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Abstract

In this paper we put forward the Bounded Player Model for secure computation. In this new model, the
number of players that will ever be involved in secure computations is bounded, but the number of computations
has no a priori bound. Indeed, while the number of devices and people on this planet can be realistically
estimated and bounded, the number of computations these devices will run can not be realistically bounded. We
stress that in the Bounded Player model, in addition to no a priori bound on the number of sessions, there is no
synchronization barrier, no trusted party, and simulation must be performed in polynomial time.

In this setting, we achieve concurrent Zero Knowledge (cZK) with sub-logarithmic round complexity. Our
security proof is (necessarily) non-black-box, our simulator is “straight-line” and works as long as the number
of rounds is ω(1).

We further show that unlike previously studied relaxations of the standard model (e.g., bounded number
of sessions, timing assumptions, super-polynomial simulation), concurrent-secure computation is still impos-
sible to achieve in the Bounded Player model. This gives evidence that our model is “closer” to the standard
model than previously studied models, and study of this model might shed light on constructing round efficient
concurrent zero-knowledge in the standard model as well.
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1 Introduction

Zero-knowledge proofs, introduced in the seminal work of Goldwasser, Micali and Rackoff [GMR85], are a funda-
mental building block in cryptography. Loosely speaking, a zero-knowledge proof is an interactive proof between
two parties — a prover and a verifier — with the seemingly magical property that the verifier does not learn any-
thing beyond the validity of the statement being proved. Subsequent to their introduction, zero-knowledge proofs
have been the subject of a great deal of research (see, for example, [BSMP91, DDN91, Ost91, OW93, DNS98,
CGGM00, Bar01, IKOS09]), and have found numerous applications in cryptography (e.g., [GMW87, FFS88]).

Concurrent zero knowledge. The original definition of zero knowledge is only relevant to the “stand-alone”
setting where security holds only if the protocol runs in isolation. As such, unfortunately, it does not suffice if
one wishes to run a zero-knowledge proof over a modern network environment, such as the Internet. Towards that
end, Dwork, Naor and Sahai [DNS98] initiated the study of concurrent zero-knowledge (cZK) proofs that remain
secure even if several instances of the protocol are executed concurrently under the control of an adversarial
verifier. Subsequent to their work, cZK has been the subject of extensive research, with a large body of work
devoted to studying its round-complexity. In the standard model, the round-complexity of cZK was improved
from polynomial to slightly super-logarithmic in a sequence of works [RK99, KP01, PRS02]. In particular, the
Õ(log k)-round construction of [PRS02] nearly matches the lower bound of Ω̃(log k) w.r.t. black-box simulation
[CKPR01] (see also [KPR98, Ros00]).

Despite a decade of research, the Õ(log k)-round construction of [PRS02] is still the most round-efficient cZK
protocol known. Indeed, the lower bound of [CKPR01] suggests that a breakthrough in non-black-box simulation
techniques is required to achieve cZK with sub-logarithmic round complexity.1

Round-efficient cZK in relaxed models. While the round-complexity of cZK in the standard model still remains
an intriguing open question, a long line of work has been dedicated towards constructing round-efficient cZK in
various relaxations of the standard model. Notable mentions include the bounded-concurrency model [Bar01],
the bare public key model [CGGM00], the super-polynomial time simulation (SPS) model [Pas03], timing model
[DNS98], and, various setup models (such as common reference string [BSMP91], etc.). Below, we briefly discuss
the state of the art on some of these models.

BOUNDED CONCURRENCY MODEL. An interesting relaxation of the standard model (and related to our setting)
that has been previously studied is the bounded-concurrency model [Bar01], where an apriori bound is assumed
over the number of sessions that will ever take place (in particular, this bound is known to the protocol designer). It
is known how to realize constant-round bounded cZK [Bar01], and also constant-round bounded-concurrent secure
two-party and multi-party computation [Lin03a, PR03, Pas04].

Even though our model can be seen as related to (and a generalization of) the bounded concurrency model, the
techniques used in designing round efficient bounded concurrent zero-knowledge do not seem to carry over to our
setting. In particular, if there is even a single player that runs an unbounded number of sessions, the simulation
strategies in [Bar01, Lin03a, PR03, Pas04] breakdown completely. This seems inherent because of the crucial
difference this model has from our setting (which can understood by observing that general concurrent secure
computation is possible in the bounded concurrent setting but impossible in our setting).

BARE PUBLIC KEY AND OTHER PREPROCESSING MODELS. The zero-knowledge pre-processing model was
proposed in [KMO89] in the stand-alone setting and in [CO99] in the context of cZK. In [CO99], interaction is
needed between all the involved players in a preprocessing phase. Then, after a synchronization-barrier is passed,
the preprocessing is over and actual proofs start. Interactions in each phase can take place concurrently, but the two

1In this paper we only consider results based on standard complexity-theoretic and number-theoretic assumptions; in particular, we not
consider “non-falsifiable” assumptions such as the knowledge of exponent assumption.
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phases can not overlap in time. An improved model was later proposed in [CGGM00] where the preprocessing is
required to be non-interactive, and the model is called “Bare Public-Key” (BPK) model, since the non-interactive
messages played in the preprocessing can be considered as public announcements of public keys. In this model it
is known how to obtain constant-round concurrent zero knowledge under standard assumptions [SV12].

The crucial restriction of the BPK model is that all players who wish to ever participate in protocol executions
must be fixed during the preprocessing phase, and new players cannot be added “on-the-fly” during the proof
phase. We do not make such a restriction in our work and as such, the techniques useful in constructing secure
protocols in the BPK model have limited relevance in our setting. In particular, constant round concurrent ZK is
known to exist in the BPK model using only black-box simulation, while in our setting, non-black-box techniques
are necessary to construct a sublogarithmic round concurrent ZK protocol.

OTHER MODELS. Round efficient concurrent zero-knowledge is known in a number of other models as well (which
do not seem to be directly relevant to our setting). In the SPS model [Pas03], the zero-knowledge simulator is
allowed to run in super-polynomial time, as opposed to running in polynomial time (as per the standard definition
of [GMR85]). Indeed, this relaxation has yielded not only constant-round cZK [Pas03], but also concurrent-
secure computation [LPV09, CLP10, GGJS12]. This stands in contrast to the standard model, where concurrent-
secure computation is known to be impossible to achieve [Lin04, Lin03b, CKL03, CF01]. Similarly, in the timing
model [DNS98], where an upper-bound is assumed on the delivery time needed of a message (and therefore the
adversary is assumed to have only limited control of the communication network), constant-round cZK is known
[DNS98, Gol02, PTV10], as well as is multi-party computation secure w.r.t. general concurrent composition
[KLP05]. Finally, note that similar results hold in popular models such as the common reference string [BSMP91,
SCO+01, CLOS02], key registration [BCNP04], etc.

Our Question. While the above relaxations of the standard model discussed above have their individual appeal,
each of these models suffers from various drawbacks, either w.r.t. the security guarantees provided (e.g., as in the
case of the SPS model), or w.r.t. the actual degree of concurrency tolerated (e.g., as in the case of the timing model).
Indeed, despite the extensive amount of research over the last decade, the round-complexity of cZK still remains
open. In this work, we ask the question whether it is possible to construct cZK protocols with sub-logarithmic
round-complexity in a natural model that does not suffer from the drawbacks of the previously studied models;
namely, it does not require any preprocessing, assumes no trusted party or timing assumptions or an a priori bound
on the number of protocol sessions, and requires standard polynomial-time simulation and standard complexity
assumptions.

1.1 Our Results

In our work, we construct a concurrent (perfect) zero-knowledge argument system with sub-logarithmic round-
complexity in a mild relaxation of the standard model; we refer to this as the Bounded Player model. In this
model we only assume that there is an a priori (polynomial) upper-bound on the total number of players that may
ever participate in protocol executions. We do not assume any synchronization barrier, or trusted party, and the
simulation must be performed in polynomial time. In particular, we do not assume any a priori bound on the
number of sessions, and achieve security under unbounded concurrency. As such, our model can be viewed as a
strengthening of the bounded-concurrency model.2 Below, we give an informal statement of our main result.

Theorem 1 Assuming dense crypto systems and claw-free permutations, there exists an ω(1)-round concurrent
perfect zero-knowledge argument system with concurrent soundness in the Bounded Player model.3

2Note that an upper-bound on the total number of concurrent executions implies an upper-bound on the total number of players as well.
3We note that if one only requires statistical (as opposed to perfect) zero knowledge, then the assumption on claw-free permutations

can be replaced by collision-resistant hash functions. We further note that our assumption on dense cryptosystems can be further relaxed to
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Our security proof is (necessarily) non-black-box (see below), and the simulator of our protocol works in a
“straight-line” manner. Our result is actually stronger since we only require a bound on the number of possible ver-
ifiers, while there is no restriction on the number of provers. We prove concurrent soundness since sequential and
concurrent soundness are distinct notions in the Bounded Player model for the same reasons as shown by [MR01]
in the context of the BPK model.

We stress that while our model bears some resemblance to the BPK model, known techniques from the BPK
model are not applicable to our setting. Indeed, these techniques crucially rely upon the presence of the synchro-
nization barrier between the pre-processing phase and the protocol phase, while such a barrier is not present in
our model. As such, achieving full concurrency in our model is much harder and involves significantly different
challenges.

We further show that the impossibility results of Lindell for concurrent-secure computation [Lin04] also hold
in the Bounded Player model. This gives evidence that the Bounded Player model is much closer to the stan-
dard model than the previously studied models, and the study of this model might shed light towards the goal of
constructing round efficient concurrent zero-knowledge in the standard model as well.

