, H ′n,m(x)
and H ′n,m(0) are distributed uniformly and independently at random, and that
each function in Hn,m is linear.

2 Linear-Size Hardcore Functions

We now give our main result for the existence of linear-size hardcore functions.
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Theorem 5. Let Hn,l(n) be a BLUO hash family, let f : {0, 1}n → {0, 1}n
be a (t(n), 1/t(n)) one-way function, and let θ > 1 be an arbitrary constant.
Then Hn,l(n) is a (t′(n), 1/t′(n)) family of hardcore functions for f if 3θ(l(n) +
log t′(n)) < log t(n).

Corollary 6. Let Hn,l(n) be a BLUO hash family and let f : {0, 1}n → {0, 1}n
be a one-way (resp. β-exponential one-way) function. Then Hn,l(n) is a family of

hardcore functions (resp. is a (2Ω(n), 2−Ω(n)) family of hardcore functions) for
f for any l(n) ∈ O(log n) (resp. l(n) < βn

3θ for any constant θ > 1).

We initiate the proof of Theorem 5 by proving a technical lemma.

Lemma 7. Let H be a BLUO hash family specified by the bilinear function h.
Then h is full rank.

Proof of Lemma 7. Let h : {0, 1}n×{0, 1}k → {0, 1}m be the bilinear function
that specifies H. Then, by definition of LUO hash families, for any 0 �= x ∈
{0, 1}n, the distribution {h(x, r)}r←Uk

is distributed uniformly over {0, 1}m.
Let l : {0, 1}m → {0, 1} be an arbitrary non-zero linear function. Then for any
0 �= x ∈ {0, 1}n, {l◦h(x, r)}r←Uk

is also distributed uniformly over {0, 1} and, in
particular, the linear map r �→ h(x, r) is surjective onto {0, 1} for any non-zero
x.

Let Ml be the n × k matrix denoting l ◦ h : {0, 1}n × {0, 1}k → {0, 1}. We
would like to prove that rank(Ml) = n. This follows from the fact that for every
non-zero x ∈ {0, 1}n, there exists some rx such that xT ·M ·rx = 1, which implies
that every non-trivial linear combination of the rows of Ml is non-zero, and the
lemma follows. ��
We now proceed to prove Theorem 5.

Proof of Theorem 5. We will proceed by contradiction, and assume that
there exists a probabilistic algorithm D running in time t′(n) such that |Pr[x←
Un, h ← Hn,l(n) : D(f(x), h, h(x)) = 1] − Pr[x ← Un, h ← Hn,l(n), y ← Ul(n) :
D(f(x), h, y) = 1]| > ε′(n) = 1/t′(n) for infinitely many n.

More specifically, let Pr[x ← Un, h ← Hn,l(n) : D(f(x), h, h(x)) = 1] = δ and
Pr[x ← Un, h ← Hn,l(n), y ← Ul(n) : D(f(x), h, y) = 1] = (1 + ε)δ. Without
loss of generality, let ε > 0 (otherwise, let D′ be the algorithm that outputs
the opposite bit that D does and use D′ for the remainder of this proof); then
εδ ≥ ε′(n).

Let α(n) be such that for some θ > 1, 3θ(l(n)+log t′(n))+logα(n) < log t(n).
Since by Lemma 7, H can be specified by a full rank bilinear function, a slightly
modified version of the hardcore result of [23] (see the full version for details)
implies that there exists an algorithm Aα and some c > 0 that inverts f in time

α(n) · 22l(n)

δε2 · nc · t′(n) ≤ α(n) · 22l(n)+1

ε′(n)2 · nc · t′(n) = α(n) · 22l(n)+1 · nc · t′3(n),
which, by assumption, is less than t(n). Further, Aα inverts f with probability

≥ δε2

4·22l(n) − 1
α(n) ≥ ε′(n)2

4·22l(n) − 1
α(n) , which, by assumption, is larger than ε(n) =

1/t(n), contradicting the one-wayness of f . ��
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Ishai et al [25] construct a family of pairwise independent hash functions from
{0, 1}n to {0, 1}n which can be computed by circuits of size O(n). This con-
struction uses an arbitrary pairwise independent hash function (applied on a
constant-size input domain) as a building block. Using a family of affine func-
tions as a building block (e.g., Ax + b where A is a random binary matrix and
b a random binary vector) yields a linear-size computable family of affine pair-
wise independent hash functions. We use this family to construct a linear-size
computable BLUO hash family1.

Proposition 8 (Implicit in [25]). For any 0 < c ≤ 1, there exists a family of
affine pairwise independent hash functions from {0, 1}n to {0, 1}cn which can be
computed by linear-size circuits.

Combining Proposition 8 with Claim 4, we obtain the following lemma.

Lemma 9. For any 0 < c ≤ 1, there exists a BLUO hash family from {0, 1}n
to {0, 1}cn which can be computed by linear-size circuits.

Applying Theorem 5 with these hash functions yields the following result.

