Cryptography Using Captcha Puzzles

Abishek Kumarasubramanian®, Rafail Ostrovsky! *, Omkant Pandey?, and
Akshay Wadial

! University of California, Los Angeles
abishekk@cs.ucla.edu,rafail@cs.ucla.edu,awadia@cs.ucla.edu
2 University of Texas at Austin
omkant@cs.utexas.edu

Abstract. A CAPTCHA is a puzzle that is easy for humans but hard
to solve for computers. A formal framework, modelling CAPTCHA puz-
zles (as hard AI problems), was introduced by Ahn, Blum, Hopper, and
Langford ([ABHLO03], Eurocrypt 2003). Despite their attractive features
and wide adoption in practice, the use of CAPTCHA puzzles for general
cryptographic applications has been limited.

In this work, we explore various ways to formally model CAPTCHA puzzles
and their human component and explore new applications for CAPTCHA.
We show that by defining CAPTCHA with additional (strong but realistic)
properties, it is possible to broaden CAPTCHA applicability, including us-
ing it to learning a machine’s “secret internal state.” To facilitate this, we
introduce the notion of an human-extractable CAPTCHA, which we be-
lieve may be of independent interest. We show that this type of CAPTCHA
yields a constant round protocol for fully concurrent non-malleable zero-
knowledge. To enable this we also define and construct a CAPTCHA-
based commitment scheme which admits “straight line” extraction. We
also explore CAPTCHA definitions in the setting of Universal Compos-
ability (UC). We show that there are two (incomparable) ways to model
CAPTCHA within the UC framework that lead to different results. In
particular, we show that in the so called indirect access model, for every
polynomial time functionality F there exists a protocol that UC-realizes
F using human-extractable CAPTCHA, while for the so-called direct ac-
cess model, UC is impossible, even with the help of human-extractable
CAPTCHA.

The security of our constructions using human-extractable CAPTCHA is
proven against the (standard) class of all polynomial time adversaries.

* Department of Computer Science and Mathematics, UCLA, Email:
rafail@cs.ucla.edu. Research supported in part by NSF grants CNS-0830803;
CCF-0916574; 11S-1065276; CCF-1016540; CNS-1118126; CNS-1136174; US-Israel
BSF grant 2008411, OKAWA Foundation Research Award, IBM Faculty Research
Award, Xerox Faculty Research Award, B. John Garrick Foundation Award,
Teradata Research Award, and Lockheed-Martin Corporation Research Award.
This material is also based upon work supported by the Defense Advanced Re-
search Projects Agency through the U.S. Office of Naval Research under Contract
N00014-11-1-0392. The views expressed are those of the author and do not reflect
the official policy or position of the Department of Defense or the U.S. Government

In contrast, most previous works guarantee security only against a very
limited class of adversaries, called the conservative adversaries.

Keywords: CAPTCHA, concurrent non-malleable zero-knowledge, universal
composability, human-extractable CAPTCHA.

1 Introduction

CAPTCHA is an acronym for Completely Automated Public Turing test to tell
Computers and Humans Apart. These are puzzles that are easy for humans but
hard to solve for automated computer programs. They are used to confirm the
“presence of a human” in a communication channel. As an illustration of a
scenario where such a confirmation is very important, consider the problem of
spam. To carry out their nefarious activities, spammers need to create a large
number of fake email accounts. Creating a new email account usually requires
the filling-in of an online form. If the spammers were to manually fill-in all
these forms, then the process would be too slow, and they would not be able to
generate a number of fake addresses. However, it is relatively simple to write a
script (or an automated bot) to quickly fill-in the forms automatically without
human intervention. Thus, it is crucial for the email service provider to ensure
that the party filling-in the form is an actual human, and not an automated
script. This is achieved by asking the party to solve a CAPTCHA, which can only
be sovled by a human®. A common example of a CAPTCHA puzzle involves the
distorted image of a word, and the party is asked to identify the word in the
image.

The definition of CAPTCHA stipulates certain limitations on the power of
machines, in particular, that they cannot solve CAPTCHA puzzles efficiently.
This gives rise to two distinct questions which are interesting from a crypto-
graphic point of view. Firstly, what are the underlying hard problems upon
which CAPTCHA puzzles can be based? Von Ahn, Blum, Hopper and Lang-
ford [ABHLO3] study this question formally, and provide constructions based on
the conjectured hardness of certain Artificial Intelligence problems.

The second direction of investigation, and the one which we are concerned
with in this paper, is to use CAPTCHAs as a tool for achieving general cryp-
tographic tasks. There have been only a few examples of use of CAPTCHAs in
this regard. Von Ahn, Blum, Hopper and Langford [ABHLO03] use CAPTCHAS
for image-based steganography. Canetti, Halevi and Steiner[CHS06] construct a
scheme to thwart off-line dictionary attacks on encrypted data using CAPTCHAs.
[DSC12] present an encryption protocol using CAPTCHA that is secure against
non-human profiling adversaries. And recently, Dziembowski [Dzi10] constructs
a “human” key agreement protocol using only CAPTCHAs. We continue this
line of work in the current paper, and investigate the use of CAPTCHAs in
zero-knowledge and UC secure protocols. On the face of it, it is unclear how

3 For many more uses of CAPTCHA, see [Off]

CAPTCHAs may be used for constructing such protocols, or even for construct-
ing building blocks for these protocols, like commitment schemes. However, mo-
tivated by current CAPTCHA theory, we define a new extraction property of
CAPTCHASs that allows us to use them for designing these protocols.

We now give an overview of our contributions. We formally define CAPTCHASs
in Section 3, but give an informal overview of the model here to make the fol-
lowing discussion cogent. Firstly, modelling CAPTCHA puzzles invariably involves
modelling humans who are the key tenets in distinguishing CAPTCHAs from just
another one-way function. Following [CHS06] we model the presence of a human
entity as an oracle H that is capable of solving CAPTCHA puzzles. A party gen-
erates a CAPTCHA puzzle by running a (standard) PPT generation algorithm
denoted by G. This algorithm outputs a puzzle-solution pair (z,a). All parties
have access to a “human” oracle denoted by H. To “solve” a CAPTCHA puzzle,
a party simply queries its oracle with the puzzle and obtains the solution in re-
sponse. This allows us to distinguish between two classes of machines. Standard
PPT machines for which solving CAPTCHAs is a hard problem and oracle PPT
machines with oracle access to H which may solve CAPTCHAs efficiently.

The starting point of our work is the observation that if a machine must solve
a given CAPTCHA puzzle (called challenge), it must send one or more CAPTCHA-
queries to a human. These queries are likely to be correlated to the challenge
puzzle since otherwise they would be of no help in solving the challenge puzzle.
Access to these queries, with the help of another human, may therefore provide
us with some knowledge about the internal state of a (potentially) malicious
machine! This is formulated in our definition of an human extractable CAPTCHA
(Definition 32). Informally, we make the following assumption about CAPTCHA
puzzles. Consider two randomly chosen CAPTCHA puzzles (po,p1) of which an
adversary obtains only one to solve, say py, where the value of b is not known to
the challenger. Then by merely looking at his queries to a human oracle H, and
with the help of a human, a challenger must be able to identify the value of b.
More precisely, we augment the human oracle H to possess this added ability.
We then model adversaries in our protocols as oracle PPT machines with access
to a CAPTCHA solving oracle, but whose internal state can be “extracted” by
another oracle PPT machine.

It is clear that this idea, i.e.—the idea of learning something non-trivial about
a machine’s secret by looking at its CAPTCHA-queries—connects CAPTCHA puz-
zles with main-stream questions in cryptography much more than ever. This
work uses this feature present in CAPTCHAs to construct building blocks for
zero-knowledge protocols which admit “straight-line” simulation. It is then nat-
ural to investigate that if we can get “straight-line” simulation, then perhaps
we can answer the following questions as well: construction of plain-text aware
encryption schemes [BR94|, “straight-line” extractable commitment schemes,
constant-round fully concurrent zero-knowledge for NP [DNS98], fully concur-
rent two/multi-party computation [Lin03a,PR03,Pas04], universal composition
without trusted setup assumptions [Can01,CLOS02], and so on.

Our Contribution. In section 4 (theorem 42), as the first main result of this
work, we construct a commitment scheme which admits “straight-line” extrac-
tion. That is, the committed value can be extracted by looking at the CAPTCHA-
queries made by the committer to a human oracle.

The starting point (ignoring for a moment an important difficulty) behind our
commitment protocol is the following. The receiver R chooses two independent
CAPTCHA puzzles (2o, z1). To commit to a bit b, the sender C will select z, using
the 1-2-OT protocol and commit to its solution a; using an ordinary (perfectly-
binding) commitment scheme. Since the committer cannot solve the puzzle itself,
it must query a human to obtain the solution. By looking at the puzzles C queries
to the human, an extractor (with the help of another human oracle) can detect
the bit being committed. Since the other puzzle z;_; is computationally hidden
from C, this should indeed be possible.

As alluded above, the main difficulty with this approach is that a cheating
sender may not query the human on any of the two puzzles, but might still be
able to commit to a correct value by obtaining solutions to some related puzzles.
This is the issue of malleability that we discuss shortly, and also in section 3.

We then use this commitment scheme as a tool to obtain new results in
protocol composition. First off, it is straightforward to see that given such a
scheme, one can obtain a constant-round concurrent zero-knowledge protocol
for all of NP. In fact, by using our commitment scheme in place of the “PRS-
preamble” [PRS02] in the protocol of Barak, Prabhakaran, and Sahai [BPS06],
we obtain a constant-round protocol for concurrent non-malleable zero-knowledge
[BPS06] (see appendix D).

As a natural extension, we investigate the issue of incorporating CAPTCHA
puzzles in the UC framework introduced by Canetti [Can01]. The situation turns
out to be very sensitive to the modelling of CAPTCHA puzzles in the UC frame-
work. We discuss two different ways of incorporating CAPTCHA puzzles in the
UC framework: °

— INDIRECT ACCESS MODEL: In this model, the environment Z is not given
direct access to a human H. Instead, the environment is given access to
H only through the adversary A. This model was proposed in the work of
Canetti et. al. [CHS06], who constructed a UC-secure protocol for password-
based key-generation functionality. We call this model the indirect access
model.

— DIRECT AcCESS MODEL: In this model, the environment is given a direct
access to H. In particular, the queries made by Z to H are not visible to
the adversary A4, in this model.

4 For readers familiar with concurrent non-malleability, our protocol admits “straight-
line” simulation, but the extraction of witnesses from a man-in-the-middle is not
straight-line. Also, another modification is needed to the protocol of [BPS06]: we
need to use a constant round non-malleable commitment scheme and not that of
[DDNOO]. We can use any of the schemes presented in [PR05,PPV08,LP11,Goy11].

5 We assume basic familiarity with the model of universal composition, and briefly
recall it in appendix C.1 .

In the indirect access model, we show how to construct UC-secure proto-
cols for all functionalities. In section 5, as the second main result of this work,
we construct a constant-round UC-puzzle protocol as defined by Lin, Pass, and
Venkitasubramaniam [LPV09]. By the results of [LPV09], UC-puzzles are suffi-
cient to obtain UC-secure protocols for general functionalities. Our protocol for
UC-puzzles is obtained by combining our commitment scheme with a “cut-and-
choose” protocol and (standard) zero-knowledge proofs for NP [GMW86,Blu87].

In contrast, in the direct access model, it is easy to show that UC-secure
computation is impossible for most functionalities. A formal statement is ob-
tained by essentially reproducing the Canetti-Fischlin impossibility result for
UC-commitments [CF01] (details reproduced in appendix E.1). The situation
turns out to be the same for concurrent self-composition of two-party proto-
cols: by reproducing the steps of Lindell’s impossibility results [Lin03b,Lin0§],
concurrent self-composition in this model can be shown equivalent to universal
composition. This means that secure computation of (most) functionalities in the
concurrent self-composition model is impossible even with CAPTCHA puzzles.

