
Near-Linear Unconditionally-Secure Multiparty Computation with a
Dishonest Minority?

Eli Ben-Sasson1, Serge Fehr2, and Rafail Ostrovsky3

1 Department of Computer Science, Technion, Haifa, Israel,
and Microsoft Research New-England, Cambridge, MA.

eli@cs.technion.ac.il
2 Centrum Wiskunde & Informatica (CWI), Amsterdam, The Netherlands.

serge.fehr@cwi.nl
3 Department of Computer Science and Department of Mathematics, UCLA.

rafail@cs.ucla.edu

Abstract. In the setting of unconditionally-secure MPC, where dishonest players are unbounded and no
cryptographic assumptions are used, it was known since the 1980’s that an honest majority of players is both
necessary and sufficient to achieve privacy and correctness, assuming secure point-to-point and broadcast
channels. The main open question that was left is to establish the exact communication complexity.
We settle the above question by showing an unconditionally-secure MPC protocol, secure against a dishonest
minority of malicious players, that matches the communication complexity of the best known MPC protocol
in the honest-but-curious setting. More specifically, we present a new n-player MPC protocol that is secure
against a computationally-unbounded malicious adversary that can adaptively corrupt up to t < n/2 of the
players. For polynomially-large binary circuits that are not too unshaped, our protocol has an amortized
communication complexity of O(n logn+κ/nconst) bits per multiplication (i.e. AND) gate, where κ denotes
the security parameter and const ∈ Z is an arbitrary non-negative constant. This improves on the previ-
ously most efficient protocol with the same security guarantee, which offers an amortized communication
complexity of O(n2κ) bits per multiplication gate. For any κ polynomial in n, the amortized communication
complexity of our protocol matches the O(n logn) bit communication complexity of the best known MPC
protocol with passive security.
We introduce several novel techniques that are of independent interest and we believe will have wider
applicability. One is a novel idea of computing authentication tags by means of a mini MPC, which allows
us to avoid expensive double-sharings; the other is a batch-wise multiplication verification that allows us to
speedup Beaver’s “multiplication triples”.

1 Introduction

Background. In secure multiparty computation (MPC), a set of n players wish to evaluate an arbitrary but
fixed function F on private inputs. The function F is known to all the players and it is typically given as an
arithmetic circuit C over some finite field F. It should be guaranteed that the inputs remain private and at the
same time that the output of the computation is correct, even in the presence of an adversary that can corrupt a
certain number t of the players. In case of a passive adversary, corrupt players simply reveal all their information
to the adversary but otherwise keep following the protocol specification; in case of an active adversary, a corrupt
player is under full control of the adversary and may arbitrarily misbehave during the protocol execution. By
default, the goal is to obtain security against an active adversary.

The problem of MPC was initially introduced by Yao [23], with the first generic solutions presented in [17, 9].
These first protocols offered cryptographic (aka. computational) security, meaning that the adversary is assumed
to be computationally bounded, and can tolerate up to t < n/2 corrupt players. Subsequently, it was shown in [8,
5] that in a setting with perfectly-secure point-to-point communication and with up to t < n/3 corrupt players,
MPC is possible with unconditional and even perfect security.1 Finally, in [21, 1] it was shown that if a secure
broadcast primitive is given — in addition to the secure point-to-point communication — then unconditionally
(but not perfectly) secure MPC is possible against up to t < n/2 corrupt players.

? This is the full version of [6].
1 Unconditional/perfect security means a computationally unbounded adversary and negligible/zero failure probability.

2 Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky

These early results showed that MPC is possible in principle (in different settings), but they perform rather
poorly in terms of communication complexity, i.e., the number of bits that the players need to communicate
throughout the protocol. Over the years, a lot of effort has been put into improving the communication complexity
of MPC protocols. The table in Figure 1 shows recent achievements and the state of the art in the settings t < n/2
(cryptographic or with broadcast) and t < n/3 (perfect or unconditional, without broadcast). Additional efficiency
improvements are possible if one is willing to sacrifice on the resilience and lower the corruption threshold t by
a small constant fraction, as shown in [13, 15, 14]. Indeed, lowering t enables to apply several powerful tools, like
packed secret sharing or committee selection. We do not consider this option here, but aim for optimal resilience.

Adv Resilience Security Communication Ref

passive t < n/2 perfect O(cMn logn+ n2 logn) [16]

active t < n/2 cryptographic O(cMn
2κ+ n3κ) [19]

active t < n/2 cryptographic O(cMnκ+ n3κ) [20]
active t < n/2 cryptographic O(cMn logn) + poly(nκ) [16]

active t < n/3 unconditional O(cMn
2κ) + poly(nκ) [18]

active t < n/3 unconditional O(cMn logn+ dMn
2 logn) + poly(nκ) [16]

active t < n/3 perfect O(cMn logn+ dMn
2 logn+ n3 logn) [4]

active t < n/2 unconditional O(cMn
5κ+ n4κ) +O(cMn

5κ)BC [10]
active t < n/2 unconditional O(cMn

2κ+ n5κ2) +O(n3κ)BC [3]

Fig. 1. Comparison of recent MPC protocols for binary circuits. n denotes the number of players, κ the security parameter
(which we assume to be ≥ logn), cM the number of multiplication gates in the circuit (which we assume dominates the
number of in- and outputs), and dM the multiplicative depth of the circuit. The communication complexity counts the
number of bits that are communicated in total in an execution, plus, in the setting where a broadcast primitive is needed,
the number of bits broadcasted. For circuits over a larger field F, the logn-terms should be replaced by log(max{n, |F|}).

