arXiv:1304.1458v1 [cs.DS] 4 Apr 2013

How Hard is Counting Triangles in the
Streaming Model

Vladimir Braverman'®, Rafail Ostrovsky? and Dan Vilenchik?

! Department of Computer Science, Johns Hopkins University.
vova@cs. jhu.edu
2 Department of Computer Science, UCLA.
rafail@cs.ucla.edu

3 Faculty of Mathematics and Computer Science, The Weizmann Institute, Israel.

dan.vilenchik@weizmann.ac.il

Abstract. The problem of (approximately) counting the number of tri-
angles in a graph is one of the basic problems in graph theory. In this pa-
per we study the problem in the streaming model. We study the amount
of memory required by a randomized algorithm to solve this problem.
In case the algorithm is allowed one pass over the stream, we present a
best possible lower bound of £2(m) for graphs G with m edges on n ver-
tices. If a constant number of passes is allowed, we show a lower bound
of 2(m/T), T the number of triangles. We match, in some sense, this
lower bound with a 2-pass O(m/T*/3)-memory algorithm that solves the
problem of distinguishing graphs with no triangles from graphs with at
least T triangles. We present a new graph parameter p(G) — the triangle
density, and conjecture that the space complexity of the triangles prob-
lem is £2(m/p(G)). We match this by a second algorithm that solves the
distinguishing problem using O(m/p(G))-memory.

http://arxiv.org/abs/1304.1458v1

2 Vladimir Braverman, Rafail Ostrovsky and Dan Vilenchik

1 Introduction

Counting the number of triangles in a graph G = (V, E) is one of the
basic algorithmic questions in graph theory. From a theoretical point of
view, the key question is to determine the time and space complexity
of the problem. The brute-force approach enumerates all possible triples
of nodes (taking O(n3) time, n is the number of vertices in G). The
algorithms with the lowest time complexity for counting triangles rely
on fast matrix multiplication. The asymptotically fastest algorithm to
date is O(n?37) [7]. An algorithm that runs in time O(m!'*!) with space
complexity ©(n?) is given in [2] (m is the number of edges in G). In
more practical applications, the number of triangles is a frequently used
network statistic in the exponential random graph model [15/9], and nat-
urally appears in models of real-world network evolution [14], and web
applications [48]. In the context of social networks, triangles have a nat-
ural interpretation: friends of friends tend to be friends [18], and this can
be used in link recommendation/friend suggestion [16].

The memory restrictions when dealing with huge graphs led to con-
sider the streaming model: The edges of the graph come down the stream,
and the algorithm processes each edge as it comes in an on-line fashion
(once it moves down the stream, it cannot access it again). The algorithm
is allowed ideally one pass (or a limited number of passes) over the stream.
The parameter of interest is the amount of memory that the algorithm
uses to solve the problem.

Definition 1. TRIANGLES(c) is the problem of approximating the num-
ber of triangles in the input graph within a multiplicative factor of 0.9,
with probability at least 2/3, using at most ¢ passes over the data stream.

The choice of constants 0.9 and 2/3 in the definition is for the sake of
clear and simple presentation. One can take both the approximation rate
and success probability to be parameters of the problem.

Currently, no non-trivial algorithms are known to solve TRIANGLES(¢)
when ¢ is constant (by trivial we mean an algorithm that uses ©(m) mem-
ory, m the number of edges, which is asymptotically the same as storing
all graph edges). All existing approximation algorithms receive T3 (the
number of triangles in the input graph) as part of their input. Obviously,
T3 cannot be part of the input. One way to implement such an algo-
rithm is by “guessing” the correct value of T3 and verifying the guess.
This translates into @ (logn) passes over the stream (in form of a binary
search for example). Let us mention some of the known results. One ap-
proach is a sampling approach. The algorithm suggested in [5] samples