1.2 Our Techniques

Recall that in the Bounded Player model, the only assumption is that the total number of players that will ever
be present in the system is a priori bounded. Then, an initial observation towards our goal of constructing sub-
logarithmic round cZK protocols is that the black-box lower-bound of Canetti et al. [CKPR01] is applicable to
our setting as well. Indeed, the impossibility result of [CKPR01] relies on an adversarial verifier that opens a
polynomial number `(k) of sessions and plays adaptively at any point of time, depending upon the transcript
generated “so far”. The same analysis works in the Bounded Player model, by assuming that the adversarial
verifier registers a new key each time a new session is played. In particular, consider an adversarial verifier that
schedules a session si to be contained inside another session sj . In this case, a black-box simulator does not gain
any advantage in the Bounded Player model over the standard model. The reason is that since the adversarial
verifier of [CKPR01] behaves adaptively on the transcript at any point, after a rewind the same session will be
played with a fresh new key, thus rendering essentially useless the fact that the session was already solved before.
Note that this is the same problem that occurs in the standard model, and stands in contrast to what happens in the
BPK model (where identities are fixed in the preprocessing and therefore do not change over rewinds).

From the above observation, it is clear that we must resort to non-black-box techniques. Now, a natural
approach to leverage the bound on the number of players is to associate with each verifier Vi a public key pki and
then design an FLS-style protocol [FLS90] that allows the ZK simulator to extract, in a non-black-box manner, the
secret key ski of the verifier and then use it as a “trapdoor” for “easy” simulation. The key intuition is that once the
simulator extracts the secret key ski of a verifier Vi, it can perform easy simulation of all the sessions associated
with Vi. Then, since the total number of verifiers is bounded, the simulator will need to perform non-black-box
extraction only an a priori bounded number of times (once for each verifier), which can be handled in a manner
similar to the setting of bounded-concurrency [Bar01].

Unfortunately, the above intuition is misleading. In order to understand the problem with the above approach,
let us first consider a candidate protocol more concretely. In fact, it suffices to focus on a preamble phase that
enables non-black-box extraction (by the simulator) of a verifier’s secret key since the remainder of the protocol
can be constructed in a straightforward manner following the FLS approach. Now, consider the following candidate
preamble phase (using the non-black-box extraction technique of [BL02]): first, the prover and verifier engage in
a coin-tossing protocol where the prover proves “honest behavior” using a Barak-style non-black-box ZK protocol
[Bar01]. Then, the verifier sends an encryption of its secret key under the public key that is determined from the
output of the coin-tossing protocol.

trapdoor permutations by modifying our protocol to use the coin-tossing protocol of Barak and Lindell [BL02]. We leave this for the full
version of the paper.
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In order to analyze this protocol, we will restrict our discussion to the simplified case where only one verifier
is present in the system (but the total number of concurrent sessions are unbounded). At this point, one may
immediately object that in the case of a single verifier identity, the problem is not interesting since the Bounded
Player model is identical to the bare-public key model, where one can construct four-round cZK protocols using
rewinding based techniques. However, simulation techniques involving rewinding do not “scale” well to the case
of polynomially many identities (unless we use a large number of rounds) and fail4. Moreover the use of Barak’s
[Bar01] straight-line simulation technique is also insufficient since it works only when the number of concurrent
sessions is bounded (even when there is a single identity), but instead our goal is to obtain unbounded concurrent
zero knowledge. In contrast, our simulation approach is “straight-line” for an unbounded number of sessions and
scales well to a large bounded number of identities. Therefore, in the forthcoming discussion, we will restrict our
analysis to straight-line simulation. In this case, we find it instructive to focus on the case of a single identity to
explain our key ideas.

We now turn to analyze the candidate protocol. Now, following the intuition described earlier, one may think
that the simulator can simply cheat in the coin-tossing protocol in the “inner-most” session in order to extract the
secret key, following which all the sessions can be simulated in a straight-line manner, without performing any
additional non-black-box simulation. Consider, however, the following adversarial verifier strategy: the verifier
schedules an unbounded number of sessions in such a manner that the coin-tossing protocols in all of these ses-
sions are executed in a “nested” manner. Furthermore, the verifier sends the ciphertext (containing its secret key)
in each session only after all the coin-tossing protocols across all sessions are completed. Note that in such a
scenario, the simulator would be forced to perform non-black-box simulation in an unbounded number of sessions.
Unfortunately, this is a non-trivial problem that we do not know how to solve. More concretely, note that we cannot
rely on techniques from the bounded-concurrency model since we cannot bound the total number of sessions (and
thus, the total number of messages across all sessions). Further, all other natural approaches lead to a “blow-up”
in the running time of the simulator. Indeed, if we were to solve this problem, then we would essentially construct
a cZK protocol in the standard model, which remains an important open problem that we do not solve here.

In an effort to bypass the above problem, our first idea is to use multiple (ω(1), to be precise) preamble phases
(instead of only one), such that the simulator is required to “cheat” in only one of these preambles. This, however,
immediately raises a question: in which of the ω(1) preambles should the simulator cheat? This is a delicate
question since if, for example, we let the simulator pick one of preambles uniformly at random, then with non-
negligible probability, the simulator will end up choosing the first preamble phase. In this case, the adversary
can simply perform the same attack as it did earlier playing only the first preamble phase, but for many different
sessions so that the simulator will still have to cheat in many of them. Indeed, it would seem that any randomized
oblivious simulation strategy can be attacked in a similar manner by simply identifying the first preamble phase
where the simulator would cheat with a non-negligible probability.

Towards that end, our key idea is to use a specific probability distribution such that the simulator cheats in
the first preamble phase with only negligible probability, while the probability of cheating in the later preambles
increases gradually such that the “overall” probability of cheating is 1 (as required). Further, the distribution is
such that the probability of cheating in the ith preamble is less than a fixed polynomial factor of the total probability
of cheating in one of the previous i − 1 blocks. Very roughly speaking, this allows us to prevent the adversary
from attacking the first preamble where the simulator cheats with non-negligible probability. More specifically,
for any session, let us call the preamble where the simulator cheats the “special” preamble. Further, let us say
that the adversary “wins” a session if he “stops” that session in the special preamble before sending the ciphertext
containing the verifier’s secret key. Otherwise, the adversary “loses” that session. Then, by using the properties
of our probability distribution, we are able to show that the adversary’s probability of losing a session is less than
1/n times the probability of winning. As a consequence, by careful choice of parameters, we are able to show

4Indeed when the simulator rewinds the adversarial verifier, there is a different view and therefore the adversary will ask to play with
new identities, making useless the work done with the old ones, as it happens in the standard model.

4



that the probability of the adversary winning more than a given polynomially bounded number of sessions without
losing any sessions w.r.t. any given verifier is negligible. Once we obtain this fixed bound, we are then able to
rely on techniques from the bounded-concurrency model [Bar01] to handle the bounded number of non-black-box
simulations. For the sake of brevity, the above discussion is somewhat oversimplified. We refer the reader to the
later sections for more details.

Extension to concurrent-secure computation - an impossibility. Once we have a cZK protocol (as discussed
above) in the Bounded Player model, it may seem that it should be possible to obtain concurrent-secure compu-
tation as well by using techniques from [Pas04]. Unfortunately, this turns out not to be the case, as we discuss
below.

The key technical problem that arises in the setting of secure computation w.r.t. unbounded concurrency is
the following. We cannot a priori bound the total number of “output delivery messages” (across all sessions) to
the adversary; further, the session outputs cannot be “predicted” by the simulator before knowing the adversary’s
input. As such, known non-black-box simulation techniques cannot handle these unbounded number of messages
and they inherently fail.5 We remark that the same technical issue, in fact, arises in the standard model as well.

While the above argument only explains why known techniques fail, we can also obtain a formal impossibility
result. Indeed, it is not difficult to see that the impossibility result of Lindell [Lin04] also holds for the Bounded
Player model. (See Appendix C for details.)

2 Preliminaries and Definitions

2.1 Bounded Player Model

In this paper, we consider a new model of concurrent security, namely, the bounded player model, where we assume
that there is an a-priori (polynomial) upper bound on the total number of player that will ever be present in the
system. Specifically, let n denote the security parameter. Then, we will consider an upper bound N = poly(n) on
the total number of players that can engage in concurrent executions of a protocol at any time. We assume that each
player Pi (i ∈ N ) has an associated unique identity idi, and that there is an established mechanism to enforce that
party Pi uses the same identity idi in each protocol execution that it participates in. We stress that such identities,
do not have to be established in advance. New players can join the system with their own (new) identities, as long
as the number of players does not exceed N .

We note that this requirement is somewhat similar in spirit to the bounded-concurrency model [Bar01, Lin03a,
PR03, Pas04], where it is assumed that the adversary cannot start more than an a-priori fixed number of concurrent
executions of a protocol. We stress, however, that in our model, there is no a-priori bound on the total number of
protocol sessions that may be executed concurrently. In this respect, one can view the Bounded Player model as
a strengthening of the bounded-concurrency model.6 Indeed, one can argue that while the number of devices and
people on this planet can be realistically estimated and bounded, the number of concurrent protocol executions on
these devices can not.

Implementing the Bounded Player model. We formalize the Bounded Player model by means of a functional-
ity FNbp that registers the identities of the player in the system. Specifically, a player Pi that wishes to participate in
protocol executions can, at any time, register an identity idi with the functionality FNbp. The registration functional-
ity does not perform any checks on the identities that are registered, except that each party Pi can register at most
one identity idi, and that the total number of identity registrations are bounded by N . In other words, FNbp refuses

5We note that this problem does not occur in the case of zero knowledge because the adversary does not have any input, and the session
outputs are fixed to be 1.

6Note that an upper bound on the total number of concurrent executions implies an upper bound on the total number of player as well.
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to register any new identities once N number of identities have already been registered. The functionality FNbp is
formally defined in Figure 1.

Functionality FNbp

FNbp initializes a variable count to 0 and proceeds as follows.

• Register commands: Upon receiving a message (register, sid, idi) from some party Pi, the functionality checks
that no pair (Pi, id′i) is already recorded and that count < N . If this is the case, it records the pair (Pi, idi) and sets
count = count + 1. Other wise, it ignores the received message.