On modelling CAPTCHA puzzles in the UC framework. The fact that UC-computation
is possible in the indirect access model but concurrent self-composition is im-
possible raises the question whether indirect access model is the “right” model.
What does a positive result in this model mean? To understand this, let us
compare the indirect access model to the other “trusted setup” models such as
the Common-Random-String (CRS) model [BSMP91]. In the CRS-model, the
simulator § is in control of generating the CRS in the ideal world—this enables
S to have a “trapdoor” to continue its actions without having to “rewind” the
environment. We can view the indirect access model as some sort of a setup
(i.e., access to H) controlled by the simulator in the ideal world. The fact that
S can see the queries made by Z to H in the indirect-access-model, is then anal-
ogous to S controlling the CRS in the CRS-model. The only difference between
these two settings is that the indirect-access-model does not require any trusted
third party. viewed this way, the indirect-access-model can be seen as a “hybrid”
model that stands somewhere between a trusted setup (such as the CRS model)
and the plain model.

Beyond Conservative Adversaries. An inherent difficulty when dealing with
CAPTCHA puzzles, is that of malleability. Informally, this means that given a
challenge puzzle z, it might be possible for an algorithm A to efficiently gener-
ate a new puzzle 2z’ such that given the solution of 2/, A can efficiently solve z.
Such a malleability attack makes it difficult to reduce the security of a crypto-
graphic scheme to the “hardness” of solving CAPTCHA puzzles.

To overcome this, previous works [CHS06,Dzi10] only prove security against
a very restricted class of adversaries called conservative adversaries. Such ad-
versaries are essentially those who do not launch the ‘malleability’ attack: that
is, they only query H on CAPTCHA instances that are provided to them by the
system. In both of these works, it is possible that a PPT adversary, on input a
puzzle z may produce a puzzle z’ such that the solutions of z and 2’ are related.

But both works consider only restricted adversaries which are prohibited from
querying H with such a mauled puzzle z’. As noted in [CHS06,Dzi10], this an
unreasonable restriction, especially knowing that CAPTCHA puzzles are in fact
easily malleable.

In contrast, in this work, we prove the security of our schemes against the
standard class of all probabilistic polynomial time (PPT) adversaries. The key-
idea that enables us to go beyond the class of conservative adversaries is the
formulation of the notion of an human-extractable CAPTCHA puzzle. Informally
speaking, an human-extractable CAPTCHA puzzle, has the following property:
suppose that a PPT algorithm A can solve a challenge puzzle z, and makes
queries ¢ to the human H during this process; then there is a PPT algorithm
which on input the queries g, can distinguish with the help of the human that g
are correlated to z and not to some other randomly generated puzzle, say z”.

We discuss this notion at length in section 3, and many other issues related
to formalizing CAPTCHA puzzles. This section essentially builds and improves
upon previous works of [ABHL03,CHS06,Dzi10] to give a unified framework
for working with CAPTCHA puzzles. We view the notion of human-extractable
CAPTCHA puzzles as an important contribution to prove security beyond the
class of conservative adversaries.

2 Preliminaries

In this work, to model “access to a human”, we will provide some parties (mod-
eled as interactive Turing machines—ITM) oracle access to a function H. An ITM
M with oracle access to H is an ordinary I'TM except that it has two special
tapes: a write-only query tape and a read-only answer tape. When M writes a
string ¢ on its query tape, the value H(q) is written on its answer tape. If ¢ is
not a valid query (i.e., not in the domain of H), a special symbol L is written
on the output tape. Such a query and answer step is counted as one step in the
running time of M. We use the notation M to mean that M has oracle access
to H. The reader is referred to [Gol01,AB09] for a detailed treatment of this
notion.

Notation. The output of an oracle ITM M is denoted by a triplet (out,, @)
where out, g, and a denote the contents of M’s output tape, a vector of strings
written to the query tape in the current execution, and the answer to the queries
present in g respectively.

Let £ € N denote the security parameter, where N is the set of natural
numbers. All parties are assumed to receive 1* as an implicit input (even if not
mentioned explicitly). When we say that an (I)TM M (perhaps with access to
an oracle H) runs in polynomial time, we mean that there exists a polynomial
T(-) such that for every input, the total number of steps taken by M are at
most T'(k). For two strings a and b, their concatenation is denoted by a o b. The
statistical distance between two distributions X, Y is denoted A(X,Y).

In all places, we only use standard notations (with their usual meaning) for
describing algorithms, random variables, experiments, protocol transcripts and

so on. We assume familiarity with standard concepts such as computational
indistinguishability, negligible functions, and so on (see [Gol01]).

Statistically Secure Oblivious Transfer We now recall the notion of a statistically
secure, two message oblivious transfer (OT) protocol, as defined by Halevi and
Kalai [HK10].

Definition 21 (Statistically Secure Oblivious Transfer), [HK10] Let /(-)
be a polynomial and k € N the security parameter. A two-message, two-party
protocol (Sot, Ror) is said to be a statistically secure oblivious transfer protocol
for bit-strings of length £(k) such that both the sender Sor and the receiver Rot
are PPT ITMs receiving 1% as common input; in addition, Sor gets as input
two strings (mg, m1) € {0, l}e(k) x {0, 1}é(k) and Rot gets as input a choice bit
b e {0,1}. We require that the following conditions are satisfied:

— Functionality: If the sender and the receiver follow the protocol then for
every k € N, every (mg,m1) € {0, 1}Z(k) x {0, 1}Z(k), and every b € {0,1},
the receiver outputs my.

— Receiver security: The ensembles {Ror(1%,0)}ren and {Ror(1%,1)}ren are
computationally indistinguishable, where {Ror(1%,b)}ren denotes the (first
and only) message sent by Ror on input (1%.b). That s,

{Ror(1¥,0)}ren={ Ror(1¥,1) }ren

— Sender security: There exists a negligible function negl(-) such that for every
(mo,m1) € {0, 130 {0, l}e(k), every first message a € {0,1}" (from an
arbitrary and possibly unbounded malicious receiver), and every sufficiently
large k € N, it holds that either

Ag(k) = A(SOT(lk,m07m1,a),SOT(lk,mO,OL](k),a)) or,

Al(k) = A(SOT(lky mo,mi, Oé), SOT(1k7 Oe(k)7 my, a))

is negligible, where Sot(1¥,mo, m1,a) denotes the (only) response of the
honest sender Sor with input (1%, mg, my1) when the receiver’s first message
8 a.

Statistically secure OT can be constructed from a vareity of cryptographic as-
sumptions. In [HK10], Halevi and Kalai construct protocols satisfying the above
definition under the assumption that verifiable smooth projective hash families
with hard subset membership problem exist (which in turn, can be constructed
from a variety of standard assumptions such as the quadratic-residue problem).
[HO09] show the equivalence of 2-message statistically secure oblivious transfer
and lossy encryption.

3 Modeling Captcha Puzzles

As said earlier, CAPTCHA puzzles are problem instances that are easy for “hu-
mans” but hard for computers to solve. Let us first consider the “hardness” of
such puzzles for computers. To model “hardness,” one approach is to consider an
asymptotic formulation. That is, we envision a randomized generation algorithm
G which on input a security parameter 1¥, outputs a puzzle from a (discrete and
finite) set Py, called the puzzle-space. Indeed, this is the formulation that previ-
ous works [ABHL03,Dzi10,CHS06] as well as our work here follow. assume that
there is a fixed polynomial ¢(-) such that every puzzle instance z € Py is a bit
string of length at most ¢(k).

Of course, not all CAPTCHA puzzle systems satisfy such an asymptotic for-
mulation. It is possible to have a (natural) non-asymptotic formulation to define
CAPTCHA puzzles which takes into consideration this issue and defines hard-
ness in terms of a “human population” [ABHLO03]. However, a non-asymptotic
formulation will be insufficient for cryptographic purposes. For many puzzles,
typically hardness can be amplified by sequential or parallel repetition[CHS04].

Usually, CAPTCHA puzzles have a unique and well defined solution associated
with every puzzle instance. We capture this by introducing a discrete and finite
set Sk, called the solution-space, and a corresponding solution function Hy :
Pr — Sk which maps a puzzle instance z € Pj to its corresponding solution.
Without loss of generality we assume that every element of Sy is a bit string of
length k. We will require that G generates puzzles together with their solutions.
This restriction is also required in previous works [ABHL03,Dzi10]. To facilitate
the idea that the puzzle-generation is a completely automated process, G will
not be given “access to a human.”

With this formulation, we can view “humans” as computational devices which
can “efficiently” compute the solution function Hj. Therefore, to capture “access
to a human”, the algorithms can simply be provided with oracle access to the
family of solution functions H := {Hj}ren. Recall that by definition, oracle-
access to H means that algorithms can only provide an input z to some function
Hj in the family H, and then read its output Hy/(2); if 2z is not in the domain
Py, the response to the query is set to a special symbol, denoted L. Every query
to Hjs will be assumed to contribute one step to the running time of the querying
algorithm. The discussion so far leads to the following definition for CAPTCHA
puzzles.

Definition 31 (Captcha Puzzles) Let {(-) be a polynomial, and S := {Sk}ken
and P := {Pr}ren be such that Py, C {0, 1}Z(k) and Sy, € {0,1}". A CapTcHA
puzzle system C = (G, H) over (P,S) is a pair such that G is a randomized
polynomaal time turing machine, called the generation algorithm, and H :=
{Hj }ren is a collection of solution functions such that Hy, : Py, — Si. Algorithm
G, on input a security parameter k € N, outputs a tuple (z,a) € Py X Sk such
that Hi(z) = a. We require that there exists a negligible function negl(-) such
that for every PPT algorithm A, and every sufficiently large k € N, we have that:

Din (k) :=Pr [(z, a) «— G(AF); A(1* 2) = a] < negl(k)

where the probability is taken over the randomness of both G and A.

Turing Machines vs Oracle Turing Machines. We emphasize that the CAPTCHA
puzzle generation algorithm G is an ordinary turing machine with no access to
any oracles. Furthermore, the security of a CAPTCHA system holds only against
PPT adversaries A who are turing machines. It does not hold against oracle
turing machines with oracle access to H. However, we use CAPTCHA systems
defined as above in protocols which guarantee security against adversaries who
may even have access to the oracle H. This distinction between machines which
have access to an (human) oracle and machines which don’t occurs throughout
the text.

The Issue of Malleability. As noted earlier, CAPTCHA puzzles are usually easily
malleable [DDNO00]. That is, given a challenge puzzle z, it might be possible for
an algorithm A to efficiently generate a new puzzle 2’ # z such that given the
solution of z’, A can efficiently solve z. It turns out that in all previous works
this creates several difficulties in the security proofs. In particular, in reducing
the “security” of a cryptographic scheme to the “hardness” of the CAPTCHA
puzzle, it becomes unclear how to handle such an adversary.

Due to this, previous works [Dzi10,CHS06] only prove security against a very
restricted class of adversaries called the conservative adversaries. Such adver-
saries are essentially those who do not query Hy on any CAPTCHA instances
other than the ones that are provided to them by the system. To facilitate a
proof against all PPT adversaries, we develop the notion of human-extractable
CAPTCHA puzzles below.

Human-FEztractable CAPTCHA Puzzles. The notion of human-extractable CAPTCHA
puzzles stems from the intuition that if a PPT algorithm A can solve a random
instance z produced by G, then it must make queries § = (¢1, g2, ...) to (func-
tions in) H that contain sufficient information about z. More formally, suppose
that z; and z5 are generated by two random and independent executions of G.
If A is given z; as input and it produces the correct solution, then the queries §
will contain sufficient information about z; and no information about zo (since
z9 is independent of z; and never seen by .A). Therefore, by looking at the
queries ¢, it should be possible with the help of the human to deduce which
of the two instances is solved by A. We say that a CAPTCHA puzzle system is
human-extractable if there exists a PPT algorithm Extr which, by looking at the
queries q, can tell with the help of the human which of the two instances was
solved by A. The formal definition follows; recall the convention that output of
oracle Turing machines includes the queries ¢ they make to H and corresponding
answers a received.