How Hard is Counting Triangles in the Streaming Model 3

in the first pass s random pairs (e, v) of an edge e = (u,w) and a vertex
v, and stores them. Then in the second pass checks for every pair (e, v)
whether (u,v,w) is a triangle. The total number of triangles is estimated
as a function of the number of pairs (e,v) that formed a triangle. The
number of samples s is proportional to (T + 11 + 1) /T3 (where T; = #
of vertex triples in the graph spanning exactly i edges). They show a
more sophisticated sampling algorithm which uses (7} + T5)/T5 samples.
A different approach reduces the problem of approximating the number
of triangles to the problem of estimating the frequency moments of the
data stream, using the Alon-Matias-Szegedy (AMS) algorithm [I]. This
approach was presented in [3] for the first time. The algorithm in [3] uses
T1,T5,T5 to compute the appropriate parameters with which to run AMS.
The space complexity of this algorithm is proportional to ((T1 +T»)/T3)3.
In another work [I3], the algorithm uses m, Cy, Cg, T3 to compute the ap-
propriate parameters to AMS (C; is the number of i-cycles in the graph).
The space complexity of that algorithm is (m3 +mCy + Cg + T5)/T%.

Observe that all aforementioned algorithms assume other non-trivial
graph-parameters to be part of their input as well. Another disadvantage
that the aforementioned algorithms share, is the fact that their space
complexity depends on parameters that are not necessarily indicative of
the number of triangles in the graph. For example, the parameter T5 may
have little to do with the number of triangles T3 in some graphs. Consider
the graph whose vertex set V= AgUA;UA,, each A; of size n/3. The edge
set E is the complete bi-partite graph on Ag, A1 and on Aj, As. Clearly,
G = (V,E) has no triangles, so T3 = 0, but has T, = ©(n?) paths of
length two. In light of what we’'ve just said, two interesting questions
arise

Question 1: Determine the space complexity of TRIANGLES(1) and
TRIANGLES(O(1)).

Question 2: Is there an algorithm that solves TRIANGLES(c), whose
space complexity depends only on the number of edges and 137

Bar-Yossef et. al. [3] showed that the space complexity required to
solve TRIANGLES(1) is £2(n?) (throughout we disregard the memory it
takes to represent a single graph vertex). Specifically, they showed that
every one-pass (.5-approximation algorithm that succeeds with proba-
bility 0.99, is as good as the trivial algorithm that stores all edges and
exhaustively computes the number of triangles. While the lower bound
determines the space complexity in the worst case, it is informative to

4 Vladimir Braverman, Rafail Ostrovsky and Dan Vilenchik

study more refined notions of “worst case”. For example, what is the
space complexity of TRIANGLES(1) when the graph has exactly m edges,
or at least T triangles. What is the space complexity of TRIANGLES(2),
when two passes over the stream are allowed, rather than one. In those
cases the lower bound in [3] is irrelevant.

1.1 Our Results

In this paper we show that the space complexity of any algorithm that
solves TRIANGLES(1) (i.e. in one pass) is §2(m). This lower bound is
asymptotically tight, since the trivial algorithm that stores all edges of
the graph uses that much memory. Furthermore, the lower bound is true
even when assuming that the graph has T3 = O(n) triangles. Clearly
one cannot expect this to be the case for every value of T3, since when
Ty = O(n3) for example, a straightforward sampling algorithms solves
TRIANGLES(1) using O(1)-space. Formally,

Theorem 1. Jci,co > 0 s.t. the space complerity of TRIANGLES(1) is
2(m), when the input is an n-vertex graph with m € [cin,can?] edges.
Furthermore, this lower bound is true even if the graph has as many as
0.99n triangles.

Theorem [l extends the aforementioned result in [3] in two aspects: the
number of edges is asymptotically the entire range (compared with ©(n?)
in [3]). The graph may contain as many as a linear number of triangles
(compared with one triangle in [3]). In addition, our proof technique is
conceptually and technically simpler.

Improving upon the currently best known lower bound of 2(n/T3) (n
is the number of vertices) for TRIANGLES(O(1)) [13], we show that:

Theorem 2. The space complexity of TRIANGLES(O(1)) for input graphs
with m edges and T3 triangles is £2(m/max{T5,1}).

Turing to the algorithmic part, the lower bound for TRIANGLES(1) is
asymptotically tight. Giving a non-trivial upper bound for TRIANGLES(O(1))
seems to be beyond the reach of current algorithmic techniques. As we
already mentioned, all current state-of-the-art approximation algorithms
require a super-constant number of passes (regardless of the space com-
plexity). Hence, we start with a softer notion of approximation, in the
spirit of property testing.