• Retrieve commands: Upon receiving a message (retrieve, sid, Pi) from some party Pj or the adversary A, the
functionality checks if some pair (Pi, idi) is recorded. If this the case, it sends (sid, Pi, idi) to Pj (orA). Otherwise,
it returns (sid, Pi,⊥).

Figure 1: The Bounded Player Functionality FNbp.

In our constructions we will only require that the identities correspond to values in the range of a one-way
function. We note that in this particular case, the functionality FNbp bears much resemblance to the bulletin-board
certificate authority functionality [KL11], which suffices for obtaining authenticated channels [Can04]. We finally
remark that our model is also closely related to the Bare Public-Key model, introduced by Canetti et al. [CGGM00].
However, we stress that unlike the Bare Public-Key model, we do not assume any synchronization barrier between
the registration phase and the protocol computation phase. In particular, we allow parties to register their identities
even after the computation begins.

2.2 Concurrent Zero Knowledge in Bounded Player Model

In this section, we formally define concurrent zero knowledge in the Bounded Player model. Our definition, given
below, is an adaptation of the one of [PRS02] to the Bounded Player mode, by also considering non-black-box
simulation. Some of the text below is taken verbatim from [PRS02].

Let PPT denote probabilistic-polynomial time. Let 〈P, V 〉 be an interactive argument for a language L. Con-
sider a concurrent adversarial verifier V ∗ that, given input x ∈ L, interacts with an unbounded number of indepen-
dent copies of P (all on the same common input x and moreover equipped with a proper witness w), without any
restriction over the scheduling of the messages in the different interactions with P . In particular, V ∗ has control
over the scheduling of the messages in these interactions. Further, we say that V ∗ is an N -bounded concurrent
adversary if it assumes at most N verifier identities during its (unbounded) interactions with P .7

The transcript of a concurrent interaction consists of the common input x, followed by the sequence of prover
and verifier messages exchanged during the interaction. We denote by viewP

V ∗(x, z,N) the random variable de-
scribing the content of the random tape of the N -bounded concurrent adversary V ∗ with auxiliary input z and the
transcript of the concurrent interaction between P and V ∗ on common input x.

Definition 1 (cZK in Bounded Player model) Let 〈P, V 〉 be an interactive argument system for a language L.
We say that 〈P, V 〉 is concurrent zero-knowledge in the Bounded Player model if for every N -bounded concur-
rent non-uniform PPT adversary V ∗, there exists a PPT algorithm S , such that the following ensembles are compu-
tationally indistinguishable, {viewP

V ∗(x, z,N)}x∈L,z∈{0,1}∗,N∈poly(n) and {S(x, z,N)}x∈L,z∈{0,1}∗,N∈poly(n).

7Thus, V ∗ can open multiple sessions with P for every unique verifier identity.
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2.3 Building Blocks

In this section, we discuss the main building blocks that we will use in our cZK construction.

Perfectly Hiding Commitment Scheme. In our constructions, we will make use of a perfectly hiding string
commitment scheme, denoted Com. For simplicity of exposition, we will make the simplifying assumption that
Com is a non-interactive perfectly hiding commitment scheme (even though such a scheme cannot exist). In
reality, Com would be taken to be a 2-round commitment scheme, which can be based on collections of claw-free
permutations [GK96]. Unless stated otherwise, we will simply use the notation Com(x) to denote a commitment
to a string x, and assume that the randomness (used to create the commitment) is implicit.

Perfect Witness Indistinguishable Argument of Knowledge. We will also make use of a perfect witness-
indistinguishable argument of knowledge system for all of NP in our construction. Such a scheme can be con-
structed, for example, by parallel repetition of the 3-round Blum’s protocol for Graph Hamiltonicity [Blu87] in-
stantiated with a perfectly hiding commitment scheme. We will denote such an argument system by 〈PpWI, VpWI〉.

Perfect Witness Indistinguishable Universal Argument. In our construction, we will use a perfect witness-
indistinguishable universal argument system, denoted 〈PpUA, VpUA〉. Such an argument system can be constructed
generically from a (computational) witness-indistinguishable universal argument pUA by using techniques of
[PR05b, PR05a]. Specifically, in protocol 〈PpUA, VpUA〉, the prover P and verifier V first engage in an execu-
tion of pUA, where instead of sending its messages in the clear, P commits to each message using a perfectly
hiding commitment scheme. Finally, P and V engage in an execution of a perfect zero knowledge argument of
knowledge where P proves that the “decommitted” transcript of pUA is “accepting”. The resulting protocol is still
a “weak” argument of knowledge.

Perfect (Bounded-Concurrent) Zero-Knowledge. Our cZK argument crucially uses as a building block, a vari-
ant of the bounded cZK argument of Barak [Bar01]. Similarly to [PR05a], we modify the protocol appropriately
such that it is perfect bounded cZK. Specifically, instead of a statistically binding commitment scheme, we will
use a perfectly hiding commitment scheme. Instead of a computationally witness-indistinguishable universal argu-
ment (UARG), we will use a perfect witness indistinguishable UARG, denoted 〈PpUA, VpUA〉. Further, the length
parameter `(N) used in the modified protocol is a function of N , where N is the bound on the number of verifiers
in the system. Protocol 〈PpB, VpB〉N is described in Figure 3 and can be based on claw-free permutations.

Resettable Witness Indistinguishable Proof System. We will further use a resettable witness-indistinguishable
proof system [CGGM00] for all ofNP . Informally speaking, a proof system is resettable witness indistinguishable
if it remains witness indistinguishable even against an adversarial verifier who can reset the prover and receive
multiple proofs such that the prover uses the same random tape in each of the interactions. While the focus of this
work is not on achieving security against reset attacks, such a proof system turns out to be useful when arguing
concurrent soundness of our protocol (where our proof relies on a rewinding based argument). We will denote such
a proof system by 〈PrWI, VrWI〉. It follows from [CGGM00] that such a proof system can be based on perfectly
hiding commitments.

Dense Cryptosystems [SP92]. We will use a semantically secure public-key encryption scheme, denoted as
(Gen,Enc,Dec) that supports oblivious key generation (i.e., it should be possible to sample a public key
without knowing the corresponding secret key). More precisely, there exists a deterministic algorithm OGen
that takes as input the security parameter 1n and a sufficiently long random string σ and outputs a public key

7



pk ← OGen(1n, σ), where pk is perfectly indistinguishable from a public key chosen by the normal key gener-
ation algorithm Gen. For simplicity of exposition, we will assume that the OGen algorithm simply outputs the
input randomness σ as the public key. Such schemes can be based on a variety of number-theoretic assumptions
such as DDH [SP92].

3 Concurrent Zero Knowledge in Bounded Player Model

In this section, we describe our concurrent zero-knowledge protocol in the bounded player model.

RelationRsim. We first recall a slight variant of Barak’s [Bar01] NTIME(T (n)) relationRsim, as used previously
in [PR05a]. Let T : N→ N be a “nice” function that satisfies T (n) = nω(1). Let {Hn}n be a family of collision-
resistant hash functions where a function h ∈ Hn maps {0, 1}∗ to {0, 1}n, and let Com be a perfectly hiding
commitment scheme for strings of length n, where for any α ∈ {0, 1}n, the length of Com(α) is upper bounded
by 2n. The relation Rsim is described in Figure 2.

Instance: A triplet 〈h, c, r〉 ∈ Hn × {0, 1}n × {0, 1}poly(n).
Witness: A program Π ∈ {0, 1}∗, a string y ∈ {0, 1}∗ and a string s ∈ {0, 1}poly(n).
Relation: Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1 if and only if:

1. |y| ≤ |r| − n.

2. c = Com(h(Π); s).

3. Π(y) = r within T (n) steps.

Figure 2: Rsim - A variant of Barak’s relation [PR05a]

Remark 1 The relation presented in Figure 2 is slightly oversimplified and will make Barak’s protocol work only
when {Hn}n is collision-resistant against “slightly” super-polynomial sized circuits. For simplicity of exposi-
tion, in this manuscript, we will work with this assumption. We stress, however, that as discussed in prior works
[BG02, Pas04, PR05b, PR05a], this assumption can be relaxed by using a “good” error-correcting code ECC
(with constant distance and polynomial-time encoding and decoding procedures), and replacing the condition
c = Com(h(Π); s) with c = Com(ECC(h(Π)); s).

3.1 Our Protocol

We are now ready to present our concurrent zero knowledge protocol, denoted 〈P, V 〉. Let P and V denote
the prover and verifier respectively. Let N denote the bound on the number of verifiers present in the system.
Let fowf denote a one-way function, and (Gen,Enc,Dec) denote a dense public key encryption scheme. Let
〈PpB, VpB〉N denote the perfect zero-knowledge argument system as described above. Further, let 〈PpWI, VpWI〉
denote a perfect witness indistinguishable argument of knowledge, and let 〈PrWI, VrWI〉 denote a resettable witness
indistinguishable proof system.

The protocol 〈P, V 〉 is described in Figure 4. For our purposes, we set the length parameter `(N) = n3 ·N ·
P (n), where P (n) is a polynomial upper bound on the total length of the prover messages in the protocol plus the
length of the secret key of the verifier.

The completeness property of 〈P, V 〉 follows immediately from the construction. Due to lack of space, we
defer the proof of soundness to Appendix A. We remark that, in fact, we prove concurrent soundness of 〈P, V 〉,
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Parameters: Security parameter n, length parameter `(N).
Common Input: x ∈ {0, 1}poly(n).
Private Input to P : A witness w such that RL(x,w) = 1.

Stage 1 (Preamble Phase):

V → P : Send h R← Hn.

P → V : Send c = Com(0n).

V → P : Send r R← {0, 1}`(N).

Stage 2 (Proof Phase):

P ↔ V : A perfect WI UARG 〈PpUA, VpUA〉 proving the OR of the following statements:

1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.
2. ∃〈Π, y, s〉 s.t. Rsim(〈h, c, r〉, 〈Π, y, s〉) = 1.