We can see from Figure 1 that there is a significant discrepancy between the cryptographic setting with t < n/2,
or, similarly, the unconditional/perfect setting with t < n/3, versus the unconditional setting with t < n/2. In the
former, MPC is possible for binary circuits with a near-linear amortized communication complexity of O(n log n)
bits per multiplication gate.2 In the latter, the best known protocol has an amortized communication complexity
of O(n2κ) bits per multiplication gate. This is not very surprising, since it is probably fair to say that the
unconditional setting with t < n/2 is the most difficult one to deal with. The reason is that no cryptographic
tools can be used, like commitments or signatures, as in the cryptographic setting, nor can we use techniques
from error correcting codes, as in the case t < n/3. Therefore, achieving near-linear amortized communication
complexity for the setting of unconditional security and t < n/2 has remained a challenging open problem.

We note that, in any of the three settings, O(n log n) bits per multiplication gate seems to be hard to beat,
since not even the best known protocol with passive security [16] does better than that.

Our Result. For an arbitrary arithmetic circuit over a finite field F, we show a novel MPC protocol with
unconditional security and corruption threshold t < n/2, which has a communication complexity of O(cM (nφ+
κ) + dMn

2κ + n7κ) bits plus O(n3κ) broadcasts, where φ = max{log n, log |F|}. Hence, for binary circuits that
are not too “narrow” (meaning that the multiplicative depth dM is sufficiently smaller than the number of
multiplication gates), our protocol achieves an amortized communication complexity of O(n log n + κ) bits per
multiplication gate. Furthermore, for any non-negative constant const ∈ Z, a small modification to our protocol
gives O(n log n + κ/nconst) bits per multiplication gate, so that if κ = O(nconst+1), i.e., κ is at most polynomial
in n, we obtain an amortized communication complexity of O(n log n) bits. Thus, our results show that even in
the challenging setting of unconditional security with t < n/2, near-linear MPC is possible. Unless there is an
additional improvement in the passive setting, this pretty much settles the question of the asymptotic complexity
of unconditionally-secure MPC.

2 By amortized communication complexity we mean under the assumption that the circuit is large enough so that the
terms that are independent of the size of the circuit are irrelevant.

Near-Linear Unconditionally-Secure MPC with a Dishonest Minority 3

We would like to point out that the restriction on the multiplicative depth of the circuit, necessary for the
claimed near-linear communication complexity per multiplication gate to hold, is also present in the easier t < n/3
setting for the protocols with near-linear communication complexity [16, 4]; whether it is an inherent restriction
is not known.

Techniques. We borrow several techniques from previous constructions of efficient MPC protocols. For instance,
we make use of the dispute control technique introduced in [3], and the (near) linear passively-secure multiplication
technique from [16]. However, our new protocol and its near-linear amortized communication complexity is to a
great extent due to two new techniques, which we briefly discuss here. More details will be given in Section 2.7
and Section 3.2.

Efficient batch verification of multiplication triples. The first technique allows to efficiently verify that a large list
of N shared multiplication-triples are correct, i.e., satisfy the required multiplicative relation. These multiplication
triples are used in order to implement Beaver’s method of evaluating multiplication gates, and our new protocol
allows us to guarantee all N triples in one shot using communication complexity that is (nearly) independent of
N .

Our new technique is inspired by a method that plays an important role in the construction of PCP proofs.
Given oracle access to three sequences of bits, or elements from a “small” finite field, a1, . . . , aN , b1, . . . , bN and
c1, . . . , cN , we wish to verify that ai · bi = ci for all i = 1, . . . , N . The procedure should be query-efficient, i.e.,
(much) more efficient than when querying and verifying all triples. Suppose the triples are encoded as low-degree
polynomials. This means, we are given oracle access to evaluations of polynomials f and g of degree < N and h
of degree < 2N − 1, with f(xi) = ai, g(xi) = bi and h(xi) = ci for all i ∈ {1, . . . , N}, where x1, . . . , xN are fixed
disjoint points and h is supposed to be h = f · g. The key observation is this: by the fundamental theorem of
algebra, if f · g 6= h then f(σ) · g(σ) 6= h(σ) except with probability at most 2N−1

|K| for a randomly chosen σ ∈ K,

and for any suitably large extension field K.
In our setting, it will turn out that we can indeed enforce the shared multiplication triples to be encoded via

low-degree polynomials as above. So, by the above technique, it is possible to verify N multiplication triples with
just one (random) query to f, g and h, and thus with a communication complexity that essentially only depends
on the aspired error probability.

In independent work [12], Cramer et al. propose a 2-party batch zero-knowledge proof for committed multi-
plication triples. The techniques used there show some resemblance, but there are also differences due to the fact
that in our setting, the ai, bi and ci’s are not known to any party.

Multiparty-computing the authentication tags Our other technique is a new way to “commit” the players to their
shares, so that dishonest players who lie about their shares during reconstruction are caught. This is necessary
in the setting t < n/2, where plain Shamir shares do not carry enough redundancy to reconstruct in the presence
of incorrect shares.

The way we “commit” player Pi to his share σi is by attaching an authentication tag τ to σi, where the
corresponding authentication key is held by some other player V , acting as verifier.3 The reader may think of τ
as τ = µ · σi + ν over some large finite field, where (µ, ν) forms the key. It is well known and easy to see that if
Pi does not know the key (µ, ν), then he is not able to come up with σ′i 6= σi and τ ′ such that τ ′ = µ · σ′i + ν,
except with small probability. Thus, incorrect shares can be detected and filtered out.

This idea is not new, and actually goes back to [21], but in all previous work the tag τ is locally computed by
some party, usually the dealer that prepared the share σi. Obviously, this requires that the dealer knows the key
(µ, ν); otherwise, he cannot compute τ = µ ·σi+ν. As a consequence, if the dealer is dishonest, the authentication
tag τ is useless, because with the knowledge of the key, an authentication tag τ ′ for an incorrect share σ′i can
easily be forged. In previous work, as in [21, 10, 3], this problem was overcome by means of a double sharing, where
every share σi is again shared, and the authentication tags are attached to the second-level shares. However, such
a double sharing obviously leads to a (at least) quadratic communication complexity.

Instead, here we propose to compute the tag τ by means of a mini MPC, to which Pi provides his share σi
as input, and V his key (µ, ν), and the tag τ is securely computed jointly by all the players. This way, no one
beyond V learns the key (µ, ν), and forging a tag remains hard, and no expensive double sharing is necessary.