Definition 2. DisT(c) is the following problem. Given two graph fami-
lies: G1 consisting of triangle-free graphs, Go consisting of graphs with at

How Hard is Counting Triangles in the Streaming Model 5

least T triangles, and an input graph G € Gy UG, decide whether G € Gy
or G € Gy with probability at least 2/3, using at most ¢ passes over the
nput.

The same lower bounds that we derive for TRIANGLES(c) are true for
DisT(c) as well (therefore there is nothing interesting to say algorithmi-
cally about D1sT(1)). None of the aforementioned approximation algo-
rithms solve D1sT(O(1)), since they require additional parameters that
are not available to the algorithm (for example, 75, the number of triples
spanning exactly two edges). We describe an algorithm that solves DIST(2)
using O(m/T"/3) bits of memory. This answers Question 2 above, for the
problem DIST.

We now turn to describe in details our algorithm, and formally state
the relevant theorem. We assume that the parameter T is known to the
algorithm (as it is part of the problem definition).

Algorithm A

Output: ‘1’ iff a triangle was found.

Pass 1

(a) Set m/ = 6m/T/?, and p = m//m.

(b) Store every edge e with probability p. If more than 5m’ edges are
stored, output FAIL.

(c) Let H be the graph stored by the algorithm at the end of (b). Search
for a triangle in H, if found output 1.

Pass 2 For every edge e, check whether e completes a triangle in H.
Output 1 iff such edge exists.

Theorem 3. For T' > 216, Algorithm A solves DIST(2) using at most
30m /T3 bits of memory.

Remark 1. When 7' = w(1), our algorithm solves DIST(2) using sub-
linear space. Also, our lower bound on the space complexity of DisT(1),
together with Algorithm A for DI1sT(2), imply a space complexity sepa-
ration result between one-pass and two-passes. For example, DI1ST(2) can
be solved in space O(m/n) = o(m) for graphs with T3 = n/2 triangles
and m edges, while DIST(1) requires {2(m)-space for such graphs.

6 Vladimir Braverman, Rafail Ostrovsky and Dan Vilenchik

Remark 2. Algorithm A assumes m is given. This assumption is done
only for the sake of clear and simple presentation, and can be easily re-
moved: The algorithm “guesses” an initial value for m, say m; = 1. This
value is used to define p for the first my edges. If the number of edges
exceeds that guess, then the algorithm sets mo = 2mq, and updates p
accordingly for the next mo edges. Every time guess i is exceeded, the
algorithm sets m;11 = 2m;. The last interval will consist of the last m/2
edges. Edges are still stored independently of each other, and in expecta-
tion twice as many edges are stored. Storing more edges may only help the
algorithm (while not changing the asymptotic space complexity). Hence
the same analysis that we have for A goes through with this additional
procedure.

1.2 A new graph parameter

While the bound given in Theorem [I] for TRIANGLES(1) is asymptotically
tight, we suspect that the bound in Theorem 2] for TRIANGLES(O(1))
is not tight, and conjecture a tight bound instead. Define the triangle
density of a graph G, p(G), to be the number of vertices that belong to

some triangle in G. It is easy to see that ((6T§1/3) < p(G) < 3T (a clique
or T' disjoint triangles).

Conjecture: The space complexity of TRIANGLES(O(1)) and D1sT(O(1))
is £2(m/p(G)).

The lower bound in Theorem [2 is consistent with the case p(G) =
O(T), and Algorithm A is consistent with p(G) = O(T"/3). We describe a
second algorithm that solves D1sT(2) using O(m/p(G)) space, thus show-
ing that one cannot hope for a tighter bound than the one stated in the
conjecture. A formal description of the algorithm, a proof of correctness
and analysis of its space complexity is given in Section

1.3 Techniques

Theorem [l is proven via a reduction from the index problem in commu-
nication complexity, and for Theorem [2 we use a reduction from a variant
of the set disjointness problem. The idea behind the proof of Theorem Bl
is as follows. Consider the following natural and well-known graph spar-
sification procedure. Given a graph G, store every edge, independently
of the others, with probability p. Let H be the sparsified version of G.
If G has at least T triangles, the expected number of triangles in H is
pT. Taking p = 2(T~1/3), the expected number of triangles in H is