Figure 3: Protocol 〈PpB, VpB〉N

i.e., we show that a computationally-bounded adversarial prover who engages in multiple concurrent executions
of 〈P, V 〉 (where the scheduling across the sessions is controlled by the adversary) cannot prove a false statement
in any of the executions, except with negligible probability. We note that similarly to the Bare Public-Key model
[CGGM00], “stand-alone” soundness does not imply concurrent soundness in our model. Informally speaking,
this is because the standard approach of reducing concurrent soundness to stand-alone soundness by “internally”
emulating all but one verifier does not work since the verifier’s secret keys are private. Indeed, Micali and Reyzin
[MR01] gave concrete counter-examples to show that stand-alone soundness does not imply concurrent soundness
in the BPK model. We note that their results immediately extend to our model.

We now turn to prove that protocol 〈P, V 〉 is concurrent zero-knowledge in the Bounded Player model.

3.2 Proof of Concurrent Zero Knowledge

In this section, we prove that the protocol 〈P, V 〉 described in Section 3 is concurrent zero-knowledge in the
bounded player model. Towards this end, we will construct a non-black-box (polynomial-time) simulator and then
prove that the concurrent adversary’s view output by the simulator is indistinguishable from the real view. We start
by giving an overview of the proof and then proceed to give details.

Overview. Barak’s argument system [Bar01] is zero-knowledge in the bounded-concurrency model where the
concurrent adversary is allowed to open at mostm = m(n) concurrent sessions for a fixed polynomialm. Loosely
speaking, Barak’s simulator takes advantage of the fact that the total number of prover messages across all sessions
is bounded; thus it can commit to a machine that takes only a bounded-length input y that is smaller than the
challenge string r, and outputs the next message of the verifier, in any session. In our model, there is no bound
on the total number of sessions, thus we cannot directly employ the same strategy. Towards this, an important
observation in our setting is that once we are able to “solve” a verifier identity (i.e., learn secret key of a verifier),
then the simulator does not need to do Barak-style simulation anymore for that identity. But what of the number
of Barak-style simulations that the simulator needs to perform before it can learn any secret key? Indeed, if
this number were unbounded, then we would run into the same problems that one encounters when trying to
construct non-black-box cZK in the standard model. Fortunately, we are able to show that the simulator only needs
to perform a bounded number of Barak-style simulations before it can learn a secret key. Thus, we obtain the
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Parameters: Security parameter n, N = N(n), t = ω(1).
Common Input: x ∈ {0, 1}poly(n).
Private Input to P : A witness w s.t. RL(x,w) = 1.
Private Input to V : A public key pk = (y0, y1) and secret key sk = (b, xb) s.t. b R← {0, 1}, yb = fowf(xb).

Stage 1 (Preamble Phase): Repeat the following steps t times.

V → P : Send pk = (y0, y1).

P → V : Choose σp
R← {0, 1}n and send cp = Com(σp).

V → P : Send σv
R← {0, 1}n.

P → V : Send σp. Let σ = σp ⊕ σv .

P ↔ V : An execution of 〈PpB, VpB〉N to prove the following statement: ∃s s.t. c = Com(σp; s).

V → P : Send e1 = Encσ(xb), e2 = Encσ(xb).

V ↔ P : An execution of resettable WI 〈PrWI, VrWI〉 to prove the following statement: ∃〈i, b, xb, s〉 s.t. ei =
Encσ(xb; s) and yb = fowf(xb).

Stage 2 (Proof Phase):

P ↔ V : An execution of perfect WIAOK 〈PpWI, VpWI〉 to prove the OR of the following statements:

1. ∃w ∈ {0, 1}poly(|x|) s.t. RL(x,w) = 1.
2. ∃〈b, xb〉 s.t. yb = fowf(xb).

Figure 4: Protocol 〈P, V 〉

following strategy: the simulator commits to an “augmented machine” that is able to simulate almost all of the
simulator messages by itself; the remaining simulator messages are given as input to this machine. As discussed
above, we are able to bound the total number of these messages, and thus by setting the challenge string r to be
more than this bound, we ensure that the simulation is correct. More in details, the input passed by the simulator
to the machine consists of transcripts of concurrent sessions where again the simulator had to use Barak-style
simulation8 and the (discovered) secret keys of the verifiers to be used by the machine to carry on the simulation
by itself (without performing Barak-style simulation).

The Simulator. We now proceed to describe our simulator. The simulator SIM consists of two main parts,
namely, SIMeasy and SIMextract. Loosely speaking, SIMextract is only used to cheat in a “special” preamble block
of a session in order to learn the secret key of a verifier, while SIMeasy is used for the remainder of the simulation,
which includes following honest prover strategy in preamble blocks and simulating the proof phase of each session
using the verifier’s secret key as the trapdoor witness. Specifically, SIMextract cheats in the 〈PpB, VpB〉N protocol
by committing to an augmented verifier machine Π that contains the code of SIMeasy, allowing it to simulate all
of the simulator messages except those generated by SIMextract (in different sessions). As we show below, these
messages can be bounded to a fixed value. We now describe the simulator in more detail.

SETUP AND INPUTS. Our simulator SIM interacts with an adversary V ∗ = (V ∗1 , . . . , V ∗N ) who controls verifiers
V1, . . . , VN . V ∗ interacts with SIM in m sessions, and controls the scheduling of the messages. We give SIM
non-black-box access to V ∗. Throughout the interaction, SIM keeps track of a tuple ~β = (β1, . . . , βN ) represent-

8The reason we pass this transcript as input is that in this way we can avoid the blow up of the running time of the simulator when
nested Barak-style simulations are performed.
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ing the secret keys SIM has learned so far. At any point during the interaction either βi = ski (more precisely, βi
is one of the coordinates of ski) or βi is the symbol⊥. Initially, SIM sets each βi to⊥, but it updates ~β throughout
the interaction as it extracts secret keys. Additionally, SIM keeps a counter vector ~a = (a1, . . . , aN ), increment-
ing ai each time it executes a preamble block using SIMextract against V ∗. We have SIM halt and output FAIL
if any ai ever surpasses n3. Our technical lemma shows that this happens with negligible probability. Finally, we
have SIM keep track of a set of tuples

Ψ =
{(

(i, j, k)γ ;φγ
)

: γ = 1, . . . , n3N}

where each (i, j, k)γ ∈ [N ] × [m] × [t] and φγ is a string. The tuples (i, j, k)γ represent the preamble blocks
played by SIMextract; specifically, (i, j, k) corresponds to the k−th block of the j−th session against V ∗. The
string φγ is the collection of simulator messages sent in block (i, j, k)γ . This set of tuples Ψ (along with β) will
be the extra input given to the augmented machine. As we show below, the total size of Ψ will be a priori bounded
by a polynomial in n.

Consider the interaction of SIM with some V ∗ impersonating Vi. Each time V ∗ opens a session on behalf of
Vi, SIM chooses a random k ∈ {1, . . . , t} according to a distribution Dt which we define later. This will be the
only preamble block of the session played by SIMextract provided that βi =⊥ when the block begins. If SIM has
already learned the secret key ski, it does not need to call SIMextract. We now describe the parts of SIM beginning
with SIMeasy.

THE SUB-SIMULATOR SIMEASY . Recall that SIMeasy is run on input β and Ψ. When SIMeasy is called to execute
the next message of a preamble block, it checks if the message is already in Ψ. If this is the case, SIMeasy just
plays the message. Otherwise, SIMeasy plays fairly, choosing a random σp and sending cp = Com(σp; s) for some
s. Upon receiving σv, it returns σp and completes 〈PpB, VpB〉 using s as its witness. Its receipt of encryptions
(e1, e2) and acceptance of 〈PrWI, VrWI〉 ends the preamble block. If SIMeasy does not accept V ∗’s execution of
〈PrWI, VrWI〉 it aborts the interaction, as would an honest prover.

When SIMeasy is called to execute 〈PpWI, VpWI〉 then it checks if the secret key of the verifier is in β. If yes,
SIMeasy completes 〈PpWI, VpWI〉 using ski as its witness. Otherwise, βi =⊥ and SIMeasy halts outputting FAIL.
Our technical lemma shows that the latter does not happen, except with negligible probability.

THE SUB-SIMULATOR SIMEXTRACT . When SIMextract is called to execute preamble block k of session j with
verifier V ∗i , it receives Ψ, β and a as input. We assume βi =⊥ since otherwise, SIM would not have called
SIMextract. Immediately upon being called, SIMextract increments ai and adds the tuple

(
(i, j, k);φ

)
to Ψ. Initially,

φ is the empty string, but each time SIMextract sends a message, it appends the message to φ. By the end of the
block, φ is a complete transcript of the simulator messages in preamble block (i, j, k).

The preamble block begins normally, with SIMextract choosing a random string and sending cp, a commitment
to it. Upon receiving σv, however, SIMextract runs Gen obtaining key pair (σ, τ) for the encryption scheme and
returns σp = σ ⊕ σv. Next, SIMextract enters 〈PpB, VpB〉 which it completes using the already extracted secret
key. Formally, when V ∗ sends h, beginning 〈PpB, VpB〉, SIMextract chooses a random s and sends Com

(
h(Π); s

)
,

where Π is the next message function of V ∗, augmented with the ability to compute all the intermediate messages
sent by SIMeasy. The machine Π takes input y = (Ψ, β) and outputs the next verifier message in an interaction
between V ∗ and a machine M who plays exactly like SIMeasy with the following exception. For each tuple(
(i, j, k);φ

)
∈ Ψ, M reads its messages of block (i, j, k) from the string y. In order to simulate SIMeasy in the

subprotocols 〈PpWI, VpWI〉, M also uses the tuple ~β = (β1, . . . , βN ) received as input, where each βi is the secret
key of the i′-th verifier (if available), and ⊥ otherwise.

After committing to Π, and receiving r, SIMextract completes 〈PpUA, VpUA〉 using witness (Π,Ψ‖β, s) where
Ψ and β might have been updated by other executions of SIMextract occurring between the time SIMextract sent
Com

(
h(Π); s

)
and received r. Our counter ensures that |Ψ| is a priori bounded, while |β| is bounded by definition.