Definition 32 (Human-extractable Captcha) A CAPTCHA puzzle system
C := (G, H) is said to be human-extractable if there exists an oracle PPT al-
gorithm Extr | called the extractor, and a negligible function negl(+), such that

for every oracle PPT algorithm A, and every sufficiently large k € N, we have
that:

(20, 50) G(1%); (21,51) < G(1%);0 & {0,1};
Pei(k) == Pr | (s,q,a) « AT (1%, 2,): b « Extr? (1%, (20, 21),q); | < negl(k)
s=sp AV #£b

where the probability is taken over the randomness of G, A, and Extr.

Observe that except with negligible probability, sy # s1, since otherwise one
can break the hardness of C(definition 31).

We believe that the notion of human-extractable CAPTCHA puzzles is a very
natural notion; it may be of independent interest and find applications elsewhere.
We note that while assuming the existence of human-extractable CAPTCHA puz-
zles may be a strong assumption, it is very different from the usual extractability
assumptions in the literature such as the Knowledge-Of-Exponent (KOE) assump-
tion [HT98,BP04]. In particular, often it might be possible to empirically test
whether a given CAPTCHA system is human-extractable. For example, one ap-
proach for such a test is to just ask sufficiently many humans to correlate the
queries ¢ to one of the puzzles zy or z;. If sufficiently many humans can correctly
correlate g to z, with probability noticeably better than 1/2, one can already
conclude some form of weak extraction. Such weak extractability can then be
amplified by using techniques from parallel repetition. In contrast, there is no
such hope for KOE assumption (and other problems with similar “non-black-box”
flavor) since they are not falsifiable [Nao03].

In this work, we only concern ourselves with human-extractable CAPTCHA
puzzles. Thus we drop the adjective human-extractable as convenient.

Drawbacks of Our Approach and Other Considerations. While our framework
significantly improves upon previous works [Dzil0,CHSO06], it still has certain
drawbacks which are impossible to eliminate in an asymptotic formulation such
as ours.

The first drawback is that as the value of k increases, the solution becomes
larger. It is not clear if the humans can consistently answer such a long solution.
Therefore, such a formulation can become unsuitable for even very small values
of k. The second drawback is that the current formulation enforces strict “rules”
on how a human and a Turing machine communicate via oracle access to H.
This does not capture “malicious” humans who can communicate with their
computers in arbitrary ways. It is not even clear how to formally define such
“malicious” humans for our purpose.

Finally, definition 31 enforces the condition that |Sg| is super-polynomial in
k. For many CAPTCHA puzzle systems in use today, |Si| may be small (e.g.,
polynomial in k or even a constant). Such CAPTCHA puzzles are not directly
usable in our setting. Observe that if |Sg| is small, clearly A can solve a given
challenge puzzle with noticeable probability. Therefore, it makes sense to con-
sider the following weaker variant in definition 31: instead of requiring p;,, to

be negligible, we can consider it to be a small constant e. Likewise, we can also
consider weakening the extractability condition by in definition 32 by requiring
Pty to be only noticeably better than 1/2.

A subtle point to observe here is that while it might be possible to individually
amplify p,,, and Dg,; by using parallel or sequential repetitions, it may not
be possible to amplify both at the same time. Indeed, when |Si| is small, the
adversary A can simply ask one CAPTCHA puzzle for every solution a € S
multiple times and “hide” the challenge puzzle z, (in some mauled form z;)
somewhere in this large list of queries. Such a list of queries might have sufficient
correlation with both zy and z; simply because the solutions of these both are
in S, and A has asked at least one puzzle for each solution in the whole space.
In this case, even though parallel repetition may amplify p,,,, extraction might
completely fail because the correlation corresponding to the challenge puzzle is
not easy to observe in A’s queries and answers.

As a consequence of this, our formulation essentially rules out the possibility
of using such “weak” CAPTCHA puzzles for which both p,,, and pg,, are not
suitable. This is admittedly a strong limitation, which seems to come at the cost
of proving security beyond the class of conservative adversaries.

4 A Straight-line Extractable Commitment Scheme

In this section we present a straight-line extractable commitment scheme which
uses human-extractable CAPTCHA puzzles. The hiding and binding properties of
this commitment scheme rely on standard cryptographic assumptions, and the
straight-line extraction property relies on the extraction property of CAPTCHA
puzzles.

We briefly recall the notion of secure commitment schemes, with emphasis on
the changes from the standard definition and then define the notion of straight-
line extractable commitments.

Commitment Schemes. First, we present a definition of commitment schemes
augmented with CAPTCHA puzzles. Let C := (G, H) be a CAPTCHA puzzle sys-
tem, and let Com¢ := (C | R) be a two-party interactive protocol where (only)
C has oracle access to the solution function family HS. We say that Come is a
commitment scheme if: both C and R are PPT (interactive) TM receiving 1* as
the common input; in addition, C receives a string m € {0, l}k. Further, we re-
quire C to privately output a decommitment string d, and R to privately output
an auxiliary string aux. The transcript of the interaction is called the commit-
ment string, denoted by c. During the course of the interaction, let ¢ and a be
the queries and answers obtained by C via queries to the CAPTCHA oracle H.

5 The reason we do not provide R with access to H, is because our construction does
not need it, and therefore we would like to avoid cluttering the notation. In general,
however, both parties can have access to H. Also, in our adversarial model, we
consider all malicious receivers to have access to the oracle H

To denote the sampling of an honest execution of Com¢, we use the following
notation: (¢, (d, q, @), aux) < (C7 (1% m), R(1%)).

Notice that (d,q,a) is the output of oracle ITM CH as defined in section 2.
For convenience, we associate a polynomial time algorithm DCom which on input
(c,d,aux) either outputs a message m, or L. It is required that for all honest
executions where C commits to m, DCom always outputs m. We say that Com¢
is an ordinary commitment scheme if ¢ (and hence @) is an empty string.

Furthermore, our definition of a commitment scheme allows for stateful com-
mitments. In particular the output aux might be necessary for a successful de-
commitment of the committed message.

We assume that the reader is familiar with perfect/statistical binding and
computational hiding properties of a commitment scheme. Informally, straight-
line extraction property means that there exists an extractor Com Extr! which
on input the commitment string ¢ (possibly from an interaction with a malicious
committer), aux (from an honest receiver), and g, outputs the committed message
m (if one exists), except with negligible probability. If m is not well defined, there
is no guarantee about the output of ComExtr.

For any commitment, we use M = M(c, aux) to denote a possible decommit-
ment message defined by the commitment string ¢ and the receiver state aux. If
such a message is not well defined (say there could be multiple such messages or
none at all) for a particular (c,aux), then define M(c,aux) = L.

Definition 41 (Straight-line Extractable Commitment) A statistically-
binding computationally-hiding commitment scheme Come := (CH R) defined
over a human-extractable CAPTCHA puzzle system C := (G, H) is said to admit
straight-line extraction if there exists a PPT algorithm ComExtr! (the extrac-
tor) and a negligible function negl(-), such that for every PPT algorithm C (a
malicious committer whose input could be arbitrary), and every sufficiently large
k € N, we have that:

(c*, (d*,q,a),aux) « (CH (1%), R(1%)); M = M(c*, auz);

Pr m + ComExtr (1%, 7, (¢*,aux)) : (M # L) A (m # M)

< negl(k)

where the probability is taken over the randomness of 6, R, and ComExtr.

The Commitment Protocol. At a high level, the receiver R of our protocol will
choose two CAPTCHA puzzles (2°,2!) (along with their solutions s%,s'). To
commit to bit b, the sender C will select 2z using the OT protocol and com-
mit to its solution s® using an ordinary (perfectly-binding) commitment scheme
(Cpg, Rpg). The solution to the puzzle is obtained by querying H on 2. To
decommit, first decommit to s” which the receiver verifies; and then the receiver
accepts b as the decommitted bit if the solution it received is equal to s°. To
facilitate this task, the receiver outputs an auxiliary string aux which contains
(29,21, 5%, s'). To commit to a k-bit string m € {0, 1}k, this atomic protocol is
repeated in parallel k-times (with some minor modifications as in Figure 1)
For convenience we assume that (Cpg, Rpp) is non-interactive (i.e., C sends

only one message to R) for committing strings of length k2. The decommitment

string then consists of the committed messages and the randomness of Cpg. The
formal description of our protocol appears in figure 1.

Let k be the security parameter, C := (G, H) a human-extractable CAPTCHA
puzzle system, (Cpp, Rpp) a non-interactive perfectly-binding commitment
scheme for strings of length k2, and (SoT, Ror) a two-message two-party OT
protocol.

Commitment. Let m = (m1,...,my) € {0,1}* be the message to be com-
mitted.

1. CApTCHA GENERATION: For every i € [k], R generates a pair of indepen-
dent CAPTCHA puzzles: (22,59) «+ G(1%) and (2}, s}) « G(1%).

2. PARALLEL OT: C and R perform k parallel executions of OT, where the
i™ execution proceeds as follows. Party R acts as the OT-sender Sor on
input (22, z}) and party C acts the OT-receiver Ror on input the bit m,;.
At the end of the execution, let the puzzle instances obtained by C be
27,z

3. CoMmMIT TO CAPTCHA SOLUTIONS: For every ¢ € [k], C queries Hy, on z;"
to obtain the solution s]**. Let 5 := s7" o...0s,'", which is of length k.
C commits to § using protocol (Cpp, Rpp). Let r be the randomness used
and ¢ be the message sent by C in this step.

4. OUTPUTS: R sets aux = {(2}, 27, s?,57)}%_1, and C sets d = (5, 7).

Decommitment. On input the commitment transcript, and strings d = (8, r)
and aux = {(22, 2}, 59, s1)}¥_; do the following: parse the transcript to obtain
string ¢ from the last step, and verify that (3,) is a valid decommitment for
c. If yes, parse § = a1 o...o0a; and test that for every i € [k], there exists a
unique bit b; such that a; = szbl If any test fails, output L; otherwise output

m:(b1,.,,,bk).

Fig. 1. Straightline Extractable Commitment Protocol (C R)

Theorem 42 Assume that (Cpg, Rpg) is an ordinary, non-interactive, perfectly-
binding and computationally-hiding commitment scheme, C = (G, H) is a human-
extractable CAPTCHA puzzle system, and (Sot, Rot) is a two-round statistically-
secure oblivious transfer protocol. Then, protocol Come = (CH R) described in
figure 1 is a 3-round perfectly-binding and computationally-hiding commitment
scheme which admits straight-line extraction.

Proof. [Sketch] Statistical binding of our scheme follows from perfect binding
of (Cpg, Rpp) and the fact that except with negligible probability over the ran-
domness of G, s? # sl for every i € [k] (since otherwise P, (k) will not be
negligible).

In addition, the computational-hiding of this scheme follows by a standard
hybrid argument which uses the following two conditions: the receiver security

property of (Sor, Ror), and computational-hiding of (Cpg, Rpg). The proof of
this part is standard, and omitted.

We now show that the scheme admits straight-line extraction. Suppose that
string (c¢*, (d*,q, a),aux) represents the output of an execution of our commit-
ment protocol; then by statistical binding of our commitment scheme, except
with negligible probability there is a unique message defined by this string. In
fact, this unique message is completely defined by only the strings (c*, {2, 2} }£_),
where {29, 2} }F_| are CAPTCHA puzzles of the honest receiver (included in aux).
Recall that to refer to this message, we use the variable M, and write M (c*, aux)
to explicitly mention a transcript.

Now suppose that for a commitment scheme, it holds that Pr[M # 1] is
negligible, then straight-line extraction property as in Definition 41 holds triv-
ially. Therefore, in our analysis, it suffices to analyze malicious committers who
satisfy the condition that the event M # 1 happens with non-negligible prob-
ability. The formal description of our commitment-extractor, ComExtr, follows.
It uses the (extractor-)machine Extr guaranteed for the CAPTCHA system C (by

definition 32), to extract m bit-by-bit.