How Hard is Counting Triangles in the Streaming Model 7

(1), and the number of edges in H is O(m/T"/3). The main question
is how concentrated is that number? For example, think of two triangles
sharing an edge. If this edge was not picked in H then both triangles will
not show up in H. This phenomenon may translate into a large variance
in the number of triangles in H. To solve this problem, we identify the
graph structure responsible for large variance. More concretely, we call
s triangles that share the same edge an s-tower. For a carefully chosen
number s* = s*(p), one can show the following fact: If G has no s*-tower,
then the variance is small and the number of triangles in H is close to
the expectation. If there is an s*-tower, it is tall enough so that at least
one floor survives (a floor is two edges that belong to the same triangle).
In that case, in the second pass of A, the base of that tower is caught,
and a triangle is detected.

The algorithm suggested in [I7] also uses the graph sparsification
method. That algorithm computes the sparsified graph H, and checks
if it contains a triangle. This approach does not allow control over the
variance, and ultimately such an algorithm will fail unless it stores ©(m)
of the edges (think of the case when all triangles are stacked in one
tower, then unless p is constant, the base of the tower will be missing
almost always). This is also consistent with the lower bound we have for
TRIANGLES(1) (as computing H can be done in one pass). Our algorithm
addresses this issue exactly by trying to either catch a triangle, or catch
a floor (which forces the second pass).

Paper Organization. We proceed with the description of our second
algorithm mentioned in Section The proof of Theorem [follows in
Section Bl The proofs of the lower bounds, Theorems [Il and 2], use rather
standard techniques, though require some new insights. Both are given in
full in Appendix [Bl

2 The second algorithm

Theorem 4. Algorithm As solves DIST(2) using O(m/p(QG)) bits of mem-
ory in expectation.

Proof. Let Z C V be the set of vertices in G that belong to some triangle.
In our notation, the size of Z is p(G). The algorithm never fails if there
are no triangles in G. Therefore let us consider the case where there are
triangles in G.

The algorithm Aj fails only if SN Z = (. Otherwise, S contains a
vertex v that belongs to some triangle {v, u,w}, and in the first pass the

8 Vladimir Braverman, Rafail Ostrovsky and Dan Vilenchik

Algorithm Ay(G, T, p(G))

Output: 1 if a triangle is detected, 0 otherwise.

Pass 1

(a) Sample 4n/p(G) vertices, uniformly at random. Let S C V be that
set.

(b) Store all edges in the steam that touch the set S.

Pass 2 Check for every edge e if it completes a triangle with any of the
stored edges. Output 1 iff such edge exists.

algorithm stores all neighbors of v (and in particular the edges (v,u) and
(v,w)). In the second pass the edge (u,w) will be considered and As will
detect the triangle. Let us bound the probability of SN Z = (). Let A;
be the event that the i*" vertex chosen to be in S doesn’t belong to Z.
It is easy to see that the A;’s are negatively correlated (as there is no
replacement). For every i, Pr[A;] =1 — p(G)/n. Therefore,

PriSNZ =01=PrlAi AAs A ... Ajg] < (1 — p(G)/n)*"/P&) < e,

Now let us compute the expected number of edges stored by As. For
the i*" vertex in S, let D; be a random variable counting the degree
of that vertex in G. Since the i*" vertex is a uniformly random vertex,
E[D;] = 2m/n (the average degree in G). The expected number of edges
touching S is at most (using linearity of expectation)

S| S|

E|>Di| = S EID] = (4n/p(G))(2m/n) = 8m/p(G)

3 Proof of Theorem 3

We denote by B(n,p) the binomial random variable with parameters n
and p, and expectation u = np. We shall use the following variant of
the Chernoff bound, whose proof can be found in [I1} p. 21]. Let ¢(x) =
1+2)In(l+2z) —=.

Theorem 5. If X ~ B(n,p) and t > 0 is some number, then

PT‘(X >p+t) < e Het/m), Pr(X <p—t)< e Hp(=t/p)

How Hard is Counting Triangles in the Streaming Model 9

The algorithm A always answers correctly if the graph G has no trian-
gles. Therefore, it suffices to bound the error probability when the graph
G has at least T' > 1 triangles.