By construction, Π correctly predicts V ∗’s message r, and so (Π,Ψ‖β, s) is a valid witness for 〈PsUA, VsUA〉.
Finally, SIMextract receives encryptions e1, e2 and the proof of correctness in 〈PrWI, VrWI〉. It now decrypts the
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ciphertexts using τ thereby learning secret key ski of V ∗i . If the decrypted value is a valid secret key ski, then it
updates β by setting βi = ski. Otherwise, it outputs the abort symbol ⊥ and stops. (It is easy to see that since the
proof system 〈PrWI, VrWI〉 is sound, the probability of simulator outputting ⊥ at this step is negligible.)

Analysis. There are two situations in which SIM outputs fail: if some counter ai exceeds n3, or if SIMeasy
enters an execution 〈PpWI, VpWI〉 without knowledge of sk. Note that the latter will not happen, as to enter an
execution of 〈PpWI, VpWI〉, all preamble blocks, in particular the one played by SIMextract, must be complete,
ensuring that SIMextract will have learned sk. In our main technical lemma, we show that no counter will surpass n3

by proving that after SIM has run SIMextract n
3 times against each Vi controlled by V ∗ it has, with overwhelming

probability, learned sk. Before stating the lemma, we introduce some terminology.
Now, focusing on a given verifier, we say that V ∗ has stopped session j in block k if the k−th preamble block

of session j has begun, but the (k+ 1)−th has not. We say that V ∗ is playing strategy ~k′ = (k′1, . . . , k′m) if session
j is stopped in block k′j for all j = 1, . . . ,m. As the interaction takes polynomial time, V ∗ only gets to play
polynomially many strategies over the course of the interaction. Let kj ∈ {1, . . . , t} be the random number chosen
by SIM at the beginning of session j as per distribution Dt. This gives us a tuple ~k = (k1, . . . , km) where the kj
are chosen independently according to the distribution Dt (defined below). At any time during the interaction, we
say that V ∗ has won (resp. lost, tied) session j if k′j = kj (resp. k′j > kj , k′j < kj). A win for V ∗ corresponds
to SIM having run SIMextract, but not yet having learned sk. As SIM only gets to call SIMextract n

3 times, a
win for V ∗ means that SIM has used up one of its budget of n3 without any payoff. A loss for V ∗ corresponds to
SIM running SIMextract and learning sk, thereby allowing SIM to call SIMeasy in all remaining sessions. A tie
means that SIM has not yet called SIMextract in the session, and therefore has not used any of its budget, but has
not learned sk.

Notice that these wins and ties are “temporary” events. Indeed, by the end of each session, V ∗ will have lost,
as he will have completed the preamble block run by SIMextract. However, we choose to use this terminology
to better convey the key intuition of our analysis: for SIM to output FAIL, it must be that at some point during
the interaction, for some identity, V ∗ has won at least n3 sessions and has not lost any. We will therefore focus
precisely on proving that the probability that a PPT adversary V ∗ runs in the experiment m sessions so that the
counter for one identity reaches the value n3 is negligible.

For a verifier strategy ~k′ and a polynomial m, let P(~k′,m)(W,L) be the probability that in an m−session
interaction between V ∗ and SIM that V ∗ wins for some identity exactly W sessions and loses exactly L, given
that V ∗ plays strategy ~k′. The probability is over SIM ’s choice of ~k with kj ∈ {1, . . . , t} chosen independently
according to Dt (defined below) for all j = 1, . . . ,m.

THE DISTRIBUTION Dt AND THE MAIN TECHNICAL LEMMA. Define Dt to be the distribution on {1, . . . , t}
such that

pk′ = Probk∈Dt

(
k = k′

)
= εnk

′
,

where ε is such that
∑
pk′ = 1. Note that ε is negligible in n.

Lemma 1 (Main Technical Lemma) Let ~k′ be a verifier strategy and m = m(n) a polynomial. Then we have

P(~k′,m)(n
3, 0)

is negligible in n.

The above proves that any verifier strategy has a negligible chance of having n3 wins and no losses. As V ∗ plays
polynomially many (i.e., N ) strategies throughout the course of the interaction, the union bound proves that V ∗

has a negligible chance of ever achieving n3 wins and 0 losses. From this it follows that, with overwhelming prob-
ability, V ∗ will never have at least n3 wins and no losses, which implies that SIM outputs FAIL with negligible
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probability as desired. The main idea of the proof is similar to the random tape switching technique of [PRS02]
and [MP07].

Proof . We fix a verifier strategy ~k′ and a polynomial m and write P (W,L) instead of P(~k′,m)(W,L). Let pk′
(resp. qk′) be the probability that V ∗ wins (resp. loses) a session given that he stops the session in block k′. We
chose the distribution Dt carefully to have the following two properties. First, since p1 = εn is negligible, we may
assume that V ∗ never stops in the first block of a session. And secondly, for k′ ≥ 2 we have,

qk′ =
k′−1∑
i=1

pk′ = ε
nk
′ − 1

n− 1 ≥
εnk

′

2n = pk′

2n .

It follows that no matter which what block V ∗ stops a session in, it will hold that the probability he wins in that
session is less then 2n times the probability that he looses that session. We will use this upper bound on the
probability of V ∗ winning a single session to show that P (n3, 0) is negligible.

Let A be the event, (W,L) = (n3, 0), B be the event W +L = n3 and ¬B the event W +L 6= n3. Since, A ⊂ B,
and since P (A|¬B) = 0, we have that

P (n3, 0) = P (A) = P (A|B)P (B) + P (A|¬B)P (¬B) = P (A|B)P (B) ≤ P (A|B),

and so it suffices to prove that P (A|B) is negligible. We continue the proof for the case W + L = n3 (and thus
m ≥ n3).

IfW +L = n3 then V ∗ ties all but n3 of the sessions. Let C = {C ⊂ [m] : |C| = n3}. Then C is the set of possible
positions for the sessions which are not ties. We are looking to bound P

(
(W,L) = (n3, 0)

∣∣W + L = n3) and so
we condition on the C ∈ C. Once a fixed C is chosen, the position of each session which is not a tie is determined.
Each such session must either be a win or a loss for V ∗. Let p be the probability that some such session is a win.
Since we proved already that the probability that V ∗ wins in a given session is less then 2n times the probability
that V ∗ looses in that session, we have that p ≤ 2n(1− p). Solving gives p ≤

(
1− 1

2n+1
)
. It follows that for any

C ∈ C, the probability that all sessions in C are wins is(
1− 1

2n+ 1

)n3

≤
[(

1− 1
2n+ 1

)2n+1]n
≤ e−n.

From the viewpoint of random tape switching, we have shown that for every random tape causing every session
of C to be a win, there are exponentially many which cause a different outcome.

We therefore have

P (n3, 0) ≤ P
(
(W,L) = (n3, 0)

∣∣W + L = n3)
=

∑
C∈C

P
(
(W,L) = (n3, 0)

∣∣C)P (C)

≤ e−n
∑
C∈C

P (C) = e−n,

as desired.

Bounding the length parameter `(N). From the above lemma, it follows easily that the total length of the
auxiliary input y to the machine Π committed by SIMextract (at any time) is bounded by n3 ·N ·P (n), where P (n)
is a polynomial upper bound on the total length of prover messages in one protocol session plus the length of a
secret. Thus, when `(N) ≥ n3 ·N · P (n), we have that |y| ≤ |r| − n, as required.
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We now show through a series of hybrid experiments that the simulator’s output is perfectly indistinguishable
from the output of the adversary when interacting with honest provers.

Our hybrid experiments will be Hi for i = 0, . . . , 6. We write Hi ≈ Hj if V ∗ cannot distinguish between its
interaction with Hi and Hj .

H0. The experiment H0 is the fair prover. In each preamble block it sends cp = Com(σp; s) for random σp,
receives σv and returns σp. It completes 〈PpB, VpB〉 using s as its witness. It receives the encryptions and V ∗’s
proof of 〈PrWI, VrWI〉 completing the preamble block. We provide H0 with a witness that x ∈ L which it uses to
complete 〈PpWI, VpWI〉 at the end of each session.

H1. The experiment H1 plays similarly to H0. However, the execution of H1 takes exponential time. It begins
by computing the verifier secret keys by inverting the one-way functions in exponential time. It will use knowledge
of secret key in the protocols 〈PpWI, VpWI〉. The perfect witness indistinguishability of 〈PpWI, VpWI〉 ensures that
H1 ≈ H0.

H2. The experiment H3 plays similarly to H1. The only difference is that in all the preamble blocks where the
simulator would have tried to extract, in its first message of 〈PpB, VpB〉, we commit to the augmented machine Π.
As before, the augmented machine Π predicts the next message of V ∗ and is able to simulate all fair messages of
H2. It therefore must take as input only the prover messages of the preamble blocks where H2 does not play fairly.
We have H2 keep track of a set of tuples Ψ =

{(
(i, j, k)γ ; yγ

)
: γ = 1, . . . , n3N

}
, where the tuple

(
(i, j, k); y

)
means that in the k−th preamble block of the j−th session against V ∗i ,H2 sent messages y. Π also receives a tuple
~β = (β1, . . . , βN ) where βi could correspond to a secret key of the i-th verifier and to ⊥ otherwise. The simulated
prover will use them in 〈PpWI, VpWI〉 different than ⊥. As the only difference between the output of H2 and H1 is
that sometimes H2 commits to a different value than H1 does, the perfect hiding of Com ensures that H2 ≈ H1.