ALGORITHM ComExtr” (1%, g, (¢*,aux)):

1. Parse aux to obtain the puzzles {20, 21 }%_,.

2. For every i € [k], set b; « Extr™ (1%, (20, z1), §). If Extr™ outputs L, then

set b; = L.

3. Output the string by o ... 0 by.

Observe that the extraction algorithm does not use the solutions {s?, s}}%_,
included in the string aux, and this information is redundant. Also, the output
of the algorithm above, may include the L symbols in some places.

We say that ComExtrH(lk7 g, (c*,aux)) fails at step i if b; = L or if b; # M,
where M, denotes the i*® bit of the unique message M if it exists. Further, let
p; (k) denote the probability that this happens. Define the following probability

p;i(k) over the randomness of C and R and Extr:

(c*,(d*,q, @), aux) « (CH (1%), R(1%)); M := M(c*, aux);

i =P
pi(k) g by = Extr (15, (20,21),3) - My # L Ab; # M,

(4.1)

We remark again, that p;(k) is not affected by the actual solutions {s?, s} }%_,
included in aux in the equation above. This is because M is completely defined
by ¢* and the puzzles {2, 2}}¥ |, and every other expression in the equation
does not depend on aux.

If we prove that p;(k) is negligible for every ¢ € [k], then by union bound, it
follows that, except with negligible probability, the output of ComExtr is always
equal to M (or M equals L). This will complete the proof of the theorem. To
show p; (k) is negligible, we construct an adversary for the extraction game in
Definition 32(we will call such an adversary an CAPTCHA extraction adversary),

and then show that p;(k) and Py, are negligibly close.

Informally, the proof follows from the fact that when the commitment ad-
versary solves a particular CAPTCHA puzzle, say 2°, and commits to its solution
s?, the “other” CAPTCHA puzzle zil_b is statistically hidden from his view due
to the statistical security of the OT protocol. Thus, this commitment adversary
can be converted to a CAPTCHA extraction adversary by setting 2z = Z, where
Z is the CAPTCHA puzzle that the CAPTCHA extraction adversary gets to see
in the extraction game (Definition 32). Due to space limitations, we defer the
formal proof to Appendix A.

|

5 Constructing UC-Puzzles using Captcha

We provided a basic background in the section 1 to our results on protocol
composition, and mentioned that there are two ways in which we can incorporate
CAPTCHA puzzles in the UC-framework: the indirect access model, and the direct
access model. This section is about constructing UC puzzles [LPV09] in the
indirect access model. Recall that in the indirect access model, the environment
Z is not given direct access to a human (or the solution function family of
the CAPTCHA system) H; instead, £ must access H exclusively through the
adversary A. This allows the simulator to look at the queries of Z, which in
turn allows for a positive result. Due to space constraints, we shall assume basic
familiarity with the UC-framework [Can01], and directly work with the notion
of UC-puzzles. A more detailed review of the UC framework, and concurrent
composition, is given in appendix C .

Lin, Pass and Venkitasubramaniam [LPV09] defined the notion of a UC puz-
zle, and demonstrated that to obtain universal-composition in a particular model
(e.g., the CRS model), it suffices to construct a UC puzzle in that model. We will
adopt this approach, and construct a UC puzzle using CAPTCHA. We recall the
notion of a UC-puzzle with necessary details, and refer the reader to [LPV09] for
an extensive exposition. Our formulation directly incorporates CAPTCHA puz-
zles in the definition and hence does not refer to any setup 7; other than this
semantic change, the description here is essentially identical to that of [LPV09).

The UC-puzzle is a protocol which consists of two parties—a sender S, and
a receiver R, and a PPT-relation R. Let C := (G, H) be a CAPTCHA puzzle
system. Only the sender will be given oracle access to H, and the resulting
protocol will be denoted by (S R). Informally, we want that the protocol be
sound: no efficient receiver R* can successfully complete an interaction with S
and also obtain a “trapdoor” y such that R(TRANS,y) = 1, where TRANS is the
transcript of that execution. We also require statistical UC-simulation: for every
efficient adversary A participating as a sender in many executions of the protocol
with multiple receivers Ry, ..., R,,, and communicating with an environment Z
simultaneously, there exists a simulator Sim which can statistically simulate the
view of A for Z and output trapdoors to all successfully completed puzzles at
the same time.

Formally, we consider a concurrent execution of the protocol (S¥ R) for
an adversary A. In the concurrent execution, A exchanges messages with a
puzzle-environment Z and participates as a sender concurrently in m = poly(k)
(puzzle)-protocols with honest receivers Ry, ..., R,,. At the onset of a execution,
Z outputs a session identifier sid that all receivers receive as input. Thereafter,
Z is allowed to exchange messages only with the adversary A. In particular, for
any queries to the CAPTCHA solving oracle, Z cannot query H; instead, it can
send its queries to A, who in turn, can query H for Z, and report the answer
back to Z. We compare a real and an ideal execution.

REAL EXECUTION. The real execution consists of the adversary A, which in-
teracts with Z, and participates as a sender in m concurrent interactions of
(S R). Further, the adversary and the honest receivers have access to H which
they can query and receive the solutions over secure channels. The environment
Z does not have access to H; it can query H, by sending its queries to A, who
queries H with the query and reports the answers back to Z. Without loss of
generality, we assume that after every interaction, A honestly sends TRANS to
Z, where TRANS is the transcript of execution. Let REALﬁyZ(k) be the random
variable that describes the output of Z in the real execution.

IDEAL EXECUTION. The ideal execution consists of a PPT machine (the simula-
tor) with oracle access to H, denoted Sim®. On input 1%, Sim interacts with
the environment Z. At the end of the execution, the environment produces an
output. We denote the output of Z in the ideal execution by the random variable
IDEALgm# z (k).

Definition 51 (UC-Puzzle, adapted from [LPV09]) Let C := (G, H) be
a CAPTCHA puzzle system. A pair ((S™, R),R) is called UC-puzzle for a poly-
nomial time computable relation R and the CAPTCHA puzzle system C, if the
following conditions hold:

— SOUNDNESS. There exists a negligible function negl(-) such that for every
PPT receiwver A, and every sufficiently large k, the probability that A, after
an execution with the sender S™ on common input 1%, outputs y such that
y € R(TRANS) where TRANS is the transcript of the message exchanged in
the interaction, is at most negl(k).

— STATISTICAL SIMULATION. For every PPT adversary A participating in a
concurrent puzzle execution, there exists an oracle PPT machine called the
simulator, SimH, such that for every PPT environment Z and every suf-
ficiently large k, the random variables REALY (k) and IDEALg, 1 z(k) are
statistically close over k € N, and whenever Sim sends a message of the form
TRANS to Z, it outputs y in its special output tape such thaty € R(TRANS).

Some Tools and Notation. To construct the UC-puzzle, we will use our straight-
line extractable commitment scheme Com¢ := (CH R) from figure 1. However,
this commitment scheme is too weak for our purposes. In particular, it has the

following issues: it is possible for a cheating committer to commit to an invalid
string | (simply by committing incorrect solutions to CAPTCHA puzzles), and
this event cannot be detected by the receiver. We would like to ensure that if the
receiver accepts the transcript, then except with negligible probability, there be
a unique and valid string fixed by the transcript of the communication. However,
since the CAPTCHA solutions cannot be verified by a PPT Turing machine, we
cannot use zero-knowledge proofs right-away to guarantee this.

Therefore, we resort to using our extractable commitment scheme along with
an ordinary commitment scheme, and then use simple “cut-and-choose” tech-
niques to ensure that the two commitment schemes commit to same values.
Once this is ensured, the ordinary commitment scheme will provide us with
NP-relations which we can work with.

Formally, let (Cpg, Rpg) be a non-interactive perfectly-binding and computationally-
hiding commitment scheme; and let Comc := (C* | R) be our extractable-commitment
scheme in figure 1 defined over an human-extractable CAPTCHA puzzle system
C := (G, H). Then, define the following commitment scheme:

SCHEME C/o?n(fu):
To commit to a value v, the sender commits to v twice: first commit to v using
the protocol (Cpg, Rpg), then commit to v using the protocol (CH,R). The
Receiver accepts the commitment if both, Rpg and R, accept their respective
commitments.

To open to a value v, the sender executes the opening phases of both Cpg
and Comge; and if both opening phases accept v as the decommitted value,
the receiver of Com also accepts v as the decommitted value. That fact that
Com is statistically-binding and computationally-hiding follows directly from the
corresponding properties of (Cpg, Rpg) and (CH | R). Now define the following 3-
round “cut-and-choose” protocol for committing to a string s, which is essentially
taken from [Ros04,PRS02], except that it uses the scheme Com:

SCcHEME PRSCom(s):

1. Sender selects 2k strings { s{ }*_;,{s% }X_; such that s = s{ @ si. Now
the sender commits to string s, as well as all 2k strings { s§ }¥_,, {s% 15,
using the special commitment scheme Com.

2. Receiver sends a uniformly selected challenge o = 01 0...004 € {0,1}*.

3. Sender opens to sfn for each 1 < ¢ < k by sending the decommitment
information for Com. Receiver accepts the commitment phase, if these
are valid openings.

To open the committed string s according to the scheme PRSCom, the sender
simply opens the rest of commitment values as well, i.e., decommitment to s as
well as to the remaining k& unopened strings. The fact that PRSCom is actually
a statistically-binding and computationally-hiding commitment scheme follows
(only) from the fact that Com is a statistically-binding and computationally-
hiding commitment scheme. This is a standard proof, and is omitted (see, e.g.,
[Ros04,PRS02]).

For convenience, we define the notion of well-formedness of PRSCom. Infor-
mally, we say that a PRS commitment is well formed if each pair of commitments
in the first step is indeed to valid shares of s.

Definition 52 (Partial Transcripts) Let (p, (p}, p1), ..., (pk, p¥)) be the tran-

_—

scripts of the commit phases of the 2k + 1 executions of Com in Step 1 of a suc-
cessfully completed execution of PRSCom. For each (i,b) € {1,...,k} x{0,1},
parse pi as a pair of transcripts (¢,0}), where 7! is the transcript of the commit
phase of (Cpp, Rpg), and 0 is the transcript of the commit phase of (CH R}, in
the (i,b)-execution of Com. Similarly, let p = (7,0). Define the partial transcript
to be the tuple (1, (18, 74), ..., (78, 7F)).

Definition 53 (Well-formed PRS) Let ¥ = (1, (78, 71),..., (78, 7F)) be the
partial transcript of the commitment phase of PRSCom. Then, we say ¥ is well-
formed if for every 1 < i < k: s & s\ = s where s, and s denote the strings
committed in ¢ and T respectively and b € {0, 1}.

For a partial transcript ¥ = (7, (73,71),...,(7%,7F)) we define the string

committed in ¥, sy, as follows: if ¥ is well-formed, then sy := s, where s is the
string committed in 7. Else, sy :=1.

Note that as (Cpg, Rpp) is a perfectly-binding commitment scheme, given ¥,
the statement that “¥ is well-formed” is an NP-statement where the witness
consists of all the committed strings along with the correct openings (which, in
turn, is just the randomness used by algorithm Cpg).

The UC-puzzle System. The construction of our UC-puzzle over an human-
extractable CAPTCHA puzzle system C := (G, H), denoted ((S*, R),R) appears
in figure 2. The construction uses a family of one-way permutations { fi }ren
such that fy : {0,1}F — {0,1}“’“) where ¢/ : N — N is a polynomial. Let
£1(+) be a polynomial such that the length of the transcripts of the UC-puzzle
is £1(k). Then, the relation R associated with our puzzle system is defined over
the transcripts of executions TRANS as follows:

R(TRANS, s) =1 if and only if:
1. TRANS := ((z, f&), 72, 73) € {0,1}*® and s € {0, 1}*.
2. z = fi(s), where (z, f.) represents sender’s Phase-1 message
3. 73, representing the transcript of ZK-proof in Phase-3, is accepting.

The string s is defined to be the trapdoor of the accepting execution TRANS.

Theorem 54 Assume that {fi}ren is a family of one-way permutations, and
that C := (G, H) is an human-extractable CAPTCHA puzzle system. Then, the
protocol (ST R) in figure 2 is a UC puzzle.