Let H be the graph in which each edge of the stream is included with
probability p. Let B; be the event that Algorithm A outputs FAIL or the
wrong answer, By be the event that more than 5m’ edges were stored in
the first pass (causing the algorithm to output FAIL), and B3 the event
that H has no triangles, and no edge of the stream completes a triangle
in H. Then

Pr(B:] < Pr(Bs] + Pr(Bs|Bs] < Pr[Bs] + Pr[Bs]/Pr[Bs].

(in the last inequality we used the fact that for two events A, B, Pr[A|B] =
Pr[A A B]/PriB] < Pr[A]/Pr[B]). The number of edges stored by A
is a binomial random variable with expectation mp = m/. In our case,
m’ > 4: we can assume w.l.o.g that m > n/2 (isolated vertices are never
visible to the algorithm), and T always satisfies T < n3/6, therefore
m’ = 6m/T'3 > 4. Using Theorem [the probability of storing more
than 5m’ edges is at most 1/50, hence Pr[Bs] < 1/50. In turn,

1 49
PT[Bl] S % + %PT[Bg]
It suffices to show that Pr[Bs] < 0.3, and then derive Pr[B;] < 1/3, as
required.

We call s triangles that share the same edge an s-tower. Each pair of
edges that belong to the same triangle is called a floor in the tower. Let
T3 > T be the number of triangles in G. For p = m//m = 6/T"/3, let
p = p*T3 = 216T3/T be the expected number of triangles in H and o2
the variance (o is the standard deviation).

Lemma 1. If G contains no tower with more than T32 /3 floors, then o <
110(T3/T)%/S.

Before we prove this proposition we need the following lemma.

Lemma 2. Let G be a graph with T3 triangles, having no tower with more
than h floors. Let w(G) be the number of pairs of triangles that share an
edge. Then n(G) < 3T3h/2.

Proof. Observe that every pair of triangles that share an edge belongs to
exactly one tower: If the pair belongs to two towers, then the two triangles
share two edges, but then they are the same triangle. Every pair belongs

10 Vladimir Braverman, Rafail Ostrovsky and Dan Vilenchik

to at least one tower, since every such pair is a tower of height two.
Therefore we can count the number of pairs sharing an edge, by counting
the number of pairs of triangles in every tower. Let a; be the number

of towers with ¢ floors. Using this notation, 7(G) = Z? 5 ai(5) Next

observe that 2?22 a;i < 3T3. The sum counts the number of triangles
that belong to some tower, when every such triangle is accounted for at
most three times (as it belongs to at most three different towers). Finally,
we have

h

AN 1
7(0) = Y aify) =5 L) < 3 2l zaﬂ < 3Tyh/2.

i=2 i=2
Proof. (Lemma [I]) Index the triangles in G by 1,2,...,T5. Let 1; be the
indicator random variable which takes the value 1 if all three edges of
triangle j belong to H.
E[L]=p*, Varll)]=p’(1 - p%) <p”.

In these notations, o2 (the variance of the number of triangles in G') is
given by

, & 21675
o° = ZVar(li) + Z Cov(1;,15), ZVar < T3p? = .
] 1<j

For two triangles that share no edge, Cov(1;,1;) = E[1;1;] - E[1;]E[1;] =
p® — pb = 0. Therefore we only need to go over triangles that share an
edge. For every such pair, Cov(1;,1;) = p° — p® < p°. By Lemma [2 with
h = T?/3 there are at most 1.5T ; /3 pairs of triangle that share an edge.

Hence,

1565 T0/% 27873\ */®
< .

3" Cov(1:,1;) < 1573%p° = 575 -

i<j

To summarize,

, 21675 (278T3\°° [28275\°/°

o° < + < | — .
- T T - T

Taking the square root, we get the desired bound on o.

Proposition 1. Conditioned on G not having a tower with more than
T32/3 floors, Pr[Bs] < 0.26.