H3. The experiment H3 plays similarly to H2. The only difference is that in 〈PpB, VpB〉, instead of proving the
statement honestly, the simulator of 〈PpB, VpB〉 is run by using in the underlying 〈PpUA, VpUA〉 values (Π,Ψ, β, s)
where Π is the augmented machine committed in the chosen execution of 〈PpB, VpB〉, Ψ is the record of all mes-
sages sent in the chosen preamble blocks where it deviates from fair play, β is the vector of known keys, and s
is the witness to be used in the non-chosen execution of 〈PpB, VpB〉. The reason that |Ψ| can be a priori bounded
by a polynomial in n is that by the main technical lemma, we have that Π needs messages for at most n3N cho-
sen preamble blocks where H3 deviates from fair play. The perfect witness indistinguishability of 〈PpUA, VpUA〉
ensures that H3 ≈ H2.

H4. The experiment H4 plays similarly to H3. However, there is an update in all the preamble blocks where the
simulator would have tried to extract by playing a fake σp. The update consists in running Gen therefore obtaining
key pair (σ, τ) for the encryption scheme, and then in sending σp = σ ⊕ σv. By the fact that the public key of
dense secure cryptosystem has the uniform distribution, we have that H4 ≈ H3.

H5. The experiment H5 plays similarly to H4. The only difference is that in all the preamble blocks where the
simulator would have tried to extract, and where the adversary plays the resettable witness indistinguishable proof,
if the extracted strings (obtained by decrypting the two encryptions) do not give a secret key then the experiment
aborts. If the experiment does not abort, then it continues by using the extracted secret key instead of the one
obtained by running in exponential time.

The unconditional soundness of the resettable witness indistinguishable proof guarantees that the above abort
can happen only with negligible probability, therefore correct secret keys are extracted during this experiment and
can be used after the extraction. Therefore H5 ≈ H4.
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H6. This is our simulator. We no longer give it a witness that x ∈ L, and we no longer allow it to run in
exponential time, so it obtains ski only through decryptions. Again, by the main technical lemma, the probability
that H6 successfully learns each ski before is needed is overwhelming. Our technical lemma shows that H6 will
not output FAIL except with negligible probability. Therefore we have that H6 ≈ H5.
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Appendix

A Proof of Soundness

In this section, we prove the soundness of our cZK protocol described in Section 3. In fact, we will prove con-
current soundness of 〈P, V 〉, i.e., we will show that a computationally-bounded adversarial prover who engages in
multiple concurrent executions of 〈P, V 〉 (where the scheduling across the sessions is controlled by the adversary)
cannot prove a false statement in any of the executions, except with negligible probability. We note that similar
to the bare-public key model [CGGM00], “stand-alone” soundness does not imply concurrent soundness in our
model. Informally speaking, this is because the standard approach of reducing concurrent soundness to stand-
alone soundness by “internally” emulating all but one verifier does not work since the verifier’s secret keys are
private. Indeed, Micali and Reyzin [MR01] gave concrete counter-examples to show that stand-alone soundness
does not imply concurrent soundness in the bare public key model. We note that their results immediately extend
to our model.

We now proceed to formally prove the concurrent soundness of our protocol 〈P, V 〉. We claim the following
theorem.

Theorem 2 The protocol 〈P, V 〉 presented in Figure 4 is concurrently sound.

Proof of Theorem 2. We first introduce some notation. Recall that in our protocol, in the execution of 〈PpWI, VpWI〉,
the prover proves the OR of two statements. We will call a witness corresponding to the first (resp., second) part
of the statement as true (resp., trapdoor) witness.

We first state a basic lemma related to the soundness of each instance of 〈PpB, VpB〉N across all executions
of 〈P, V 〉. Its proof is essentially identical to [Bar01], hence below we only discuss a proof sketch, using the
terminology of [DGS09].

Lemma 2 Let P̂ be any non-uniform probabilistic polynomial time adversarial prover that engages in any poly-
nomial m = m(n) number of concurrent executions of 〈P, V 〉 with N honest verifiers. Then, every instance of
〈PpB, VpB〉N across all executions of 〈P, V 〉 is sound.

Proof (Sketch). Let us assume the contrapositive, i.e., with non-negligible probability ε, there exists at least one
pair (i, k) such that P̂ successfully convinces the verifier of a false statement in the kth instance (out of t = ω(1)
instances) of 〈PpB, VpB〉N in session i. Let S denote the set of all such pairs (i, k) and let v = |S|.

Now consider any pair (i∗, k∗) ∈ S. Let x̂ denote the statement proved by P̂ in 〈PpB, VpB〉i
∗,k∗

N . We have that
with probability at least ε/v, x̂ is false. In this case, we will construct a super-polynomial time machineM that finds
collisions for the hash function.9 Without loss of generality, assume that P̂ is deterministic. Consider the transcript
of messages (across all sessions) that occur before P̂ sends the second protocol message in 〈PpB, VpB〉i

∗,k∗

N . Note
that this transcript, in particular, includes the hash function h that the verifier sends to P̂ as the first message
of 〈PpB, VpB〉i

∗,k∗

N . We will call this transcript as the prefix for the rest of the protocol. Let ε′ = ε/v. Now it
must be the case that for at least ε′/2 fraction of the prefixes, the probability (over the rest of the verifier coins)
that the adversarial prover P̂ will succeed in 〈PpB, VpB〉i

∗,k∗

N is at least ε′/2. We will call this set of prefixes
to be good. The machine M works as follows. It first runs P̂ and invokes the weak knowledge extractor E
for the universal argument system 〈PpUA, VpUA〉. The probability (over all verifier random coins) of the prefix
being good and E succeeding (given that prefix is good) is at least ε′

2 · p(
ε′

2 ), where p is a polynomial10. Now,

9As mentioned earlier, for simplicity of exposition, we are assuming that the hash function family is collision-resistant against super-
polynomial time adversaries. This assumption can be relaxed by use of good error correcting codes [BG02, Pas04, PR05b, PR05a].

10Recall that the success probability of the weak knowledge extractor is polynomially related to the success probability of the prover
[Bar01].
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if E succeeds and extracts a program, say Π, M rewinds P̂ up to the point where it sent the second message
in 〈PpB, VpB〉i

∗,k∗

N and continues with fresh random coins; in particular, it chooses a fresh random string r R←
{0, 1}`(N) in 〈PpB, VpB〉i

∗,k∗

N ). It then runs the extractor E again and if it succeeds, M obtains another program
Π′. By a simple counting argument, it follows immediately that if SΠ is the set of all possible outputs of Π, then
r ∈ SΠ with only negligible probability. Thus, we have that Π 6= Π′. However, since h(Π) = h(Π′) (this follows
from the computational binding property of Com), we have found collisions Π, Π′ for h. The probability of
finding collision can be computed as:

Pr[Coll] = Pr[pre is good prefix] · Pr[E succeeds in two independent executions with pre]− Pr[Π = Π′]

= ε′

2 · (p(
ε′

2 ))2 − negl(n).

It follows that the probability of this event is noticeable in n, which is a contradiction. This completes the proof
of Lemma 2.

Completing the Proof of Theorem 2. Let us assume the contrapositive, i.e., assume that 〈P, V 〉 is not concur-
rently sound. Then, with non-negligible probability ε, there exists an i such that P̂ succeeds in proving a false
statement to the verifier in session i. Let S denote the set of all such i and let v = |S|.

Now, consider any i ∈ S. Note that it immediately follows from the (stand-alone) soundness of 〈PpWI, VpWI〉
that with probability at least ε

v − negl(n), P̂ use a trapdoor witness in 〈PpWI, VpWI〉 in session i. Let Ṽ denote
the verifier in session i and let pk = (y0, y1) denote the public key of Ṽ . Now, we run P̂ such that in all protocol
executions involving verifier Ṽ , we only use the secret key xb corresponding to yb, where b R← {0, 1}. We now
invoke the knowledge extractor E for 〈PpWI, VpWI〉 on P̂ in session i. It follows from a standard argument (based
on using “good” prefixes) that E successfully extracts a trapdoor witness with probability p = p(ε) where p is
some polynomial. We now consider two cases:

1. With probability α, E outputs a witness x̂1−b such that y1−b = fowf(x̂1−b).

2. With probability p− α, E outputs a witness x̂b such that yb = fowf(x̂b).

If α is non-negligible (in n), then it is immediate to see that we can build a polynomial-time inverter for one-
way function fowf . Specifically, the inverter I for fowf works as follows. It runs the entire experiment with P̂ in
the same manner as above, except that y1−b is taken from an external challenger for fowf . When E outputs a value
x̂1−b, I outputs it as the pre-image of y1−b w.r.t. fowf . Note that I succeeds with non-negligible probability α,
which is a contradiction.

On the other hand, if α is negligible (in n), then we now focus on the second case. Let m̃ denote the total
number of protocol sessions of 〈P, V 〉 involving verifier Ṽ . Then, we have that with probability p−negl(n), when
Ṽ (only) uses the secret key x0 in all m̃ protocol sessions, the extractor E outputs a value x̂0, and similarly, when
Ṽ (only) uses x1, E outputs a value x̂1, where x̂b is such that fowf(x̂b) = yb. Then, by a standard hybrid argument,
there exists a session j (out of the m̃ sessions involving Ṽ ) such that when Ṽ (only) uses the secret key x0 (resp.,
x1) in session j, the extractor E outputs a value x̂0 (resp., x̂1), with probability at least p′ = p−negl(n)

m̃ .11 Let H0
(resp., H1) denote the hybrid experiment where Ṽ uses x0 (resp., x1) in session j. Let x̂b be the random variable
that denotes the value that E extracts from P̂ in experiment Hb.

We will now argue that x̂0
c≡ x̂1, except with negligible probability, which is a contradiction to the above

hypothesis, and thus concludes our proof. Let {eq1, e
q
2}tq=1 denote the t = ω(1) pairs of ciphertexts that Ṽ sends

to P̂ in session j. Further, let {〈PrWI, VrWI〉q}tq=1 denote the t instances of 〈PrWI, VrWI〉 in session j. We consider
three intermediate hybrid experiments Henc1 , Hwi and Henc2 described as follows.