3 Actually, σi comes along with n tags, one for each player acting as verifier V .

4 Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky

At first glance this may look hopeless since MPC typically is very expensive, and we cannot expect to increase
the efficiency of MPC by using an expensive MPC as subprotocol. What saves us is that our mini MPC is for
a very specific function in a very specific setting. We use several tricks, like re-using parts of the authentication
key, batching etc., to obtain a tailored mini MPC for computing the tag τ , with an amortized communication
complexity that has no significant impact. One of the crucial new tricks is to make use of the fact that Shamir’s
secret sharing scheme is “symmetric” in terms of what is the shared secret and what are the shares; this allows us
to avoid having to re-share the share σi for the mini MPC, but instead we can use the other shares σj as shares
of σi.

2 Near-Linear MPC: Our Result and Approach

2.1 Communication and Corruption Model

We consider a set of n = 2t + 1 players P1, . . . , Pn, which are connected by means of a complete network of
secure synchronous communication channels. Additionally, we assume a broadcast channel, available to all the
players. For simplicity, we assume the broadcast channel to broadcast single bits; longer messages are broadcasted
bit-wise. For a protocol that instructs the players to communicate (in total) X bits and to broadcast Y bits, we
say that the protocol has communication complexity X + Y · BC.

We consider a computationally-unbounded active adversary that can adaptively corrupt up to t of the players.
Adaptivity means that the adversary can corrupt players during the execution of the protocol, and depending on
the information gathered so far. Once a player is corrupted, the adversary learns the internal state of the player,
which consists of the complete history of that player, and takes over full control of that player and can make him
deviate from the protocol in any desired manner.

For any given arithmetic circuit C over a finite field F, the goal is to have a protocol that permits the n players
to securely evaluate C on their private inputs. For simplicity, we assume that all the players should learn the entire
result. Security means that the adversary cannot influence the result of the computation more than by selecting
the inputs for the corrupt players, and the adversary should learn nothing about the uncorrupt players’ inputs
beyond what can be deduced from the result of the computation. This should hold unconditionally, meaning
without any computational restrictions on the adversary, and up to a negligible failure probability ε.

2.2 Main Result

For an arithmetic circuit C over a finite field F, we denote the respective numbers of input, output, addition, and
multiplication gates in C by cI , cO, cA, and cM , and we write ctot = cI + cO + cM (not counting cA). Furthermore,
we write dM to denote its multiplicative depth, i.e., the maximal number of multiplication gates on any path from
an input gate to an output gate.

Theorem 1. For every n, κ ∈ N, and for every arithmetic circuit C over a finite field F with |F| ≤ 2κ+n,
there exists an n-party MPC protocol that securely computes C against an unbounded active adaptive adversary
corrupting up to t < n/2 players, with failure probability ε ≤ O(ctotn)/2κ and communication complexity O(ctot ·
(nφ+ κ) + dMn

2κ+ n7κ) +O(n3κ) · BC, where φ = max{log |F|, log n}.
More generally, for any const ∈ Z, there exists such an n-party MPC protocol with communication complexity
O(ctot · (nφ+ κ/nconst) + dMn

2κ+ n7κ) +O(n3κ) · BC.

Theorem 1 guarantees that for large enough circuits that are not too “narrow”, meaning that the multiplicative
depth dM is significantly smaller than the number cM of multiplication gates (e.g. dM ≤ cM/(nκ) is good
enough), the communication complexity per multiplication gate (assuming that cM dominates cI , cO and cR) is
O(nφ+κ/nconst) bits, i.e., O(n log n+κ/nconst) for binary circuits, for an arbitrary non-negative const ∈ Z. Recall,
the best previous MPC scheme in this setting [3] required O(n2κ) bits per multiplication gate. For simplicity, we
focus on the case const = 0 and merely give some indication on how to adapt the same for larger const.

Near-Linear Unconditionally-Secure MPC with a Dishonest Minority 5

2.3 The Set Up

We are given positive integers n and κ, and an arithmetic circuit C over a finite field F. We assume that |F| ≥ 2n2

(or |F| ≥ 2n2+const for an arbitrary const) — otherwise we consider C over an appropriate extension field4 — and
we write φ = log(|F|), i.e., φ denotes the number of bits needed to represent an element in F. We may assume
that κ ≥ n (otherwise, we set κ = n) and thus that κ is an integer multiple of n. We fix an extension field K of F
such that |K| ≥ 22(κ+n). Finally, we set M = 2(cM + cO + cI).

As convention, we write elements in F as Roman letters, and elements in K as Greek letters. Note that F is
naturally a subset of K, and thus for s ∈ F and λ ∈ K, the product λ · s is a well defined element in K. Also
note that by fixing an F-linear bijection Fe → K, where e is the extension degree e = [K :F] we can understand
a vector (s1, . . . , se) ∈ Fe as a field element σ ∈ K, and a vector (s1, . . . , sq·e) ∈ Fq·e for q ∈ N as a vector
σ = (σ1, . . . , σq) ∈ Kq of q field elements in K.

2.4 Dispute Control

We make use of the dispute control framework due to Beerliová-Trub́ıniová and Hirt. The idea of dispute control
is to divide (the different phases of) the MPC protocol into n2 segments (of equal “size”), and to execute the
segments sequentially. If the execution of a segment should fail due to malicious behavior of some corrupt parties,
then two players are identified that are in dispute and of which at least one must be corrupt. Then, the failed
segment is freshly re-executed, but now in such a way that the two players in dispute will not be able to get into
dispute anymore, during this segment and during all the remaining segments. This ensures that overall there can
be at most n2 disputes (actually fewer, because two uncorrupt players will never get into a dispute), and therefore
at most n2 times a segment needs to be re-executed. This means that overall there are at most 2n2 executions of
a segment.