How Hard is Counting Triangles in the Streaming Model 11

Proof. For a random variable X, with expectation p and standard de-
2
viation o, Chebychev’s inequality implies Pr[X = 0] < (%) . The ex-

pected number of triangles in H is u = 21675/T. The standard deviation
o < 110(13/T)/% (by Lemma). Therefore

2
10 (T\"°
Prno triangles in H] < <% - <?3> > < 0.26.

Next we turn to the case where G contains a tower with at least
floors.

T3/

Proposition 2. Conditioned on G having a tower with at least T32 /3
floors, PrBs] < 0.001.

Proof. Fix a tower with at least T32 3 floors. Every floor belongs to H
independently of the others with probability p?. Therefore the expected
number of floors that belong to H from that tower is

2 2/3
9,2/3 [6 2/3 T3

Using Chernoff’s bound (second inequality of Theorem [) with p = 36
and t = 35, we get

Pr[no floor from the tower belongs to H] < ¢ 36(—36/35) < e 30 < 0.001.

Finally, from Propositions[Iland 2l we get Pr[Bs] < 0.2640.001 < 0.3.
To complete the proof of Theorem Bl observe that the space complexity
of A never exceeds 5m’ which is 30m/T"/3.

References

1. N. Alon, Y. Matias, and M. Szegedy, The space complexity of approximating the
frequency moments, Proceedings of the 28th STOC, (1996), 20-29.

2. N. Alon, R. Yuster, and U. Zwick, Finding and counting given length cycles, Algo-
rithmica 17 (1997) 209-223.

3. Z. Bar-Yossef, R. Kumar, D. Sivakumar, Reductions in streaming algorithms, with
an application to counting triangles in graphs, Proceedings of the 13th SODA (2002),
623-632.

4. L. Becchetti, P. Boldi, C. Castillo, and A. Gionis, Efficient semi-streaming algo-
rithms for local triangle counting in massive graphs, Proceeding of the 14th ACM
International Conference on Knowledge Discovery and Data mining, (2008), 16-24.

12 Vladimir Braverman, Rafail Ostrovsky and Dan Vilenchik

5. L. Buriol, G. Frahling, S. Leonardi, A. Marchetti-Spaccamela, and C. Sohler, Count-
ing triangles in data streams, Proceedings of the twenty-fifth ACM Symposium on
Principles of database systems (2006), 253—262.

6. A. Chakrabarti, G. Cormode, K. Ranganath, A. McGregor, Information Cost Trade-
offs for Augmented Index and Streaming Language Recognition, Proceedings of the
51st FOCS, (2010) 387-396.

7. D. Coppersmith and S. Winograd, Matrix multiplication via arithmetic progres-
sions, Proceedings of the 19th STOC, (1987) 1-6.

8. J.P. Eckmann and E. Moses, Curvature of co-links uncovers hidden thematic layers
in the world wide web, PNAS 99 (2002), 58255829.

9. O. Frank and D. Strauss, Markov graphs, Journal of the American Statistical As-
sociation, 81 (1986), 832842.

10. J. Hastad and A. Wigderson, The Randomized Communication Complexity of Set
Disjointness, Theory of Computing 3 (2007), 211-219.

11. S. Janson, T. Luczak, and A. Ruciiiski ,Random Graphs, Wiley (2000).

12. T. S. Jayram, R. Kumar and D. Sivakumar, The One-Way Communication Com-
plexity of Hamming Distance, Theory of Computing (2006), 129-135.

13. T. Jowhari and M. Ghodsi, New streaming algorithms for counting triangles in
graphs ,COCOON (2005), 710-716.

14. J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins, Microscopic evolution of
social networks, Proceeding of the 14th ACM International Conference on Knowl-
edge Discovery and Data mining, (2008) 462-470.

15. A. Rinaldo, S .Fienberg, and Y. Zhou, On the geometry of discrete exponential
families with application to exponential random graph models, Electronic Journal
of Statistics, 3 (2009), 446-484.

16. C. Tsourakakis, P. Drineas, E. Michelakis, I. Koutis, and C. Faloutsos, Spectral
counting of triangles via element-wise sparsification and triangle-based link recom-
mendation. To appear as a book chapter in Advances in Social Networks Analysis
and Mining.