Due to space constraints, we refer the reader to a complete proof of this the-
orem provided in appendix B . Very briefly and informally, the high-level ideas
of the proof proceed as follows. First, the cut-and-choose method in PRSCom

All parties are given k as the security parameter, and { fx }ren is a
family of one-way permutations such that fj : {0,1}* — {0,1}* ®.

Phase-1. Sender chooses a string s € {0,1}* uniformly, and sends
z = fr(s) and the description of f.
Phase-2. Sender commits to the string s wusing the scheme
PRSCom(s).
Let ¥ := (7, (73, 71), ..., (&, 7)) be the partial transcript.®
Phase-3. Sender proves the following NP-statement using a (con-
stant round) zero-knowledge proof system for NP:
— W= (1, (18, 71),. .., (18, 7F)) is well-formed, AND
— The string committed in 7, say s’, is such that fi(s") = z.
That is, there exist strings (s’,7): 7 = Cpg(s’;7) A fu(s") = 2.
If the zero-knowledge proof is accepting, the Receiver accepts and
halts.

@ Recall that PRSCom is instantiated with Com.

Fig. 2. UC Puzzle (S¥, R) using a CAPTCHA puzzle system C := (G, H)

ensures that the corresponding components of two commitment schemes (in-
cluded in (i)?n), are indeed equal with high probability. Then, the ZK-proof
guarantees that for one of them that the XOR of the majority of pairs commit-
ted to yield a unique and well defined value, say sy and that it is equal to the
desired trapdoor s, with high probability. Then, sy can be recovered from the
extractable-commitment part to prove the statistical simulation. Soundness is
proven using a standard hybrid argument.

6 Conclusion

Open Questions and Future Work. Our work presents a basic technique us-
ing human-extractable CAPTCHA puzzles to enable straight-line extraction and
shows how to incorporate it into the framework of protocol composition to
obtain new and interesting feasibility results. However, many other important
questions remain to be answered. For examples, can we obtain zero-knowledge
proofs for NP in 3 or less rounds?” Can we obtain plain-text aware encryption-
schemes? What about non-interactive non-malleable commitments without setup
[DDN00,C1098,CKOS01,PPV08]?

One interesting direction is to consider improving upon the recent work of
Goyal, Jain, and Ostrovsky on generating a password-based session-keys in the
concurrent setting [GJO10]. One of the main difficulties in [GJO10] is to get a

" By using standard techniques, e.g., coin-tossing using our commitment scheme along
with Blum’s protocol [Blu87], we can obtain a 5-round (concurrent) zero-knowledge
protocol. But we do not know how to reduce it to 3 rounds.

control on the number of times the simulator rewinds any given session. They
accomplish this by using the technique of precise-simulation [MP06,PPST08].
However, since we obtain straight-line simulation, it seems likely that our tech-
niques could be used to improve the results in [GJO10]. The reason we are not
able to do this is that our techniques are limited to only simulation—they do
not yield both straight-line simulation and extraction, whereas [GJO10] needs a
control over both.

Another interesting direction is to explore the design of extractable CAPTCHA
puzzles. In general, investigating the feasibility and drawbacks of the asymptotic
formulation for CAPTCHA puzzles presented here and in [ABHL03,CHS06,Dzi10)
is an interesting question in its own right. We presented a discussion of these
details in section 3, however they still present numerous questions for future
work.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complezity: A Modern Ap-
proach. Cambridge University Press, 2009.

[ABHLO3] Luis Von Ahn, Manuel Blum, Nicholas J. Hopper, and John Langford.
CaprcHA: Using hard Al problems for security. In FUROCRYPT, pages
294-311, 2003.

[Blu87] Manual Blum. How to prove a theorem so no one else can claim it. In
International Congress of Mathematicians, pages 1444-1451, 1987.

[BP04] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions
and 3-round zero-knowledge protocols. In CRYPTO, pages 273-289, 2004.

[BPS06] Boaz Barak, Manoj Prabhakaran, and Amit Sahai. Concurrent non-
malleable zero knowledge. In FOCS, pages 345-354. IEEE Computer Soci-
ety, 2006.

[BR94] Mihir Bellare and Phillip Rogaway. Optimal asymmetric encryption. In
EUROCRYPT, pages 92-111, 1994.

[BSMP91] Manuel Blum, Alfredo De Santis, Silvio Micali, and Giuseppe Persiano.
Noninteractive zero-knowledge. SIAM J. Comput., 20(6):1084-1118, 1991.

[Can01] Ran Canetti. Universally composable security: A new paradigm for crypto-
graphic protocols. In FOCS, pages 136-145, 2001.

[CFO01] Ran Canetti and Marc Fischlin. Universally composable commitments. In
CRYPTO, pages 19-40, 2001.

[CHS04] Ran Canetti, Shai Halevi, and Michael Steiner. Hardness amplification of
weakly verifiable puzzles. In TCC, pages 17-33. Springer-Verlag, 2004.

[CHS06] Ran Canetti, Shai Halevi, and Michael Steiner. Mitigating dictionary attacks
on password-protected local storage. In ADVANCES IN CRYPTOLOGY,
CRYPTO. Springer-Verlag, 2006.

[CIO98] Giovanni Di Crescenzo, Yuval Ishai, and Rafail Ostrovsky. Non-interactive
and non-malleable commitment. In STOC, pages 141-150, 1998.

[CKOSO01] Giovanni Di Crescenzo, Jonathan Katz, Rafail Ostrovsky, and Adam Smith.
Efficient and non-interactive non-malleable commitment. In EUROCRYPT,
pages 40-59, 2001.

[CLOS02] Ran Canetti, Yehuda Lindell, Rafail Ostrovsky, and Amit Sahai. Universally
composable two-party and multi-party secure computation. In STOC, pages
494-503, 2002.

[DDNO0O]
[DNS9g]
[DSC12]
[Dzi10]

[GJO10]

[GKO6]

Danny Dolev, Cynthia Dwork, and Moni Naor. Non-Malleable Cryptogra-
phy. SIAM J. on Computing, 30(2):391-437, 2000.

Cynthia Dwork, Moni Naor, and Amit Sahai. Concurrent zero-knowledge.
In STOC;, pages 409-418, 1998.

Sandra Diaz-Santiago and Debrup Chakraborty. On securing communica-
tion from profilers. In SECRYPT, pages 154-162, 2012.

Stefan Dziembowski. How to pair with a human. In SCN, pages 200-218,
2010.

Vipul Goyal, Abhishek Jain, and Rafail Ostrovsky. Password-authenticated
session-key generation on the internet in the plain model. In CRYPTO,
pages 277-294, 2010.

Oded Goldreich and Ariel Kahan. How to construct constant-round zero-
knowledge proof systems for NP. J. Cryptology, 9(3):167-190, 1996.

[GMWS86] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield noth-

[Gol01]
[Goy11]

[HK10]

[HOO09]

[HTOS]
[Lin03a]
[Lin03b]

[Lin04]

[Lin08]

[LP11]

[LPV0Y]

[MPO6)]
[Nao03]

[Off]
[Pas04]

ing but their validity and a methodology of cryptographic protocol design
(extended abstract). In FOCS, pages 174-187, 1986.

Oded Goldreich. Foundations of Cryptography: Basic Tools. Cambridge
University Press, 2001.

Vipul Goyal. Constant round non-malleable protocols using one way func-
tions. In STOC, pages 695-704, 2011.

Shai Halevi and Yael Kalai. Smooth projective hashing and two-message
oblivious transfer. Journal of Cryptology, pages 1-36, 2010. 10.1007/s00145-
010-9092-8.

Brett Hemenway and Rafail Ostrovsky. Lossy trapdoor functions from
smooth homomorphic hash proof systems. Electronic Colloguium on Com-
putational Complexity (ECCC), 16:127, 2009.

Satoshi Hada and Toshiaki Tanaka. Omn the existence of 3-round zero-
knowledge protocols. In CRYPTO, pages 408-423, 1998.

Yehuda Lindell. Bounded-concurrent secure two-party computation without
setup assumptions. In STOC, pages 683—-692, 2003.

Yehuda Lindell. General composition and universal composability in secure
multi-party computation. In In 44th FOCS, pages 394-403, 2003.

Yehuda Lindell. Lower bounds for concurrent self composition. In Moni
Naor, editor, Theory of Cryptography, volume 2951 of Lecture Notes in Com-
puter Science, pages 203-222. Springer Berlin / Heidelberg, 2004.

Yehuda Lindell. Lower bounds and impossibility results for concurrent self
composition. Journal of Cryptology, 21:200-249, 2008. 10.1007/s00145-007-
9015-5.

Huijia Lin and Rafael Pass. Constant-round non-malleable commitments
from any one-way function. In STOC, pages 705-714, 2011.

Huijia Lin, Rafael Pass, and Muthuramakrishnan Venkitasubramaniam. A
unified framework for concurrent security: universal composability from
stand-alone non-malleability. In STOC, pages 179-188, 2009.

Silvio Micali and Rafael Pass. Local zero knowledge. In STOC, pages 306—
315, 2006.

Moni Naor. On cryptographic assumptions and challenges. In CRYPTO,
pages 96-109, 2003.

The Official CAPTCHA Site. www.captcha.net.

Rafael Pass. Bounded-concurrent secure multi-party computation with a
dishonest majority. In STOC, pages 232-241, 2004.

[PPST08] Omkant Pandey, Rafacl Pass, Amit Sahai, Wei-Lung Dustin Tseng, and
Muthuramakrishnan Venkitasubramaniam. Precise concurrent zero knowl-
edge. In FEUROCRYPT, pages 397-414, 2008.

[PPV08] Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-
way functions and applications. In CRYPTO, pages 57-74, 2008.

[PRO3] Rafael Pass and Alon Rosen. Bounded-concurrent secure two-party compu-
tation in a constant number of rounds. In FOCS, 2003.
[PRO5] Rafael Pass and Alon Rosen. New and improved constructions of non-

malleable cryptographic protocols. In STOC, pages 533-542, 2005.
[PRS02] Manoj Prabhakaran, Alon Rosen, and Amit Sahai. Concurrent zero knowl-
edge with logarithmic round-complexity. In FOCS, pages 366-375, 2002.
[Ros04] Alon Rosen. A note on constant-round zero-knowledge proofs for NP. In
TCC, pages 191-202, 2004.

A Proof of Theorem 42

In this section we present the complete proof of security of our extractable com-
mitment scheme.

Theorem A1l (Restated) Assume that (Cpp, Rpp) is an ordinary, non-interactive,
perfectly-binding and computationally-hiding commitment scheme, C = (G, H)

is a human-extractable CAPTCHA puzzle system, and (Sor, Rot) s a two-round
statistically-secure oblivious transfer protocol. Then, protocol Come = (CH R)
described in figure 1 is a 3-round perfectly-binding and computationally-hiding
commitment scheme which admits straight-line extraction.

Proof. Statistical binding of our scheme follows from perfect binding of (Cpg, Rpg)
and the fact that except with negligible probability over the randomness of G,
s9 # s} for every i € [k] (since otherwise P, (k) will not be negligible).

In addition, the computational-hiding of this scheme follows by a standard
hybrid argument which uses the following two conditions: the receiver security
property of (Sor, Ror), and computational-hiding of (Cpg, Rpg). The proof of
this part is standard, and omitted.

We now show that the scheme admits straight-line extraction. Suppose that
string (c*, (d*, g, a),aux) represents the output of an execution of our commit-
ment protocol; then by statistical binding of our commitment scheme, except
with negligible probability there is a unique message defined by this string. In
fact, this unique message is completely defined by only the strings (c*, {29, 21 }£_,),
where {2}, 2} }¥_| are CAPTCHA puzzles of the honest receiver (included in aux).
Recall that to refer to this message, we use the variable M, and write M (c*, aux)
to explicitly mention a transcript.