Corollary 10. Let f : {0, 1}n → {0, 1}n be a β-exponential one-way function.
For any l(n) and θ > 1 such that 3l(n) < βnθ, there exists a BLUO hash family
Hn,l(n) such that Hn,l(n) is a (2Ω(n), 2−Ω(n)) family of hardcore functions of f
which can be computed by linear-size circuits.

3 PRGs Computable by Linear-Size Circuits

We discuss how hardcore functions that can be computed by linear-size circuits
can be used to construct linear-stretch PRGs that can be computed by linear-size
circuits. When f is an exponentially hard one-way function, various assumptions
about the min-entropy of the output of f can be used to construct such PRGs.
We first construct a PRG in the case that the output of f has high enough
min-entropy. We then examine previously made restrictions on f that have been
used to construct linear-stretch PRGs.

3.1 PRGs for One-Way Functions with Lower-Bounded
Min-Entropy

We demonstrate that there exist linear-stretch pseudorandom number generators
that can be computed by linear-size circuits provided that there exists a suitable
class of exponentially hard one-way functions. We discuss the plausibility of these
assumptions in the full version of this paper.

1 When we say that a family of hash functions can be computed by linear-size circuits
we mean that there is a universal constant c such that for every sufficiently large
m and n, there is a circuit Cn,m of size cn which computes the restriction of the
family to functions from {0, 1}n to {0, 1}m. The input to Cn,m includes the (binary
representation of) the index i of the hash function and the input for hi.
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Assumption 11. There exist a function f : {0, 1}n → {0, 1}n and constants
β > 0, θ > 1, and γ such that γ > 1− β

3θ with the following properties:

(i) f is a β-exponential one-way function.
(ii) f can be computed by linear-size circuits.
(iii) H∞(f(Un)) > γn.

Under this assumption, the following theorem can be proved.

Theorem 12. If Assumption 11 holds, there exists a (2Ω(n), 2−Ω(n)) linear-
stretch PRG G that can be computed by linear-size circuits with a single oracle
call to f .

Using either the construction in [25] or the construction in [13] (see Section 3.3.2
there) with the PRG G of Theorem 12, we obtain the following corollary.

Corollary 13. If Assumption 11 holds, then for any polynomial l(n) > n there
exists a (2Ω(n), 2−Ω(n)) PRG G : {0, 1}n → {0, 1}l(n) such that G can be com-
puted by circuits of size O(l(n)) with O(l(n)/n) oracle calls to f .

In the following Construction 14, we describe an algorithm that we prove satisfies
Theorem 12; see the full version for the full proof of Theorem 12. It can be
shown that it is possible to specify a BLUO hash family (and also an API hash
family) h ∈ Hm,αm by specifying a string from {0, 1}μm for some constant μ.
Let f : {0, 1}n → {0, 1}n be a β-exponential one-way function. Set c0 = γ and
c1 = 1− γ + ε2 for any constant 0 < ε2 < γ − (1 − β

3θ ). Construct an API hash
family, Hn,c0n, and a BLUO hash family, Hn,c1n, which are indexed by the sets
{0, 1}k0n and {0, 1}k1n for some constants k0 and k1, respectively.

Construction 14. Let Hn,c0n be an API hash family and Hn,c1n be a BLUO
hash family with h0 and h1 drawn from Hn,c0n and Hn,c1n, respectively. Let
f : {0, 1}n → {0, 1}n satisfy Assumption 11. Then set:

G(x, h0, h1) = (h0, h0(f(x)), h1, h1(x)).

Note that |(x, h0, h1)| = (1+k0+k1)n and |G(x, h0, h1)| = k0n+c0n+k1n+c1n =
(1+ε2+k0+k1)n, so G has linear stretch. G can also be computed by linear-size
circuits because h0, h1, and f can all be computed by linear-size circuits.

We note that it may be the case that one can only generate “good” one-way
functions that satisfy Assumption 11 with constant probability; for instance,
randomly selected bipartite graphs may only yield “good” OWFs with constant
probability. One can still construct a family of PRGs from such a family of one-
way functions, but the resulting PRGs will not be optimal because they will only
be (2Ω(

√
n), 2−Ω(

√
n)) PRGs; see the full version for further details.

PRGs from Regular One-Way Functions. We have so far presented a
construction of a PRG for exponentially hard one-way functions with certain
preimage constraints. Using the hardcore and hash families outlined here that
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can be computed by linear sized circuits, we can also modify a result of [19,16] to
obtain asymptotically optimal PRGs for regular one-way functions with possibly
unknown preimage size (recall that a one-way function f is regular if every every
output f(x) has the same number of preimages. We refer the reader to the full
for details2.

Corollary 15. If f : {0, 1}n → {0, 1}n is a β-exponential regular one-way func-
tion (with possibly unknown preimage size), then there exists a (2Ω(n), 2−Ω(n))
pseudorandom generator G with linear stretch that can be computed by linear-size
circuits with O(1) oracle calls to f .
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