17. C. Tsourakakis, U. Kang, G. Miller, and C. Faloutsos, DOULION: counting tri-
angles in massive graphs with a coin, Proceedings of the 15th ACM International
Conference on Knowledge Discovery and Data Mining (2009) , 837-846.

18. S. Wasserman and K. Faust, Social Network Analysis: Methods and Applications.
Cambridge University Press (2004).

A Proof of Theorem [l

The theorem is a direct corollary of the same lower bound, just for the
problem DisT(1). Clearly, if one can approximate the number of triangles,
one can distinguish between the case where there are no triangles, or at
least T triangles.

Proposition 3. Jci,co > 0 s.t. the space complexity of D1sT(1) is £2(m),
when the input is an n-vertex graph with m € [cin,can?] edges. Further-
more, this lower bound is true even if the graph has as many as 0.99n
triangles.

How Hard is Counting Triangles in the Streaming Model 13

In the rest of this section we prove Proposition [Bl It suffices to consider
only the case T' = 0.99n (since the way DIST is defined, T is a lower
bound on the number of triangles).

Let INDEX,, be the following problem: Alice has a binary vector x of
length p and Bob has an index ¢ between 1 and p. Alice communicates
with Bob (one way communication) in order to determine the value of
x[¢] with probability better than 1/2. The randomized communication
complexity of this problem is 2(p) [6/12]. For a fixed function g(-), let
G(n,g(n)) be a family of graphs on n vertices with ©(g(n)) edges and
0.99n triangles. Assume by contradiction that there exist ¢(-), and an
algorithm A that solves Di1sT(1) for the graphs in G(n, g(n)) using o(g(n))
memory. We shall use this algorithm to solve INDEX,, using o(p) bits of
communication, deriving a contradiction to the established lower bound
for that problem.

Consider the following graph G(x,¢). Let f(n) = g(n)/n, and let a
be such that af(a) = p (assume w.l.o.g that f(a) < a, otherwise rename
them). The vertex set of G consists of n vertices partitioned into three
sets: V=XUYUZ, |X|=a,|Y|= f(a),|Z] =T. We require T' = 0.99n,
and a + f(a) + T = n, therefore n = (a + f(a))/(1 —0.99) = O(a). Let
z; be the i*" vertex in X (and similarly y; in Y, and z; in Z). Define the
edge set E; as follows: the first f(a) entries in x determine the neighbors
of 1 in Y (we place the edge (z1,y;) iff x[j] = 1), the next f(a) entries
determine the neighbors of zy, and so on. Define the edge set Fy as
follows: let ey = (x4, y;) be the edge corresponding to Bob’s index / in x;
add 2T edges of the form (z,,z;) and (2,,y;) for r = 1,...,T. Finally,
E(G) =F UFE,. Let m = ‘E(G)‘

The graph G enjoys the following properties: (a) G € G(n,g(n)): the
number of edges in G is m = O(p) = O(af(a)), and since n = O(a),
m=0O(nf(n)) =6(g(n)), (b) the graph G has T triangles if x[¢] = 1 and
no triangles otherwise.

To solve INDEX,, Alice feeds the algorithm A with E;, records its
memory tape. When finished, she sends it to Bob. Bob then feeds A with
the edge set E5, and answers according to A. The correctness is now
immediate: since G(x,) € G(n,g(n)) the algorithm A answers correctly
with probability at least 2/3, and by property (b), this is also the correct
answer for INDEX,,. As for the communication complexity, the number of
edges in G satisfies m = ©(p) (since x contains O(p) ones, and Bob adds
only 27" = O(p) edges). Algorithm A uses o(m) bits of memory, therefore
the data sent by Alice is of the order of o(m) = o(p). Contradiction is then

14 Vladimir Braverman, Rafail Ostrovsky and Dan Vilenchik

derived. Finally observe that g(n) can be arbitrary, therefore m = ©(g(n))
has the desired range [c1n, can?].

B Proof of Theorem

The theorem is a direct corollary of the same lower bound, just for the
problem DisT(O(1)). Clearly, if one can approximate the number of tri-
angles, one can distinguish between the case where there are no triangles,
or at least T triangles.

Proposition 4. The space complezity of DIST(O(1)) is £2(m/ max{T3, 1}),
for input graphs with m edges and T3 triangles.