Now suppose that for a commitment scheme, it holds that Pr[M # 1] is
negligible, then straight-line extraction property as in Definition 41 holds triv-
ially. Therefore, in our analysis, it suffices to analyze malicious committers who
satisfy the condition that the event M # L happens with non-negligible prob-
ability. The formal description of our commitment-extractor, ComExtr, follows.
It uses the (extractor-)machine Extr guaranteed for the CAPTCHA system C (by
definition 32), to extract m bit-by-bit.

ALGORITHM ComExtr” (1%, g, (¢*,aux)):

1. Parse aux to obtain the puzzles {20, z1}%_,.

2. For every i € [k], set b; < Extr™ (1%, (22, 21, §). If Extr™ outputs L, then

set b; = L.

3. Output the string by o ... o by.

Observe that the extraction algorithm does not use the solutions {s?, s}}¥_;
included in the string aux, and this information is redundant. Also, the output
of the algorithm above, may include the L symbols in some places.

We say that ComExtrH(lk7 q, (c*,aux)) fails at step i if b; = L or if b; # M;,
where M; denotes the i*® bit of the unique message M if it exists. Further, let
p;i(k) denote the probability that this happens. Define the following probability

p; (k) over the randomness of C and R and Extr:

() o Py [(€ (€7 8.8), a0 — (€(1%,), ROF): M = M(e” au);
by = Extr? (1%, (20,21), @) : My # L Ab # M;
(A1)

We remark again, that p;(k) is not affected by the actual solutions {s?, s} }%_,
included in aux in the equation above. This is because M is completely defined
by ¢* and the puzzles {2, 2}}¥ |, and every other expression in the equation
does not depend on aux.

If we prove that p;(k) is negligible for every ¢ € [k], then by union bound, it
follows that, except with negligible probability, the output of ComExtr is always
equal to M (or M equals L). This will complete the proof of the theorem. To
show p;(k) is negligible, we construct an adversary for the extraction game in
Definition 32(we will call such an adversary an CAPTCHA extraction adversary),
and then show that p;(k) and Dg,; are negligibly close.

Informally, the proof follows from the fact that when the commitment ad-
versary solves a particular CAPTCHA puzzle, say z’, and commits to its solution
s?, the “other” CAPTCHA puzzle zil_b is statistically hidden from his view due
to the statistical security of the OT protocol. Thus, this commitment adversary
can be converted to a CAPTCHA extraction adversary by setting z}; = Z, where
Z is the CAPTCHA puzzle that the CAPTCHA extraction adversary gets to see in
the extraction game (Definition 32).

To prove the above statement formally, we analyze the following hybrid
games.

Hybrid Hy. In this hybrid experiment, we consider the interaction of C with
the following simulator S. Simulator S interacts with C on common input 1*
exactly like an honest receiver R of our commitment protocol except that in
session i, the messages corresponding to the OT protocol are forwarded to an
external (honest) OT-sender Sor. The OT-sender Sort is given inputs (zg, z1)
where (3, 5) + G(1%) for b € {0,1} by S. At the end of the experiment, denote
by let (d',q’,a’) denote the contents of output tape of 6, and ¢’ denote the
commitment string. Define the puzzles and solutions corresponding to session i

as follows: 2 = xg,2} = 21,8 = 1,5} = L. By defining these values, we have

completely defined aux’ (which includes puzzles and solutions for all sessions).
Define (¢, (d',q’,a’),aux’) to be the output of H,;.
Let g1 (k) denote the probability that the event in equation (A.1) occurs, when

we replace the string (¢*, (d*, 4, @), aux) by the output of H1—i.e., (¢, (d', 7, a’), aux’).

Observe that except for the solutions (s?,s}), all components of the string
(d,(d',q,a),aux’), are distributed identically to the corresponding components
of string (¢*, (d*, q, @), aux). Further, as noted earlier, the event in equation (A.1)
is independent of (s¥,s!). Therefore, ComExtr fails at step i with probability
p;(k) even if we use the strings (¢/, (d', @, a’), aux’) sampled according to Hybrid
1, in equation A.1. Therefore, we have that g1 (k) = p;(k). Note that experiment

‘H; is a polynomial time process.

Before going to the next set of hybrid experiments, we make some obser-
vations. Recall that our protocol comnsists of k parallel OT-executions; let us
denote them by OTq,...,0Tg. Each OT-execution has exactly 2-rounds, and
the message corresponding to execution OT;, say «; is forwarded to Sor(in Hy).
To compute «;, our simulator S, selects a random-tape r which is independent
from the randomness used to sample zg and z; of experiment H;. Let R be the
domain from which r is sampled.

Consider an exponential number of experiments H,, defined below, one for
each r € R. We show that in each one of them, ¢,(k), defined analogous to
q1(k), is negligible. We note that unlike “standard” hybrid arguments which use
indistinguishability of consecutive hybrids, we have that ¢; (k) is related to ¢, (k)
via equation A.2.

Hybrid H,. This experiment is identical to H; except that the randomness
sampled by S apart from that used to sample (zg,z1) of is fixed to the string
r. The output of this experiment is defined exactly as in H,.. Let ¢.(k) denote
the probability that event in equation (A.1) occurs when we replace the string
(c¢*, (d*,q,a),aux) by the output of ;. By definition, we have that for all k € N:

q1(k) = Z qr(k) - Pr[r is the randomness sampled by S] < maxgq,(k) (A.2)
reR

We consider the hybrids . to enable us to use the statistical security prop-
erty of the OT protocol. Consider any r (one that makes the value ¢, (k) maxi-
mum is most convenient). To measure ¢,, we will make use of definition 21 and
get rid of one of the puzzles (zg, z1). Note that, every string » € R results in our
simulator S sending a string «; to Sor. Since r generates «;, and r is hardwired in
‘H.,, this experiment always sends the same string a; to Sor, who responds with
some reply, say 8 < Sor((xo,x1),q;). By definition 21, it holds that random-
variable f is statistically-close to one of the following: either Sor((zo,0*)), a;)
or Sor((0F) 21), ;). Let v(r) be the bit that indicates which of these two cases
is true (with ties broken arbitrarily). Note that the value of v(r) for every r € R,
is fixed and can be given to a non-uniform machine as an advice.

Hybrid H}. This hybrid is identical to H,, except that it non-uniformly receives
the value of the bit v(r). The output of this experiment is therefore distributed
identically to that of H,.

Hybrid H2. This hybrid is identical to H,. except for the following difference:
instead of computing 8 < Sot((xo,x1), ;) it computes the output of Sor on
either (z9,0/®) or (0“*), z,) depending upon the value of v(r). If y(r) = 0, Sor
is given ((xo,0°*)), ;) as input; else, if v(r) = 1, it is given ((0°®) 1), ay).

By construction, and by definition 21, it holds that the output of this distri-
bution is statistically-close to that of H;, with distance A, (k). Therefore, if
q.(k) denotes the probability that the event in equation (A.1) occurs, when we
replace the string (c*, (d*,q,a) by the output of #2, then

Next, we show that ¢ is at most pg,;(k) as defined in definition 32. To see
this, consider the following adversary for breaking the extractability property of
the CAPTCHA system C.

Adversary Ag . The adversary incorporates the entire hybrid experiment H2,
including the values of r and v(r) . The adversary receives a challenge puzzle
2z as input. The execution of the adversary, on input z, internally simulates H2
(including the honest sender Sor), except for the following difference: if v(r) = 0,
it sets g = z, and otherwise it sets 1 = z. Note that A must use its oraACIe H
to correctly simulate H?2 since the hybrid includes a cheating committer C who
requires access to H.

When the execution of Hj halts, let the contents of the tapes of the cheating
committer 6, corresponding to the i*P-execution be (df, q,a). The decommitment
information d includes a value s, supposedly a solution for ..y = 2. The
adversary outputs s; as its solution to the challenge z.

First off, note that if M # 1, it holds that except with negligible probability
s} is a unique and well-defined value, which is indeed the solution of z. Next,
observe that the internal execution of A¢, on input z sampled honestly using G,
is in fact identical to that of #2. Finally, observe that the queries made by A, are
independent of the “other” CAPTCHA puzzle. That is, if y(r) = 0, the queries
made by A are independent of x; or any other puzzle. The case for y(r) = 1 is
symmetric.

Therefore, if the event in equation (A.1) occurs on outputs of H} with prob-
ability ¢.(k), then it must happen with same probability in internal execution
of A on a random challenge puzzle. But occurrence of this event is equivalent to
the failure of the CAPTCHA extractor as defined in definition 32. Therefore, it
holds that ¢,.(k) < D¢,y (k). By combining the results from all the hybrids in the
sequence, we conclude that p;(k) is at most negligible. This completes the proof
straight-line extraction. [|

B Proof of UC Puzzle Construction

We now prove that ((S¥,R),R), as defined in Section 5, is a UC puzzle, and
begin with the soundness property. Recall that the soundness property requires
that no malicious receiver can output the trapdoor s. In our case, the trapdoor
is the pre-image (under the one-way permutation family { fx }ren) of the first
message of the protocol, z. We will show that if there exists a malicious re-
ceiver that succeeds in outputting the trapdoor with non-negligible probability,
then there exists an adversary that inverts the one-way permutation with some
non-negligible probability. Informally, it will follow from the hiding property of
PRSCom, and the zero-knowledge property of the proof in Phase 3, that the re-
ceiver does not learn s from Phases 2 and 3 of the protocol. Thus, if it succesfully
outputs the trapdoor, it must do so by inverting the one-way permutation. As
a technical point, note that when we are constructing the adversary for fi(-),
we are no longer inside the UC framework, and in particular, we are allowed to
rewind the adversary. Details follow.

Lemma B1 For any malicious receiver R*H | the probability that it outputs s
such that R(TRANS, s) = 1, where TRANS is an accepting transcript, is negligi-
ble in n.

Proof. Let R*f be a malicious receiver that outputs the correct pre-image for
the first message of an accepting execution with probability e. We construct an
adversary A that inverts fj(-) with probability negligibly close to e. We construct
A through a series of hybrid adversaries, wherein we maintain the invariant that
each intermediate adversary outputs the pre-image with probability negligibly
close to e. As observed before, we are no longer in the UC framwork and are
thus allowed to rewind the adversary.

Hybrid Ag: Adversary Ap starts an internal execution of (S¥, R*H) along with
the environment. In particular, A, starts by setting the random tapes of the
environment and R*¥ | and starts simulating the execution of (S*, R*) con-
veying messages between the various parties. The adversary Ag simulates an
honest SH itself. In the end, Ay outputs whatever R*H outputs. It is clear that
this internal simulation is identical to the real execution, and Ay outputs the
correct pre-image of the first message with probability e.

Hybrid Ay : Adversary A; is the same as Ag except that in Phase 3, instead of
giving the zero-knowledge proof from S to R*H | it uses the simulator. More
precisely, let Simzk be the simulator for the zero-knowledge proof in Phaes 3.
Adversary A; runs the execution of the puzzle similar to Ay, except that it con-
veys all Phase 3 messages from R*H to Simzk, and all Simzk messages back to
R*H If Simzk needs to rewind the verifier, then A; rewinds the entire execu-
tion, including the environment and the honest sender. This is simply done be
restarting the entire execution with same random tapes for the environment and
R*H and using same messages from the sender till the point of rewind.

We claim that A; outputs the trapdoor with probability negligibly close to e:
consider the following stand-alone malicious verifier V' for the zero-knowledge
proof used in Phase 3 - verifier V¥ has access to S, R*H and the environment,
and starts an execution as in hybrid Ag. The verifier V# relays the the Phase
3 messages from the R*H to the external prover, and sends the responses of the
external prover back to R*. Finally, V¥ outputs whatever R*¥ outputs.

Note that the output of Ay is identical to the output of an interaction of V
with a real ZK prover, while the output of A; is identical to the output of a
simulation. If the probabilities of outputting the trapdoor by Ag and A; differ
noticeably, then we can distinguish between the real interaction and a simulation
of the ZK protocol, which contradicts the zero-knowledge property.