We will show that (if dM is small enough) any segment of size m = M/n2 can be executed with bit commu-
nication complexity O

(
m(nφ+ κ) + n5κ) +O(nκ) · BC; it thus follows that the communication complexity of the

overall scheme is 2n2 · O
(
m(nφ + κ) + n5κ

)
= O

(
M(nφ + κ) + n7κ

)
bits plus O(n3κ) · BC, which amounts to

O(nφ+ κ) bits per multiplication gate for large enough circuits.
A dispute between two players Pi and Pj typically arises when player Pj claims to have received message msg

from Pi whereas Pi claims that he had actually sent msg′ 6= msg to Pj . In order to ensure that two players Pi
and Pj in dispute will not get into a new dispute again, they will not communicate anymore with each other.
This is achieved by means of the following two means:

(1) If Pi is supposed to share a secret w and distribute the shares to the players, then he chooses the sharing
polynomial so that Pj ’s share wj vanishes, and thus there is no need to communicate the share, Pj just takes
wj = 0 as his share. Using the terminology from [3], we call such a share that is enforced to be 0 a Kudzu
share (see also Section 2.5).

(2) For other messages that Pi needs to communicate to Pj , he sends to Pj via a relay: the first player Pr that
is not in dispute with Pi and not with Pj .

In order to keep track of the disputes and the players that were caught cheating, the players maintain two
sets, Corr and Disp, which at the beginning of the execution are both initialized to be empty. Whenever the
players jointly identify a player Pi to be corrupt, then Pi is added to Corr. Additionally, {Pi, Pj} will be added
to Disp for every j ∈ {1, . . . , n}. Whenever there is a dispute between two players Pi and Pj , so that one of them
must be corrupt but it cannot be resolved which of the two, then {Pi, Pj} is added to Disp. Whenever a player
Pi is in dispute with more than t players, then he must be corrupt and is added to Corr (and Disp is updated
accordingly). We write Dispi for the set of all players Pj with {Pi, Pj} ∈ Disp. Players that are in dispute (with
some other players) still take part in the protocol, but they do not communicate anymore with each other. Players
in Corr, i.e., players that have been identified to be corrupt, are excluded from (the remainder of) the protocol
execution. We do not always make this explicit in the description of the protocol when we quantify over all players
but actually mean all players not in Corr. Also, we do not make it always explicit but understand it as clear
that whenever a new dispute is found, the remainder of the execution of the current segment is skipped, and the
segment is freshly executed with the updated Disp (and Corr).
4 In this case one has to make sure that the inputs provided by the players belong to the original base field; this can easily

be taken care of by means of our techniques, without increasing the asymptotic communication complexity.

6 Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky

2.5 The Different Sharings

We will be using different variants and extensions of Shamir’s secret sharing scheme [22]. We introduce here these
different versions and the notation that we will be using for the remainder of the paper. We consider the field F
from Section 2.3, and fix distinct elements x0, x1, . . . , xn ∈ F with x0 = 0. We also fix an additional 2n2 − n− 1
elements xn+1, . . . , x2n2−1 with the property that every pair xi, xj with i 6= j ∈ {0, . . . , 2n2 − 1} is disjoint; these
additional elements will be used later on. It may be convenient to view the different kinds of sharings we introduce
below as different data structures for representing an element w ∈ F by data held among the players.

– A degree-t (Shamir) sharing of w ∈ F consists of n shares w1, . . . , wn ∈ F of the following form: there exists
a sharing polynomial f(X) ∈ F[X] of degree at most t such that w = f(0) and wj = f(xj) for j ∈ {1, . . . , n}.
Furthermore, share wj is held by player Pj for j ∈ {1, . . . , n}. We denote such a sharing as [w]. If a designated
player Pd (e.g. the dealer) knows all the shares, and thus also w, we indicate this by denoting the sharing as
[w]d.

– A degree-2t (Shamir) sharing of w ∈ F is defined as the degree-t sharing above, except that the degree of the
sharing polynomial f is at most 2t. We write 〈w〉 for such a sharing, and 〈w〉d for such a sharing when Pd
knows all the shares.

– A twisted degree-t sharing of w ∈ F with respect to player Pi, denoted as dwci, consists of n − 1 shares
w1, ..., wi−1, wi+1, ..., wn ∈ F, of the following form: there exists a sharing polynomial f(X) ∈ F[X] of degree at
most t such that w = f(xi), f(0) = 0, and wj = f(xj) for j ∈ {1, . . . , n}\{i}.5 Share wj for j ∈ {1, . . . , n}\{i}
is known to player Pj . We write dwcid for such a sharing when Pd knows all the shares.

– A twisted degree-2t sharing of w ∈ F with respect to Pi, denoted as 〈w〉i respectively 〈w〉id when Pd knows all
the shares, is defined as the twisted degree-t sharing above, except that the degree of the sharing polynomial
f is at most 2t.

– A two-level (degree-t/sum) sharing JwK consists of n degree-t Shamir sharings [w(1)]1, ..., [w(n)]n with w =∑
d w(d).6 The shares w1(d), . . . , wn(d) given by [w(d)]d for d ∈ {1, . . . , n} then define a degree-t sharing [w]

of w by means of wj =
∑
d wj(d) for j ∈ {1, . . . , n} (see Figure 2, center left). We point out that the second

level shares wi(d) can be understood as Shamir shares of the sum-shares w(d) of w, as well as sum-shares of
the Shamir shares wi of w.

– A two-level (degree-2t/sum) sharing 〈〈w〉〉 is defined similar to above as 〈〈w〉〉 = (〈w(1)〉1, ..., 〈w(n)〉n) with
w =

∑
d w(d).

The above list merely specifies the structures of the different sharings, but does not address privacy. In our scheme,
the different sharings will be prepared in such a way that the standard privacy requirement holds: the shares of
any t players reveals no information on the shared secret. In the case of a twisted sharing dwci, privacy is slightly
more subtle. Because player Pi is given no share, but, on the other hand, the sharing polynomial vanishes at
0, privacy will only hold in case Pi is (or gets) corrupted, so that the t corrupted players miss one polynomial
evaluation; this will be good enough for our purpose.