11Here, the hybrids are such that Ṽ uses x0 in all session j′ < j, and x1 in all sessions j′ > j.
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HYBRID Henc1 : This is the same as H0, except that Ṽ prepares each ciphertext {eq1}tq=1 to be an encryption of the
secret key x1. We now invoke the knowledge extractor E (for for 〈PpWI, VpWI〉) on P̂ in 〈PpWI, VpWI〉 in session i.
Let x̂enc1 be the random variable that denotes the value that E outputs.

We now claim that x̂0
c≡ x̂enc1 . Suppose that this is not the case. Then, by a standard hybrid argument, there

exists q ∈ [t] such that x̂0:q is distinguishable from x̂0:q+1, where x̂0:q is the random variable that denotes the
value extracted by E in the intermediate hybrid experiment H0:q that is essentially the same as H0, except that
e1

1, . . . , e
q
1 are prepared as encryptions of x1. (Thus, we have that H0:t is the same as Henc1 .) In this case, we first

note that if the execution of 〈PpWI, VpWI〉 in session i concludes before P̂ receives (eq+1
1 , eq+1

2 ), then the witness
used in 〈PpWI, VpWI〉 must be information-theoretically independent of the value encrypted in eq+1

1 , which gives
us a contradiction. Therefore, we now only consider the case where the execution of 〈PpWI, VpWI〉 in session i
concludes after P̂ receives (eq+1

1 , eq+1
2 ). In this case, we will construct a polynomial-time machine M that breaks

the semantic security of the encryption scheme (Gen,Enc,Dec).
M works in the same manner as hybrid H0:q, except that it also interacts with an external challenger C (for

the encryption scheme (Gen,Enc,Dec)) in the following manner. M receives a public key σ from C and then
“forces” it to be the outcome of the (q+ 1)th coin-tossing subprotocol in session j. Specifically, after receiving the
value σp from P̂ in the (q + 1)th coin-tossing subprotocol, M rewinds P̂ and sends a value σv = σ ⊕ σp. It now
sends x0, x1 to C and receives a challenge ciphertext e∗. M continues in the same manner as H0:q, except that it
prepares eq+1

1 = e∗. Now, note that if e∗ is an encryption of x0, then this machine is identical to H0:q, otherwise
it is identical to H0:q+1. M now invokes the knowledge extractor E on P̂ in 〈PpWI, VpWI〉 in session i. Note that
the sessions i and j may be interleaved in such a manner that when E rewinds P̂ to send a new “challenge” in
〈PpWI, VpWI〉, either of the following two events happen:

1. P̂ sends a new commitment string c′ = Com(σ′p) in the (q + 1)th coin-tossing subprotocol in session j.
In this case, M simply continues session j honestly until it receives σ′p. At this point, it rewinds P̂ again to
send a value σv = σ ⊕ σ′p and then continues honestly.

2. Alternatively, P̂ may simply send a new value σ′p and then proceed to prove its correctness in the execution
of 〈PpB, VpB〉j,q+1

N . If this is the case, then M simply aborts.

Now, conditioned on the event that M does not abort, we have that at some point, E stops and outputs a value,
say, x̂. Then, M finds b such that fowf(x̂) = yb and outputs b to C. It follows easily that M succeeds with
noticeable (in n) advantage, which is a contradiction. Thus it only remains to argue that M aborts only with
negligible probability. To see this, we first note that it follows from the Soundness Lemma 2 that P̂ only proves
a true statement in each instance of 〈PpB, VpB〉N , except with negligible probability. Then, by the computational
binding property of the commitment scheme, we have that P̂ cannot send decommitment c to two different values
σp and σ′p, except with negligible probability. Thus, we have the σ′p = σp, except with negligible probability.

HYBRID Hwi: This is the same as Henc1 , except that for every q ∈ [t], Ṽ uses the witness corresponding to eq1 in
the resettable-WI 〈PrWI, VrWI〉q. We now invoke the knowledge extractor E on P̂ in 〈PpWI, VpWI〉 in session i in
experiment Hwi. Let x̂wi be the random variable that denotes the value that E outputs.

We now claim that x̂enc1
c≡ x̂wi. Suppose that this is not the case. Then by a standard hybrid argument,

there exists q ∈ [t] such that x̂enc1:q is distinguishable from x̂enc1:q+1 with noticeable probability, where x̂enc1:q
is the random variable that denotes the value extracted by E in the intermediate hybrid experiment Henc1:q that is
essentially the same asHwi, except that Ṽ uses the witness corresponding to e`1 in 〈PrWI, VrWI〉` for every ` ∈ [1, q].
(Thus, we have that Henc1:t is the same as Henc1 .) In this case, we will construct a polynomial-time machine M
that breaks the resettable witness indistinguishability property of 〈PrWI, VrWI〉. M works in the same manner as
hybrid Henc1:q, except that it forwards the (q + 1)th instance of 〈PrWI, VrWI〉 in session j, i.e., 〈PrWI, VrWI〉q+1,
to an external prover P (for the resettable-WI protocol 〈PrWI, VrWI〉) in the following manner. M first gives w1,
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w2 to P , where w1 is the witness corresponding to eq+1
1 , and similarly, w2 is the witness corresponding to eq+1

2 .
Now, during the execution of 〈PrWI, VrWI〉q+1, M simply forwards each message msgP from P to P̂ and similarly
forwards each response msgP̂ from P̂ to P . It then runs the knowledge extractorE on P̂ in 〈PpWI, VpWI〉 in session
i to extract a value, say x̂. Note that if sessions i and j are scheduled such that when E rewinds P̂ in 〈PpWI, VpWI〉
in session i, P̂ sends a new lth round-message msg′

P̂
in 〈PrWI, VrWI〉q+1, then M resets P to the point where its

supposed to receive the lth round message and sends msg′
P̂

. It then continues the execution in the same manner as
described above. When E finally outputs x̂, then M finds b such that fowf(x̂) = yb and outputs b to P . It follows
easily that M succeeds with noticeable (in n) advantage, which is a contradiction.

HYBRID Henc2 : This is the same as Henc2 , except that Ṽ prepares each ciphertext eq2 to be an encryption of x1. We
now run the extractor E on P̂ in experiment Henc2 . Let x̂enc2 be the random variable that denotes the value that E
outputs. For the same reasons as argued above (for Hybrid Henc1), it follows that x̂wi

c≡ x̂enc2 .
This concludes the proof of Theorem 2.

B Concurrent Self-Composition in the Bounded Player Model

In this section, we present the definition for concurrent (self-composition) secure multi-party computation in the
bounded player model. The definition we give below is an adaptation of the definition of concurrent secure com-
putation with adaptive inputs [Lin04, Pas04], to the setting of bounded player model. Parts of the definition below
have been taken almost verbatim from [Lin04, Pas04].

We first setup notation. We denote computational indistinguishability by
c≡, and the security parameter by

n. For notational simplicity, we let the lengths of the parties’ inputs be n. An n-ary functionality is denoted as
f : ({0, 1}∗)n → ({0, 1}∗)n, where f = f1, . . . , fn. Let P1, . . . , Pn denote the set of n-player that wish to
jointly compute f . The output of Pi with input xi is defined to be fi(~x), where ~x = x1, . . . , xn. In the context
of concurrent composition, each party uses many inputs (one per execution) and these may be chosen adaptively
based on previous outputs. The fact that bounded player model is considered relates to the fact that the total number
of parties that may engage in concurrent protocol executions is a-priori bounded.

In this work, we consider a malicious, static adversary. The scheduling of the messages across the concurrent
executions is controlled by the adversary. We do not focus on fairness, hence we do not guarantee output delivery.
The security of a protocol is analyzed by comparing what an adversary can do in the protocol to what it can do in an
ideal scenario, where a trusted party computes the function output on the inputs of the parties. Unlike in the case of
stand-alone computation, in the setting of concurrent executions, the trusted party computes the functionality many
times, each time upon different inputs. We now proceed to describe the ideal and real models of computation.

IDEAL MODEL. In the ideal model, there is a trusted party that computes the functionality f based on the inputs
handed to it by the player. Let there be N parties P1, . . . , PN where arbitrary (possibly intersecting) subsets of n
parties may engage in an arbitrary (polynomial) number of concurrent sessions. Let I ⊂ N denote the subset of
corrupted parties controlled by the adversary. An execution in the ideal model with an adversary with auxiliary
input z corrupting parties I proceeds as follows:

Inputs: The inputs of the parties P1, . . . , PN are respectively determined by probabilistic polynomial time Turing
machinesM1, . . . ,MN and the initial inputs x1, . . . , xN to these machines. As will be described below, these
Turing machine determine the input values to be used by the different parties in the protocol executions.
These input values are computed from the initial input, the current session number and outputs that were
obtained from executions that have already concluded. Note that the number of previous outputs ranges
from zero (when no previous outputs have been obtained) to some polynomial in n that depends on the
number of sessions initiated by the adversary.
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Session initiation: The adversary initiates a new session by sending a (start-session, Pi) to the trusted party. If
Pi /∈ I, then the trusted party sends (start-session, s) to Pi, where s is the index of the session.

Honest parties send inputs to trusted party: Upon receiving (start-session, s) from the trusted party, honest
party Pi applies its input-selecting machine Mi to its initial input xi, the session number s and its previous
outputs, and obtains a new input xi,j .12 Pi then sends (s, xi,j) to the trusted party.

Corrupted parties send inputs to trusted party: Whenever the adversary wishes, it may send a message (s, x′i,j)
to the trusted party for any x′i,s ∈ {0, 1}n of its choice, on behalf of a corrupted party Pi. It can send the
pairs (s, x′i,s) in any order it wishes and can also send them adaptively. The only limitation is that for any s,
at most one pair indexed by s can be sent to the trusted party on behalf of Pi.

Trusted party answers corrupted parties: When the trusted party has received messages (s, x′i,j) from a set of
n parties P`1 , . . . , P`n (where `1, . . . , `n ∈ [N ]), it sets ~x′s = (x′`1,s, . . . , x

′
`n,s

). It then computes f(~x′s) and
sends (s, f`i(~x′s)) to party P`i for every `i ∈ Is, where Is ⊆ I denotes the set of corrupted parties in session
s. Note that Is must be such that |Is| < n.