Hybrid As: Adversary A, is the same as A; except in Phase 2, instead of
committing to s, it commits to all-zeros string. The rest of the execution is
the same.

we claim that the probabilities that 4; and Ay output the trapdoor are
negligibly close. Consider the following malicious receiver R¥ for PRSCom, that
interacts with the external challenger. The challenger either commits to the all-
zeros string, or to a random string, and R tries to distinguish between the two
cases. Receiver R has access to S, R*H and the environment, and starts an
execution as in A;. It runs the PRSCom protocol with the challenger on one
side, and conveys the messages to R* on the other side. In the end, it outputs
whatever R*H outuputs.

Observe that the output of A; is identical to the output of the above game
when the challenger commits to a random string, while the output of Ajy is
identical to the output of the above game when the challenger commits to the all-
zeros string. Thus, if the probability of outputting the trapdoor differ noticeably,
then we contradict the hiding property of PRSCom.

Our final adversary A receives fi(s) from the external challenger, for a ran-
domly chosen s. It runs the same execution as As, except that in Step 1, it
sends fi(s) to R*H. This execution is identical to the execution of As, and thus
A outputs the correct pre-image with probability negligibly close to e. It follows
from the hardness of fi(-) that € is negligible in n. |

Now we consider the simulation and extraction property. It is easy to statis-
tically simulate a malicious sender’s view, as the simulator only has to play the
honest receivers’ parts. For extraction, we can extract from the ExtCom part of
Com.

Lemma B2 Let S*H be a malicious sender. Then there exists a simulator Sim™
that statistically simulates the view of S*H. Further, the probability that S*
sends an accepting transcript TRANS to the environment and Sim™ does not
output the trapdoor s such that R(TRANS, s) = 1, is negligible in n.

Proof. The simulator Sim®, on input 1*, starts an internal execution of the
adversary S*# on input 1¥. All messages that S*H sends to receivers are handled

by Sim® by emulating honest receiver strategies. All communicatin between S*#
and the environment is relayed back and forth by Sim*. As the simulator plays
the honest receiver strategy, IDEALg;,# z(k) and REALZI,Z(/C) are identical.

We now show how Sim® extracts the trapdoor. For each puzzle execution

Jj, for each (i,b) € [k] x {0,1}, let tf)b = (q, c,aux)z’b be the queries, transcript
and auxilliary information corresponding to the (i, b)!"* execution of of ExtCom
in the j** puzzle execution. Once a puzzle execution terminates, the simulator
runs procedure TrapExtr (described below) on input {#], }eipefr x{0,13- This
procedure returns a string 8?-, which Sim? outputs as the trapdoor for the jth
puzzle execution. We call {tib }i,b)elk]x {0,1} the extraction transcript of the puz-
zle execution.

ALGORITHM TrapExtr({ ti,b }(i,b)e[k]x{o,l})

1. For each (i,b) € [k] x {O, 1 }, obtain st « ComExtr(1%,t;).
2. For each i € [k], set s* = s{, @ si. Let s be the most frequent string in
the sequence (s',...,s"). Output s.

We prove that TrapExtr returns the correct trapdoor with overwhelming prob-
ability. First, observe that soundness of the zero-knowledge proof in Phase 3 of
the UC Puzzle immediately implies the following lemma,

Proposition B3 The probability (over that random coins of the receiver) that
the zero-knowledge proof in Phase 3 of puzzle execution is accepting and the
partial transcript of that execution, ¥, is not well-formed, is negligible in k.

Next, we show that whenever that partial transcript is well-formed, the string
returned by TrapExtr is the same as the string commited in partial transcript ¥,
with overwhelming probability.

Proposition B4 Let ¥ be the partial transcript of a puzzle execution, and let
sy be the string committed in ¥. Further, let s be the string returned by TrapExtr
when Tun on the extraction transcript of the puzzle execution. Then conditioned
on the event that ¥ is well formed, the probability (over receiver’s random coins)
that sy # s is negligible in k.

Proof. For a particular execution of C/(;L we say that the commitment is invalid
if the strings committed in both the commit phases (that is, Cpg and ExtCom)
are not the same. Note that if the number of invalid commitments is w(log(k)),
then with probability negligibly close to 1, the reciever will reject. Thus, given
that ¥ is well-formed, more than half of Com exeuctions are valid. Therefore,
the probability that sy # s is negligible.]

Finally we observe that it follows from the soundness of the zero-knowledge
proof in Phase 3 of the puzzle that with all but negligible probability, fx(sw) = 2.
The lemma follows from combining this with Propositions B3 and B4.

|

C Brief Review of Protocol Composition

Protocol composition is a general term to describe how the security of vari-
ous cryptographic protocols behave when they execute in a complex environ-
ment in which many other types of protocols are running at the same time.
Roughly speaking, there are mainly three types of protocol compositions con-
sidered in the literature: self-composition, general-composition, and universal-
composition. Barring some technical conditions, a sequence of results in the
literature shows that for most “interesting” functionalities (except Zero Knowl-
edge), all three notions are essentially (equivalent and) impossible to achieve
[CF01,Lin03a,Lin03b,Lin04].

In section 5, we constructed UC puzzle. Below, we provide a brief review of
UC framework, and how to incorporate the CAPTCHA systems in this framework.
This is followed by a brief discussion about the modeling, and concurrent self-
composition. For a detailed exposition of these topics we refer the reader to the
works of Canetti [Can01] and Lindell [Lin03b].

C.1 Universal Composition

The framework for universal composition considers the execution of a protocol 7
in a complex environment by introducing a special entity, called the environment
Z.

The environment drives the whole execution. The execution of m with the
environment Z, an adversary A, and a trusted party G proceeds as follows. To
start an execution of 7, Z initiates a protocol execution session, identified by
session identifier sid, and activates all parties and assigns a unique identifier to
each of them at invocation. An honest party, upon activation, starts executing
7 on inputs provided by Z; adversarially controlled parties may deviate from
the protocol arbitrarily. During the execution, Z is allowed to interact with
A arbitrarily; in addition, it can see all the outputs of honest parties. We as-
sume asynchronous authenticated communication over point-to-point channels;
the scheduling of all messages is controlled by the adversary/environment. Some
protocol executions may involve calls to “trusted parties” G, who compute a spe-
cific functionality for the parties. Let k be the security parameter. We consider
two types of executions.

IDEAL EXECUTION. Let F be a functionality (i.e., a trusted party); and let Tigeal
be the “ideal protocol” which instructs its parties to call F with their private
inputs. At the end of the computation, the parties then receive the output of
the computation from F. The ideal model execution of functionality F is then
execution of protocol migea) with environment Z, adversary A, and trusted party
F. At the end of the execution, Z outputs a bit, denoted by the random variable
IDEALL 4 z(k).

REAL EXECUTION. Let m be a multiparty protocol implementing F. The real
model execution of , is the execution of m with Z, and A. Note that there are

no calls to F in this execution. At the end of the execution, Z outputs a bit,
denoted by the random variable REAL; 4 z(k).

Informally speaking, we say that m UC-realizes F, if 7 is a secure emulation
of the protocol Tigea- This is formulated by saying that for every adversary A
participating in the real model execution of 7, there exists an adversary A’,
called the simulator, which participates in the ideal model execution of F such
that no environment Z can tell apart whether it is interacting with A or A’.
That is, variables IDEALideM,A’,Z(k) and REAL, 4 z(k) are computationally in-
distinguishable.

Modeling Access to H. Let C := (G, H) be an extractable CAPTCHA puzzle sys-
tem. To incorporate the use of C in the UC framework, we provide all entities—
i.e., the honest parties, the adversary A, and the environment Z—access to the
solution function H.® Note that providing access to H in the UC framework
is not a new formulation; it has been considered before by Canetti, Halevi, and
Steiner [CHS06], who construct a UC-secure password-based key-generation pro-
tocol in this model. We follow the same approach and allow the honest parties
and the adversary A to directly access the solution function H.

However, we observe that there are two different ways in which we the en-
vironment Z can access H. This is a crucial point and the difference between
what is possible and what is not.

— INDIRECT AcCCESS: The work of Canetti et. al. [CHS06], does not provide
Z direct access to H. Instead, in their framework, all queries of Z to H are
first sent to A, who queries H and obtains the answers. These answers are
then forwarded to Z. We call this, the indirect access model.

— DIRECT AcCESS: In the direct access model, Z is given direct access to H.
In particular, A cannot see the queries sent by Z to H.

In section 5, we prove that in the indirect access model, under the assumption
that extractable CAPTCHA puzzles and one-way permutations exist, for every
PPT functionality JF, there exists a protocol 7 that UC-realizes F.

On the other hand, in the direct access model, clearly there is no advantage
that a simulator (acting in the ideal world for adversary .A) will have compared
to the classical UC-framework. This is because since A cannot see the queries of
Z, the simulator will also not be able to do so. Therefore, existing impossibility
results for the UC-framework should also hold in the direct-access model. This is
indeed quite trivial to show—for example by reproducing the proof of Canetti-
Fischlin [CFO01] for commitment schemes (see Appendix E.1).

8 In analogy with the “trusted set up” models such as the CRS model, we assume that
all parties are using the same CAPTCHA puzzle system C. However, we insist that
this is not essential to obtain our results. If there are multiple types of CAPTCHA
puzzles C1, ..., Cpoly (k) in use, then all we really need is that the simulator can access
the queries made by cheating parties to the corresponding solution functions, say
Hl, ey Hpoly(k)-

Discussion. An interesting question to consider is which of these two models is
the “right” model. Let us first compare the indirect access model to the other
“trusted setup” models such as the CRS-model. In the CRS-model, the simulator
S is in control of generating the CRS in the ideal world—this enables S to have
a “trapdoor” to continue its actions without having to “rewind” the environ-
ment. All parties, including the environment Z use the (same) CRS generated
S. Viewed this way, the indirect access model can be seen as some sort of a setup
(i.e., the oracle H) where all parties, including Z, use the same setup. However,
the indirect access model is better than the CRS model (or other “trusted setup”
models) in the sense that there is no trust involved. That is, in the indirect access
model, there is no party who is trusted to generate the setup according to some
specific settings, e.g., a random string in case of the CRS-model.

However, since the environment must access H through the adversary (en-
forcing, in some sense, the same setup condition), the indirect access model
does not retain the true spirit of the plain or the vanilla model (where there
is no setup to begin with). Intuitively, the CAPTCHA model does not have any
setup since every party is going to have its own “human” helping it to solve
the CAPTCHA puzzles: e,.g., our commitment scheme in section 4, is a scheme
in the plain model. However, intuitively, in the plain model (irrespective of ac-
cess no H), UC-security should ideally imply self-composition. The fact that the
positive results in the indirect access model, do not carry over to the setting of
self-composition, show that the direct access model is more natural and retains
the true spirit of the plain model.

C.2 Concurrent Self Composition

Concurrent self composition, refers to the situation where many instances of
a single protocol m are executed concurrently many times on the network. The
concurrent attack model has a specific meaning in which the adversary is allowed
to control the schedule and delivery of various protocol messages. The adversary
can corrupt parties participating in various execution of m, either adaptively
(i.e., in the middle of the execution) or statically (before any of the protocol
executions begin).

In a series of results, Lindell [Lin03a,Lin03b,Lin04] proves a general theo-
rem which, informally speaking, shows that for the so called “bi-directional bit-
transmitting functionalities”, security in the concurrent self-composition model
implies security in the universal-composition model. It is not hard to see that
his proof in fact holds in our setting (where access to H is granted to all parties)
as well with respect to the direct access model (i.e. where environment accesses
H directly and not through the adversary). Therefore, we obtain similar impos-
sibility results for concurrent self-composition.