We note that the players can, by means of local computations, perform certain computations on the sharings.
For instance, by linearity of Shamir’s secret sharing scheme, it follows that if the players locally add their shares
of a degree-t sharing [v] of v to their shares of a degree-t sharing [w] of w, then they obtain a degree-t sharing
[v +w] of v +w. We denote this computation as [v] + [w] = [v +w]. Also, multiplication with a known constant:
c[w] = [cw], or adding a known constant: [w] + d = [w + d], can be performed by means of local computations.
This holds for all the different sharings discussed above: 〈v〉+c〈w〉+d = 〈v+cw+d〉, JvK+cJwK+d = Jv+cw+dK
etc. Furthermore, locally multiplying the shares of two degree-t shared secrets results in a degree-2t sharing of
the product: [v] · [w] = 〈v · w〉. Finally, locally multiplying the shares [v] of an ordinarily degree-t shared secret
with the shares dwci of a twisted degree-t shared secret results in a twisted degree-2t sharing of the product of
Pi’s share vi of [v] and w: [v] · dwci = 〈vi · w〉i. This property of a twisted sharing is of crucial importance to us;
thus, we encourage the reader to verify this claim.

5 Thus, instead of plugging the secret into the evaluation at 0 (i.e. into the constant coefficient of f), we pug it into the
evaluation at xi, and require f(0) to vanish and give player Pi no share.

6 We point out that w(1), ..., w(n) are simply n elements in F, indexed by d = 1, . . . , n, that add up to w, and they should
not be understood as function evaluations. Our convention is to write w(1), ..., w(n) as sum-shares of w, and w1, . . . , wn
as Shamir shares of w, and w1(d), . . . , wn(d) as Shamir shares of w(d), etc.

Near-Linear Unconditionally-Secure MPC with a Dishonest Minority 7

We point out that opening such a product of sharings, like 〈v · w〉 = [v] · [w], reveals more information on v
and w than just their product. This will be of no concern to us, because in our scheme, such sharings will only
be opened in the form of 〈u+ v · w〉 = 〈u〉+ [v] · [w], i.e., when masked with a random degree-2t sharing, which
ensures that no information on u, v, w is revealed beyond u+ v · w.

Borrowing the terminology from [3], we say that a sharing [s]d has Kudzu shares, if the share sj of every
player Pj that currently is in Dispd is set to sj = 0, i.e., the sharing polynomial f(x) is such that f(xj) = 0 for
every Pj ∈ Dispd. The same terminology correspondingly applies to sharings 〈s〉d, dscid and 〈s〉id. Furthermore,
a two-level sharing JsK is said to have Kudzu shares if [s(d)]d has Kudzu shares for all Pd 6∈ Corr, and [s(d)]d
consist of all-0 shares for all Pd ∈ Corr, and similarly for 〈〈s〉〉.

Finally, we would like to point out that due to the linearity, e sharings [s1], . . . , [se] of secrets s1, . . . , se ∈ F
can also be understood and treated as a sharing [σ] of σ = (s1, . . . , se), viewed as an element in K and with shares
σi ∈ K, by means of a sharing polynomial f(X) ∈ K[X], but with the same interpolation points x1, . . . , xn ∈ F ⊆
K.

2.6 Protocol Overview

The protocol consists of three phases: the preparation phase, the input phase, and the computation phase. We
briefly discuss (the goal of) these three phases here. As discussed in Section 2.4, every phase will be performed
in segments; and whenever a segment fails, then a new dispute is found and added to Disp, and the segment is
re-executed.

Preparation Phase. In this phase, the following data structure is prepared.

Two-level shared multiplication triples: A listM of M correctly two-level shared triples (JaK, JbK, JcK), where for
every7 (JaK, JbK, JcK) ∈ M, the values a and b are uniformly distributed in F (and independent of each other
and of the other triples inM) and unknown to the adversary, and c = a ·b. We write ∪M for the list of JaK, JbK
and JcK sharings contained inM, i.e., ∪M =

⋃
M{JaK, JbK, JcK}, where the union is over all (JaK, JbK, JcK) ∈M

Local base sharings: The two-level sharings of the multiplication triples are not fully independent. Instead, for
every player Pd there exists a list S(d) of L = O(M/n) so-called local base sharings [s(d)]d with s(d) ∈ F,
such that for every JwK ∈ ∪M, the sharing [w(d)]d (which is part of JwK) is a linear combination (with known
coefficients) of the local base sharings:8

[w(d)]d =
∑

s(d)∈S(d)

us(d)[s(d)]d + u◦.

Although there are dependencies among the second-level shares of different JwK ∈ ∪M (which means we have
to pay special attention when revealing those, or the local base sharings), it will be the case that the first-level
Shamir sharings [w] are independent among all JwK ∈ ∪M.

For every Pd, the list S(d) will be divided into n3 blocks, each block containing L/n3 sharings [s(d)]d from
S(d). Each such block, we can write as [σ(d)]d with σ(d) ∈ Kq, and understand it as a list of q = L/(n3e)
sharings [σ(d)]d of elements σ(d) ∈ K, where e = [K :F]. As such, S(d) can now be understood as a list of n3

sharings [σ(d)]d.
9

Authentication tags: For every player Pd, every block [σ(d)]d ∈ S(d), every player Pi holding the shares
σi(d) ∈ Kq of block [σ(d)]d, and every player PV (acting as verifier), the following holds. PV holds a random
long-term authentication key µ ∈ Kq and a random one-time authentication key ν ∈ K, and Pi holds the
(one-time) authentication tag

τ = µ� σi(d) + ν ∈ K ,

7 We will often use set-notation for lists: for a list L = (`1, . . . , `m), the expression ` ∈ L is to be understood as `i for
i ∈ {1, . . . ,m}. Also,

∑
`∈L u`` should be understood as

∑m
i=1 ui`i.