Adversary instructs the trusted party to answer honest parties: When the adversary sends a message of the
type (send-output, s, `i) to the trusted party, the trusted party sends (s, f`i(~x′s)) to party P`i .

Outputs: Each honest party Pi always outputs the values fi(~x′s) that it obtained from the trusted party. The
adversary may output an arbitrary (probabilistic polynomial-time computable) function of its initial-input
and the messages obtained from the trusted party.

Let S be a non-uniform probabilistic polynomial-time machine (representing the ideal-model adversary). Then,
the ideal execution of f with security parameter n, input selecting machines M = M1, . . . ,MN , initial inputs
~x = (x1, . . . , xN ) and auxiliary input z to S, denoted IDEALNf,I,S,M (n, ~x, z), is defined as the output vector of the
honest parties and S from the above ideal execution.

REAL MODEL. We next consider the real model in which a real two-party protocol is executed (and there exists
no trusted third party). Let f , I, N be as above and let Π be a multi-party protocol for computing f . Let A
denote the adversary. Then, the real concurrent execution of Π with security parameter n, input selecting machines
M = M1, . . . ,MN , initial inputs ~x = (x1, . . . , xN ) and auxiliary input z to A, denoted REALNΠ,I,A,M (n, ~x, z),
is defined as the output vector of the honest parties and A, resulting from the following real-world process. The
real world execution proceeds as follows. Each honest party Pi first chooses an identity idi and registers it with
FNbp. A corrupted party may choose to register its identity at any time it wishes, even after the computation begins.
An honest party initiates a new session whenever it receives a start-session message from A. It then applies its
input selecting machine to its initial input, the session number and its previously received outputs, and obtains the
input for this session. Note that arbitrary (possibly intersecting) sets of n (out of N ) player may be participating
in concurrent executions of Π. The scheduling of all messages throughout the executions is controlled by the
adversary. That is, the execution proceeds as follows. The adversary sends a message of the form (s,msg, Pi, Pj)
to an honest party Pi on behalf of a corrupted party Pj . If that honest party is participating in session s, and this
is the first message it has received from Pj , then it first retrieves the identity idj of Pj from FNbp. It then adds
(msg, Pi, Pj) to its view of session s and replies according to the instructions of Π and this view.

SECURITY DEFINITION. Having defined the ideal and real models of computation, we are now ready to give our
formal security definition.

12Specifically, in the first session, xi,1 = Mi(xi, 1). In the later sessions s, xi,s = Mi(xi, s, yi,1, . . . , yi,w), where w sessions have
concluded and the outputs of Pi were yi,1, . . . , yi,w.
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Definition 2 (Concurrent Self-Composition in Bounded Player Model).) Let N = N(n) be a polynomial and
let f and Π be as above. Protocol Π is said to securely compute f under concurrent composition in the N -
bounded player model if for every real model non-uniform probabilistic polynomial-time adversary A, there exists
an ideal-model non-uniform probabilistic expected polynomial-time adversary S, such that for all input-selecting
machines M = M1, . . . ,MN , every z ∈ {0, 1}∗, every ~x = (x1, . . . , xN ), and every I ⊂ [N ],13

{
IDEALNf,I,S,M (n, ~x, z)

}
n∈N

c≡
{

REAL
FN

bp
Π,I,A,M (n, ~x, z)

}
n∈N

C Impossibility Results in Bounded Player Model

In [Lin04], Lindell gave broad impossibility results for unbounded concurrent self-composition in the standard
model. We observe that the impossibility result of [Lin04] carries over in a straightforward manner to bounded
player model considered in the present work. Below, in what is largely an informal discussion, we elaborate on
this observation. [Lin04, Lin03b, CKL06, KL11]

Lindell’s impossibility result [Lin04] for unbounded concurrent self-composition in the standard model is
obtained by combining three different results. Below, we will recall all of these results and discuss how each of
them carry over to the bounded player model. First, we recall some basic definitions from [Lin04]. A large part of
text below is taken verbatim from [Lin04].

Security under concurrent general composition. Informally speaking, concurrent general composition con-
siders the case that a protocol ρ for securely computing some functionality f , is run concurrently (many times)
with arbitrary other protocols π. In other words, the secure protocol ρ is run many times in a network in which
arbitrary activity takes place. (Note that in contrast, in concurrent self-composition, we only consider security
for concurrent executions of the same protocol ρ.) The formalize security in this setting, we model the arbitrary
network activity π as a “calling protocol” with respect to the functionality f f. That is, π is a protocol that contains,
among other things, “ideal calls” to a trusted party that computes a functionality f . This means that in addition to
standard messages sent between the parties, protocol π’s specification contains instructions of the type “send the
value x to the trusted party and receive back output y”. Then, the real-world scenario is obtained by replacing the
ideal calls to f in protocol π with real executions of protocol ρ. The composed protocol is denoted πρ and it takes
place without any trusted help. Security is defined by requiring that for every protocol π that contains ideal calls
to f , an adversary interacting with the composed protocol πρ (where there is no trusted help) can do no more harm
than in an execution of π where a trusted party computes all the calls to f . This therefore means that ρ behaves
just like an ideal call to f , even when it is run concurrently with any arbitrary protocol π. We refer the reader to
[Lin04] for a formal security definition.

Concurrent general composition in the bounded player model. We note that security under concurrent general
composition can be naturally defined in the bounded player model by considering an a-priori bound on the total
number of player in the system, in the same manner as in Definition 2. More specifically, we will consider an
a-priori bound N on the total number of player in the system. Then, arbitrary (possibly intersecting) subsets of
parties may be involved in unbounded concurrent executions of ρ, in the presence of arbitrary other protocols π.
(Note that π can be at-most an N -party protocol.) Security is defined in the same manner as above.

Functionalities that enable bit transmission. Informally speaking, a functionality enables bit transmission if it
can be used by the parties to send bits to each other. We now recall the formal definition from [Lin04].

13Here it should be implicit that I is such that the adversary corrupts at most n− 1 parties in each protocol execution.
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Definition 3 (Bit-transmitting functionality) A deterministic functionality f = (f1, f2) enables bit transmission
from P1 to P2 if there exists an input y for P2 and a pair of inputs x, x′ for P1 such that f2(x; y) 6= f2(x′; y).
Likewise, f enables bit transmission from P2 to P1 if there exists an input x for P1 and a pair of inputs y, y′ for P2
such that f1(x; y) 6= f1(x; y′). A functionality enables bit transmission if it enables bit transmission from P1 to P2
and from P2 to P1.

The above definition can be easily generalized to probabilistic functionalities, as well as to multi-party func-
tionalities in a straightforward way. We refer the reader to [Lin04] for more details.

Extending Lindell’s impossibility result to bounded player model. We now consider the three steps involved
in the impossibility result in [Lin04], and briefly discuss why they carry over to the bounded player model.

Step 1: First, it is shown in [Lin04] that for every functionality f that enables bit transmission, security under
unbounded concurrent self-composition is equivalent to security under concurrent general composition. That
is, if f enables bit transmission, then f can be securely computed unbounded concurrent self-composition if
and only if it can be securely computed under concurrent general composition.

We note that [Lin04] proves this (unconditional) result for two-party setting where only one set of parties
run all of the protocol executions. As such, the result already works in the bounded player model.

Step 2: Next, we use the result of [Lin03b], where it is shown that security under concurrent general composition
implies security in the universal composability framework [Can01]. This result is also unconditional, and in
fact, also works in a setup model (such as a common reference string, etc).

Once again, we note that [Lin04] obtains this result even for the restrictive case where only one set of parties
engage in two-party protocol executions (the adversary is assumed to be static). As such, this result is also
applicable to the bounded player model.

Step 3: Finally, one can use the result of Canetti et al. [CKL06] that shows a large class of functionalities for
which UC security cannot be achieved. With respect to the bounded player model, we note that very recently,
Kidron and Lindell [KL11] show that the results of [CKL06] can be extend to the bulletin-board certificate
authority model, which is formalized in essentially the same manner as our bounded player model, in that
the parties register their unique identities to a functionality. We note that the result in [KL11] already works
when the number of parties are a-priori bounded, as such it is applicable to our setting.

Combining these three steps, we can obtain broad impossibility results for concurrent self-composition in the
bounded player model. In order to obtain the formal statement, let us first recall the class of functionalities Ψ for
which concurrent general composition is shown to be impossible [Lin03b]. The following is taken verbatim from
[Lin04, Lin03b].

1. Let f : {0, 1}∗ → {0, 1}∗ be a deterministic polynomial-time function that is (weakly) one-way. Then, the
functionality (x, λ)→ (λ, f(x)) cannot be securely computed under concurrent general composition by any
non-trivial protocol.

2. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ be a deterministic polynomial-time functionality. If f depends on
both parties’ inputs, then the functionality (x, y) → (f(x, y), f(x, y)) cannot be securely computed un-
der concurrent general composition 2. Let f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a deterministic
polynomial-time functionality and let f = (f1, f2). If f is not completely revealing14 then the functionality
(x, y) → (f1(x, y), f2(x, y)) cannot be securely computed under concurrent general composition by any
non-trivial protocol.

14Informally, a functionality is completely revealing if one party can choose an input so that the output of the functionality will reveal
the other party’s input. See [Lin03b, Lin04] for details.
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Further, let Φ be the set of all two-party functionalities that enable bit transmission. Then, we obtain the
following result:

Corollary 1 Let f be a functionality in Φ∩Ψ. Then f cannot be securely computed under unbounded concurrent
self composition by any non-trivial protocol.

Remark. We note that the above discussion is relevant to the “fixed-roles” setting where the parties play the same
roles in each session in the concurrent self-composition setting. If we allow interchangeable roles, then as shown
in [Lin04], essentially all functionalities are impossible to realize. We refer the reader to [Lin04] for more details.
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