While the class of bi-directional bit-transmitting functionalities includes al-
most all interesting functionalities, zero-knowledge functionality does not fall in
this class. Indeed, it is possible to have concurrent self-composition for zero-
knowledge. By modifying Blum-Hamiltonicity protocol so that verifier’s chal-
lenge is decided by using a coin-tossing phase (in which verifier first commits to

its challenge using our extractable commitment scheme from figure 1), we can
obtain constant-round and straight-line concurrent zero-knowledge for NP. Like-
wise, by replacing the initial PRS-phase by our extractable commitment scheme,
the protocol of Barak, Prabhakaran, and Sahai [BPS06] yields a concurrent non-
malleable zero-knowledge protocol which is constant-round with straight-line
simulation. For completeness, the resulting protocol is given in appendix D.
One might wonder, if we can get straight-line simulation in concurrent NMZK,
why are we not able to obtain UC-Zero-knowledge in the direct access model.
The reason is that our protocol (in appendix D) can only guarantee straight-
line simulation, but not straight-line extraction of the witness from man-in-the-
middle. Also, there cannot be any method to convert this protocol so that one
gets both simulation and extraction in straight-line since such a construction
will imply UC-ZK which in turn will imply UC-security for computing all ppPT
functionalities in the direct access model [CLOS02], which is impossible.

D Concurrent NMZK: Constant Round, Straight-line

We assume basic familiarity with zero-knowledge protocols and their execution
in a concurrent non-malleable experiment. Briefly, in such an experiment a man-
in-the-middle A interacts with many provers Py, ..., P, on “left” side, and with
many verifiers V..., V,, or “right” side. Interaction of A with P; is called the
itM-left-session; likewise, A’s interaction with V; is called i*P-right-session. The
statements being proven to A by the provers are chosen before the execution; the
statements on right that A proves to the verifiers are chosen adaptively by A as
the interaction proceeds. A controls the scheduling and delivery of all messages in
this experiment. Without loss of generality, we can assume that A is a determin-
istic polynomial time machine with z € {0,1}* as its auxiliary input. Concurrent
Non-Malleable Zero-Knowledge is defined as follows ([BPS06,PR05]):

Definition D1 (Concurrent Non-Malleable Zero-Knowledge) A protocol
is a Concurrent Non-Malleable Zero Knowledge (CNMZK) argument of knowl-
edge for membership in an NP language L with witness relation R (that is, y € L
iff there exists w such that R(y,w) = 1), if it is an interactive proof system be-
tween a prover and a verifier such that

Completeness: if both the prover and the verifier are honest, then for every
(y,w) such that R(y,w) = 1, the verifier will accept the proof, and
Soundness, Zero-Knowledge and Non-Malleability: for every (non-uniform
PPT) adversary A interacting with provers Pi,...,Pp, in mp “left ses-
sions” and verifiers V1,..., Vi, inmp “right sessions” of the protocol (with
A controlling the scheduling of all the sessions), there exists a simulator S
such that for every set of “left inputs” y1, ..., Ym, , we have S(y1,...,Ym.) =

(Vs 215+ oy Zmp), sSuch that
1. v is a simulated view of A: i.e., v is distributed indistinguishably from
the view of A (for any set of witnesses (w1, ..., Wy,) that Py,..., Py,

are provided with).

2. For alli € {1,...,mRg}, if in the i'" right hand side session in v the
common input is x; and the verifier V; accepts the proof, then z; is a valid
witness to the membership of x; in the language, except with negligible
probability (z; =L if V; does not accept.)

Further, we call the protocol a black-box CNMZK if there exists a universal sim-
ulator Spp such that for any adversary A, it is the case that S = Spp satisfies
the above requirements.

To obtain concurrent non-malleable zero-knowledge (CNMZK), we use the
protocol of Barak-Prabhakaran-Sahai [BPS06]. Briefly, the protocol has five
phases, of which the first phase is the the PRS-preamble [PRS02]. We ob-
tain our protocol by using our extractable commitment scheme from section
4 in phase I, instead of the PRS preamble. The protocol uses following ingredi-
ents, all of which can be constructed from standard number theoretic assump-
tions (or even general assumptions such as Claw Free permutations [GK96]):
a two-round statistically-hiding commitment scheme denoted Comgy [GK96], a
(constant round) statistical zero-knowledge argument-of-knowledge for NP, de-
noted sZKAOK [Blu87,GK96], and a (constant round) non-malleable commitment
scheme denoted Comypm [Goy11,LP11,PR05,PPV08]. The resulting protocol is
depicted in figure 3.

Common Input: x € L.
Prover’s Auxiliary Input: y € Ry ().

Phase I: (V <> P) The verifier chooses a random string p and commits to it using
the commitment scheme Come := (C|R) from section 4.

Phase II: (P <> V) P commits to the all-zero string using Comsy. Then it uses
SZKAOK to prove knowledge of the randomness and inputs to this execution of Comsy.

Phase III: (V < P) Execute the Opening Phase of Come. Let the committed string
(as revealed by the verifier) be o.

Phase IV: (P + V) P commits to the witness y using Comnm.

Phase V: (P < V) P proves the following statement using SZKAOK: either the value
committed to in Phase IV is y such that y € Rr(z), or the value committed to in
Phase Il is 0. P uses the witness corresponding to the first part of the statement.

Fig. 3. Straight-Line Concurrent Non-Malleable Zero-Knowledge (P, V).

To prove the security of their protocol BPS only require the following two
properties form the PRS-preamble: computational-hiding of the PRS-challenge,
and extraction of each session-wise PRS-challenge (by means of rewinding) as
soon as the PRS-phase ends. Since both of these properties are also satisfied

by our extractable commitment scheme, we do not need to change the proof
of BPS. In addition, since there are no rewindings involved during simulation
(to extract the PRS-challenge), the proof in fact gets simpler. Note that the
extraction of witness is performed from Phase IV which still uses rewindings.
The details are omitted.

E Negative Results

E.1 Universal Composition in the Direct Access Model

Canetti and Fischlin [CF01] prove that universally composable commitments are
impossible to construct in the plain model. We reproduce here the details of their
result in our framework where we assume that there exists CAPTCHA puzzles (as
in Definition 31) and the environment has direct access to a CAPTCHA solving
oracle H. This implies that the environment’s queries cannot be seen by the
ideal world adversary. For this, we just focus on the the one-time commitment
functionality, and prove that it is impossible to UC-realize it in direct access
model. This functionality is shown in figure 4.

Functionality Fcom
Feou acts in the presence of parties PlH S Pf and an ideal model adversary SH

1. Upon receiving the message (Commit, sid, P;, Pj,b), from the party P;, b € {0,1}
record the value b and send the message (Receipt, sid, P;, P;) to S and P;, who
writes it to his output tape. Ignore any subsequent (Commit,---) messages

2. Upon receiving the message (Open, sid, P;, P;) from P;, if some bit b was previously
recorded, send (Open, sid, P;, P;,b) to S and P; (who writes it to his output tape)
and halt. Else do nothing. Halt.

Fig. 4. A one-time commitment functionality[CFO1] Feou

In any commitment protocol which attempts to implement the functionality
Figure 4, denote by C the committer P; and by R the receiver P;.

Definition E1 (Terminating Commitment Protocol) A commitment pro-
tocol m = (CH RH) is called terminating if there is a non-negligible probability
that RH outputs (Receipt, -+) and moreover if the receiver, upon getting a valid
decommitment for a session id sid and a committed bit b from the sender, outputs
(Open, sid, C, R, b) with non-negligible probability

We say that a protocol is bilateral if only two parties participate in the
protocol and all other parties are idle and do not send or receive messages.

Theorem E2 There exists no bilateral terminating commitment protocol m that
UC securely realizes the functionality Fooy in the direct access model of CAPTCHA

puzzles. This holds even if the ideal-model adversary S is allowed to depend on
the environment Z.

Our impossibility result is a restatement of Canetti-Fischlin impossibility [CF01]
in the plain model. We present it here for completeness, but the details are pre-
cisely as is from [CFO01]. It proceeds as follows.

Recall that all turing machines described below are oracle turing machines.
Assuming that a CAPTCHA puzzle system (Definition 31) exists, and modelling it
in the UC framework via the direct access model, all turing machines described
below have access to the solution oracle H. Informally, let m be any protocol
attempting to realize the functionality Fcoy securely. We would like to construct
an adversary As and environment Z5 such that no ideal world adversary exists
satisfying the definition of UC security. To this goal, let Z; and A; be the
environment and adversary who do the following. The adversary A; corrupts the
committer C and forwards all messages that he receives from the environment on
behalf of the committer. The environment chooses a bit b at random and executes
the honest protocol with b as input. Then Z; advises the corrupt committer to
start the decommitment phase, and once again lets the adversary .4; forward
messages generated by Z; on behalf of the committer. When the receiver R
outputs a bit o', the environment outputs 1, iff b equals &’. Observe the following
about the adversary A; and T,

1. Aj sees nothing but the messages of the protocol. In particular, A; does not
make any oracle queries itself.

2. By definition of UC security, there exists an ideal model adversary S; such
that & sends a (Commit, sid,C, R,b’) message to the functionality Fooy.
Moreover, by the indistinguishability property of UC security, Pr[b = V']
differs only negligibly between the real and ideal executions.

3. By the definition of a terminating commitment protocol, Pr[b =] is non-
negligible.

Formally, Let 7 = (CH,R¥) be any terminating protocol that UC-securely
implements the functionality Feoy. Let A{i and ZfI be the adversary and envi-
ronment as above. Let S{ be the ideal model advesary (possibly depending on
ZH) whose existence is guaranteed by the definition of UC-security. Note that
due to us assuming the direct access model for CAPTCHA,

— the environment can execute a honest committer’s protocol (as it can access
the human oracle to solve the CAPTCHA puzzles in ComExtr).

— the view of the ideal model adversary Sf and that of the real adversary A%
both consist of only the messages of the protocol, and in particular, neither
of these machines make any oracle queries.

To prove a contradiction, consider the following environment and adversary
zI and A . The environment Z{! instructs the committer to pick a (secret) bit
b randomly and commit to it using an honest execution of the protocol 7. The
adversary A%, corrupts the receiver and then obtains all the messages sent to

the now corrupted receiver and forwards it to an internal copy of the simulator
SE from the previous experiment. When S sends a (Commit,--- ,b’) message
to Feoum, the adversary forwards the bit " to the environment. The environment
outputs 1 if b = b and 0 otherwise.

The contradictions follow from the following observation. In the real world
experiment of the above protocol, using S internally, adversary A, obtains
an advantage in guess the bit b. However in the ideal world execution of the
protocol, since a decommitment is not being done, the ideal world adversary, S,
(even if it depends on Z5) has no advantage over % in guessing the bit b. Thus
for every ideal world adversary S the environment is capable of distinguishing
the real world from the ideal world, contradicting the definition of UC-security.

E.2 Concurrent Self-composition of general functionalities

As noted earlier, much like the Canetti-Fischlin impossibility result, it is possible
to repeat the proof of Lindell [Lin08] step-by-step with intuitive changes to
obtain a negative result for concurrent self-composition of general functionalities
when modelling CAPTCHA puzzles via the direct access model. Here we briefly
discuss the steps involved in Lindell’s result. We recommend that the reader
familiarizes himself with the proof of [Lin08].

At a very high level, the first step in Lindell’s result is to show that concurrent
self-composition implies concurrent general-composition. The proof outline for
this step is as follows. For any bi-directional bit-transmitting functionality F,
if there exists a secure self-composing protocol m which implements F, it can
be used concurrently many times to simulate the execution of 7w concurrently
composed with any general protocol G by transmitting the messages of G bit-
by-bit. This step remains completely unaltered and goes through in our setting
as well; this is because in our model, the only difference is that machines are
equipped with with oracle access to H. This is only a “cosmetic” change which
does not affect simulation of G by using 7 concurrently many times.

The next step (to complete negative result of Lindell), shows that general
composition implies universal composition for the case of so called specialized
simulator UC [Lin03b]. Once again, since the only modification in our model
is to equip machines with access to H, this step also goes through without any
change. Finally, the result of Canetti-Fischlin (reproduced in theorem E2 for our
model) proves that specialized-simulator UC is not possible for the commitment
functionality. This is essentially the entire outline of our impossibility claim
for concurrent self-composition of bi-directional bit-transmitting functionalities.
A complete proof can be obtained by a step-by-step reproduction of Lindell’s
results.