8 As a consequence, even though every player implicitly holds in total 3Mn subshares of the JwK ∈ ∪M, he only needs
to explicitly store n · L = O(M) values. Thus, to communicate all these subshares (for all the players), only O(Mn)
elements in F need to be communicated, i.e., a linear number per multiplication triple.

9 We silently assume here that the fraction L/(n3e) is an integer, and we will similarly do so for a few other fractions
later. We may always do so without loss of generality.

8 Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky

where � denotes the standard inner product over K. We stress that ν and, consequently, τ are fresh for every
Pd, every block [σ(d)]d ∈ S(d), and every Pi and PV , but µ is somewhat re-used: PV uses the same µ for
every Pd (but fresh µ’s for different Pi’s) and for n out of the n3 blocks [σ(d)]d ∈ S(d).10

This data structure is illustrated in Figure 2.

a · b = c

w → w(1) w(2) · · · w(n)

⇓ ⇓ ⇓ · · · ⇓
w1 → w1(1) w1(2) · · · w1(n)

w2 → w2(1) w2(2) · · · w2(n)
...

...
...

...

wn → wn(1) wn(2) · · · w2(n)

w(d)

⇓
w1(d)

w2(d)
...

wn(d)

∈ span



s(d)

⇓
s1(d)

s2(d)
...

sn(d)


τ = µ� σi(d) + ν

Fig. 2. The data structure: multiplication triples (a, b, c) (left), w ∈ {a, b, c} is two-level shared as JwK (center left), [w(d)]d
is a linear combination of Pd’s local base sharings (center right), and si(d) is authenticated within a batch σi(d) (right).

The purpose of the authentication tags (and keys) is to be able to identify an incorrect share σi(d) claimed by
a corrupt player Pi. Indeed, it is well known (and goes back to Carter and Wegman [7]) that if the adversary has
no information on µ beyond knowing the tags τ for several σi(d) with fresh one-time keys ν, then the probability
for the adversary to produce σ′i(d) 6= σi(d) and τ ′ with τ ′ = µ�σ′i(d)+ν is at most 1/|K| ≤ 2−2(κ+n). Informally,
this means that with the given data structure, a dishonest player Pi will not be able to lie about his share σi(d)
without being caught.

The use of authentication tags to (try to) commit players to their (sub)share is not new. What distinguishes
our approach from previous work is that here the tag τ will be computed in a multi-party fashion so that no one
beyond the verifier PV knows the corresponding key. This gives us the decisive advantage over previous work.

Input Phase. For every player Pi, and for every input x ∈ F of that player to the circuit, a fresh multiplication
triple (JaK, JbK, JcK) is chosen from M, and a is reconstructed towards Pi. Then Pi announces d = x− a, and the
players compute the sharing JxK = d+ JaK. The used triple (JaK, JbK, JcK) is then removed from M.

Essentially the only thing corrupt players can do to disrupt the computation phase, is to provide incorrect
shares when Pi is supposed to reconstruct some shared a. However, because every [a(d)]d is a linear combination
of the local base sharings [s(d)]d, and because players are committed to their local base sharings (block-wise) by
means of the authentication tags, players that hand in incorrect shares can be caught.

Computation Phase. The actual computation is done in a gate-by-gate fashion. To start with, we say that
the input values are computed. Then, inductively, for every gate in the circuit whose input values have already
been computed, the corresponding output value of the gate is computed. This is done as follows. Let JxK and JyK
be the sharings of the input values to the gate. If the gate is an addition gate, then the output value is computed
locally as JzK = Jx + yK = JxK + JyK. If the gate is a multiplication gate, then the output value is computed
by using Beavers technique [2] as follows. A fresh multiplication triple JaK, JbK, JcK is selected and the differences
Jx − aK = JxK − JaK and Jy − bK = JyK − JbK are reconstructed. Then, the output value of the gate is computed
locally as JzK = Jx · yK = (x− a)(y − b) + (x− a)JbK + (y − b)JaK− JcK. In the end, once the output values of the
circuit have been computed, they are reconstructed.11

Essentially the only thing corrupt players can do to disrupt the computation phase, is to provide incorrect
shares when the players (try to) reconstruct a shared value JwK. Since the latter is a linear combination of sharings
in ∪M so that every [w(d)]d is a linear combination of the local base sharings [s(d)]d, and because players are
committed to their local base sharings (block-wise) by the authentication tags, players that hand in incorrect
shares can be caught.

10 As a consequence, the total number of fresh one-time keys µ equals the total number of σ(d)’s (over all d’s), and thus
sharing them (which will be needed) does not increase the overall asymptotic communication complexity.

11 For simplicity we assume that all the players are supposed to learn all output values of the circuit. It is straightforward
to adjust our scheme so that different players learn different output values.

Near-Linear Unconditionally-Secure MPC with a Dishonest Minority 9

2.7 Two New Essential Ingredients

We present here the two main new components that enable our improved communication complexity.

Batch-wise Multiplication Verification. Assume we have two sharings [a] and [b] (over F), and the players
have computed a sharing [c], which is supposed to be c = a · b, using an optimistic multiplication protocol (i.e.,
one that assumes that players behave). And now the players want to verify that indeed c = a ·b, without revealing
anything beyond about a, b, c. The standard way of doing so (see e.g. [11] or [3]) has a failure probability of 1/|F|,
which is too large for us, or when performed over the bigger field K, has a sufficiently small failure probability of
1/|K|, but requires to share an element from K for every triple to be verified. This means we get a communication
complexity of at least O(nκ) bits per multiplication gate, whereas we want O(nφ+ κ).