In the rest of this section we prove Proposition Hl Let DisJj be the
following problem: Alice and Bob have each a vector of length p with
exactly r ones in each vector. Fach vector is interpreted as the charac-
teristic vector of a subset in {1,2,...,p}. Alice and Bob communicate
in order to decide whether their sets intersect or not. Let us define the
problem DISJ;’t to be the same as D1sy, just that now the intersection is
promised to be either empty or of size at least t. Observe that the size of
the intersection is also given by Y ¥_ x;y; (x,y are their vectors).

We first describe a reduction from D1ss)* to DisT(O(1)), then estab-
lish a lower bound on the communication complexity of DISJ;;’t. Let x,y
be two vectors in {0,1}? for p = n?, n an integer (w.l.o.g. we can as-
sume n is an integer, since we can always pad the vectors x and y with
zeros). Consider the following graph G* = G(x,y). The set of vertices
V = AU BUC, each part of size n. Let a; be the i"® vertex in A (and
similarly define b;,¢;). We interpret the vector x as follows: the first n
entries in x determine the neighbors of a; in B, (a1,b;) € E iff x[j] = 1.
In the same way, entries [(i — 1)n,in — 1], for i« = 2,...,n determine
the neighbors of a;. Similarly, y determines the neighbors of ¢; in B for
i =1,...,n. In addition, we have the following set of n edges: (a;,¢;) € E
fori =1,...,n (a perfect matching on A and C).

Lemma 3. The graph G* has T triangles iff > x;y; = T.

Proof. Consider a triangle in G*, it must contain exactly one edge of the
perfect matching, (a;,c¢;). To complete the triangle there must be two
additional edges (a;,by), (ci,b). This however implies that X(;_1y,45 =
Y(i-1)ntk = L. If on the other hand x; =y, = 1 fort = (i —)n + k
for i,k € [n], then the edges (ai,br), (¢i, bg) are present in G*. Therefore
together with the edge (a4, ¢;) they induce a triangle in G*.

How Hard is Counting Triangles in the Streaming Model 15

Lemma 4. The communication complezity of DISJ;’t is £2(r/t) for any
r<p/2.

Proof. Assume by contradiction that the communication complexity of
D1sst is o(r/t). Let 7' = r/t, and consider the problem DISJ;;/. Given two
vectors x’,y’ of size r’, we construct the vector x by taking ¢ concatenated
copies of x’. Similarly construct y. Clearly, if x’, y’ intersect then x, y have
intersection size at least ¢, and if x’,y’ are disjoint so are x,y. We can
then solve DISJ;,/ using o(r/t) = o(r’) bits of communication by reducing
to DISJ;’t. This however contradicts the lower bound established in [10]

T/
on DISJp .

Proposition 5. If there exists an algorithm A that solves DisT(O(1))
using o(m/T) bits of memory, then there exists an algorithm A* that
solves DISIT" using o(r/t) bits of communication whenever r = 2(,/p).

Proof. We describe the algorithm A* for DISJ;’t. Alice has the vector x
and Bob has y. Alice runs A on the stream of edges of G* that include the
matching edges and the edges induced by x. She then sends the content
of her memory to Bob, who continues to run A, while feeding it the
edges induced by y. At the end, Bob sends the content of his memory to
Alice, and this repeats for the number of passes that A requires (which
is constant). They answer ‘Disjoint’ iff A outputs 0. The correctness of
the algorithm comes from Lemma [& if x and y are disjoint, then G*
has no triangles, and A outputs 0 with probability at least 2/3. If x and
y intersect, then the intersection size is at least ¢, and hence G has at
least T' = t triangles. Accordingly, A outputs 1 with probability at least
2/3. The communication complexity of A* is the same, up to a constant
factor, as the memory used by A (as only the memory content is being
transmitted). The number of edges m in G* is ©(r): n matching edges,
and 2r edges coming from x and y. Since r = 2(,/p) = £2(n) we have
m = O(r). The number of triangles in G* is T' = t, therefore, A* solves
DisJp* using o(m/T) = o(r/t) bits of communication.

Proposition @ follows from Lemma [and Proposition [l

	How Hard is Counting Triangles in the Streaming Model