We achieve the latter by verifying c = a · b batch-wise. This is done by means of the following method. Let
([a1], [b1], [c1]), . . . , ([aN], [bN], [cN]) be N = n2 multiplication triples that need to be verified. Consider the degree-
(N − 1) polynomials f and g with f(xk) = ak and g(xk) = bk for all k ∈ {1, . . . , N}, and set ak := f(xk) and
bk := g(xk) for k ∈ {N + 1, . . . , 2N −1}. The players can locally compute sharings [ak] and [bk] of these ak and bk

with k ∈ {N + 1, . . . , 2N −1}. Furthermore, by using the optimistic multiplication protocol, we let them compute
[cN+1], . . . , [c2N−1] where ck is supposed to be ak · bk. Let h be the degree-(2N − 2) polynomial with h(xk) = ck

for all k ∈ {1, . . . , 2N − 1}. It now holds that all the multiplication triples are correct — i.e., that ck = ak · bk for
all k ∈ {1, . . . , 2N −1}— if and only if h = f ·g as polynomials. In order to test if h = f ·g or not, the players can
simply choose a random challenge σ ∈ K and see if h(σ) = f(σ) · g(σ) or not. For the latter, the players locally
compute their shares of [f(σ)], [g(σ)] and [h(σ)] — each is a linear combination of the shares of f, g, h that the
player holds — and apply the “expensive” standard multiplication verification to [f(σ)], [g(σ)] and [h(σ)].

Multiparty Computation of the Tags. As mentioned before, the tags τ should be computed in a multi-
party fashion, without blowing up the asymptotic communication complexity. To simplify the exposition here, we
assume for the moment that each tag τ is computed as τ = µ · σi(d) + ν for µ ∈ K, and where σi(d) ∈ K is the
i-th share of [σ(d)]. A first step in a multi-party computation usually is to share the inputs; here: µ, σi(d) and ν.
However, this blows up the communication complexity by a factor n, which we cannot afford. Note that sharing
µ is actually okay, since the µ’s are (partly) re-used, and thus we can also re-use their sharings. Also, sharing ν is
okay, since in the actual authentication scheme we are using (not the simplified version we are discussing here),
there is only one ν for many σi(d)’s. What is problematic, however, is the sharing of σi(d). And this is where
our second new method comes into play. We make use of the fact that σi(d) is not an arbitrary input to the
multi-party computation, but that it is actually a share of a shared secret σ(d). Due to the symmetry of Shamir’s
secret sharing scheme, we may then view σi(d) as the secret and the remaining shares σj(d) as a sharing of σi(d).
Indeed, any t + 1 of the shares σj(d) can be used to recover σi(d). Thus, in that sense, σi(d) is already shared,
and there is no need to share it once more.

Using this idea, the players can compute τ in a multi-party way as follows.12 Player PV , holding µ and ν,
shares µ as a twisted degree-t sharing dµciV , and ν as a twisted degree-2t sharing 〈ν〉iV . The players now locally
compute dµciV · [σ(d)] + 〈ν〉iV , which results in a twisted degree-2t sharing 〈µ · σi(d) + ν〉i of τ = µ · σi(d) + ν, as
explained at the end of Section 2.5. These shares can now be sent to Pi for reconstruction (and correctness of τ
will be verified by a cut-and-choose technique).

We point out that by corrupting t players Pj that do not include PV or Pi, the adversary can learn µ from
the (twisted) shares of the players in Pj . However, in that case, the adversary cannot anymore corrupt player Pi,
and thus knowledge of µ is of no use. What is important is that the adversary does not learn µ in case it corrupts
Pi, and this we will show to hold (in the final version of the scheme).

Adapting the above to τ = µ�σi(d) + ν, and re-using µ and its twisted sharing, gives the players the means
to compute their tags with a communication complexity that is negligible for large enough circuits.

2.8 A High Level Sketch of Our Construction

For the preparation phase, every player, acting as dealer Pd, produces many sharings [s(d)]d. Correctness is
verified batch-wise by means of a standard cut-and-choose technique. Every list of sharings [s(1)]1, . . . , [s(n)]n
then gives rise to t+ 1 two-level sharings JaK by setting a =

∑n
d=1 s(d)xdj for t+ 1 different choices of j. This way,

12 The actual scheme will be slightly more complicated due to some issue that we ignore right now for simplicity.

10 Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky

preparing one JaK ∈ ∪M (and the same for JbK ∈ ∪M) amounts to preparing one [s(d)]d (up to constant factors),
which has linear amortized complexity (meaning: a linear number of elements in F). This technique is borrowed
from [16]. Then, JcK, where c is supposed to be a · b, is computed by means of the passively-secure multiplication
protocol due to [16], which has linear communication complexity. In order to verify the correctness of the c’s, we
use the batch-wise multiplication verification described in Section 2.7. Using batches of size N = n2, verifying the
correctness of N multiplication triples essentially boils down to reconstructing a constant number of sharings over
the big field K, which consists of every player sending his share (in K) to every other player. Per multiplication
triple, this then amounts to O(κ) bits. Using batches of size N = n2+const reduces this to O(κ/nconst).

It remains to compute the authentication tags. As explained in Section 2.7, for a tag of the form τ = µ·σi(d)+ν
(where σi(d) consists of a collection of si(d)’s), this can be done by computing 〈τ〉iV = dµciV · [σ(d)] + 〈ν〉iV . Since
the µ’s (and their twisted shares) are re-used to some extent, and since the σ(d)’s are already shared, the
communication complexity is dominated by communicating the shares 〈ν〉iV and 〈τ〉i; this consists of a linear
number of elements in K per σ(d), per verifier PV , and per shareholder Pi. To do better, the tags are actually
of the form τ = µ · σi(d) + ν, where σi(d) is a “large” vector. Hence, only one set of shares 〈ν〉iV (and 〈τ〉iV)
needs to be communicated (per PV and Pi) to compute the tag τ for a “large” list of s(d)’s, making the overall
communication complexity per s(d), and thus per multiplication triple, negligible. The correctness of the tags is
verified by a standard cut-and-choose technique. The details are worked out in Section 3.2.

Once the data structure as described in Section 2.6 is prepared, we are in good shape. Essentially, the only
thing that can cause problems during the input and the computation phase is that corrupt players hand in
incorrect shares; but this will be detected (since the shares then do not lie on a degree-t polynomial), and the
corrupt players will be found with the help of the authentication tags (on the local base sharings). The details
are explained in Sections 3.3 and 3.4.

3 Detailed Protocol Description

We now present the full protocol description. We stress that the main ingredients to the protocol are the new
batch verification for multiplication triples, and to use a mini MPC for computing authentication tags, as discussed
earlier in the paper. Fine-tuning everything makes the protocol very involved and probably hard to follow at first
look. We suggest to skip at first reading the fault localization subprotocols. They are in fact rather straightforward
(the players essentially open up everything in order to locate where things went wrong) but tedious, often with
several case distinctions in order to branch through all possibilities, and sometimes not done in the most direct
way in order to keep the communication low.

3.1 Two Basic Subprotocols

We introduce here two subprotocols that we will use later on several times.

Generating a Challenge. The purpose of the subprotocol Challenge below is to generate a common challenge
λ ∈ K with high min-entropy. It makes use of an arbitrary injective mapping convert from {0, 1}2(κ+n)/n × . . .×
{0, 1}2(κ+n)/n (n times) into K.13 Its communication complexity is O(κ) · BC.

Protocol Challenge

Every player Pi 6∈ Corr chooses and broadcasts a random string stri ∈ {0, 1}2(κ+n)/n; for Pi ∈ Corr, stri is set to the all-0
string in {0, 1}2(κ+n)/n. The field element λ = convert(str1, . . . , strn) ∈ K is taken as the generated challenge.

The following is easy to see.

Fact 1 For any fixed set of t corrupt players14 and for any given subset S ⊂ K, the probability that a challenge
generated by the subprotocol Challenge lies in S is at most |S|/22(t+1)(κ+n)/n ≤ |S|/2κ+n.

13 Recall that n divides κ.
14 Recall that in the end the adversary may corrupt the players adaptively.

Near-Linear Unconditionally-Secure MPC with a Dishonest Minority 11

Verified Sharing The purpose of the next subprotocol, VerShared, is for player Pd (the dealer) to generate, for
some `′ ∈ N specified later, sharings [s1]d, . . . , [s

`′]d (with Kudzu shares) for s1, . . . , s`
′ ∈ F (randomly) chosen by

him, and for the remaining players to verify the correctness of the sharings.

Protocol VerShared

Pd chooses `′ random polynomials f1, . . . , f `
′

over F, and a random polynomial f0 over K, all of degree at most t, subject
to that fk(xj) = 0 for every player Pj ∈ Dispd, and he sets sk = fk(0) for every k ∈ {0, 1, . . . , `′}. Then, Pd computes and
sends share skj = fk(xj) to player Pj , for every k ∈ {0, . . . , `′} and for every player not in Dispd. These shares then form
sharings [s0]d, [s

1]d, . . . , [s
`′]d (with Kudzu shares) of which the first will be dismissed at the end.

Verification: By means of Challenge, the players generate a challenge λ ∈ K. Then, for every player PV (acting as verifier),

the following is done. Every player Pj 6∈ DispV sends his share σi =
∑`′

k=0 λ
kskj ∈ K of [σ] =

∑`′

k=0 λ
k[sk]d to PV .

If σ1, . . . , σn is a correct degree-t Shamir sharing (not counting the shares of players in DispV) and σj = 0 for all

Pj ∈ Dispd, then PV broadcasts “ok” and protocol VerShared halts with [s1]d, . . . , [s
`′]d as output. Else, PV broadcasts

“fault”, and fault localization is performed for the first PV that complains.

Fault localization: The dealer Pd and the players Pj 6∈ DispV send all shares of [s0]d, . . . , [s
`′]d to PV . This means, every

share skj is sent by both Pd and Pj to PV . We distinguish between the following three cases (one of which must occur):

Case 1: One of the sharings [sk]d sent by Pd is not a correct degree-t Shamir sharing. In this case, PV broadcasts
“accuse Pd”, and the pair {Pd, PV } is added to the set of disputes Disp.

Case 2: Some player Pj sent shares s0j , . . . , s
`
j for which σj 6=

∑
k λ

kskj , where σj is the value sent for the verification.
In this case, PV broadcasts “accuse Pj”, and the pair {Pj , PV } is added to Disp.

Case 3: Pd and Pj sent a different share skj for some k. In this case, PV broadcasts “open (k, j)” upon which both
Pd and Pj must broadcast skj . If they broadcast different values, then {Pd, Pj} is added to Disp. Otherwise, PV
checks who broadcasted a different value than he had sent to him, and then accuses that player as in case 1 or 2.

Fact 2 If Pd remains honest then the adversary learns no information on s1, . . . , s`
′
. If the sharings [s1]d, . . . , [s

`′]d
handed out by the dealer Pd are not all correct degree-t Shamir sharings, then a new dispute is found except with
probability 2n`′/2κ+n = `′/2κ.

The 2n-factor stems from the adaptiveness of the adversary, i.e., that he may corrupt players after having seen
the challenge λ; thus, we argue for every possible set of t corrupt players and apply union bound. The claim that
a new dispute is found is somewhat tedious but straightforward to verify.

The communication complexity of VerShared is O(`′nφ+ n2κ) +O(κ) · BC.
It is easy to see that the protocol allows for the following variants (with the same asymptotic communi-

cation complexity): to generate simultaneously correct degree-t sharings [s1]d, . . . , [s
`′]d and degree-2t sharings

〈s1〉d, . . . , 〈s`
′〉d for the same s1, . . . , s`

′ ∈ F randomly chosen by Pd, or to generate correct twisted sharings
[s1]id, . . . , [s

`′]id, or to generate a correct twisted degree-2t sharing 〈0〉id of 0, etc.

3.2 The Preparation Phase

The goal of the preparation phase is to prepare a data structure as discussed in Section 2.6. This is done by means
of dividing the work into n2 segments. In each segment seg ∈ {1, . . . , n2}, a listMseg of m = M/n2 multiplication
triples (JaK, JbK, JcK) is generated, and corresponding lists Sseg(d) of ` = L/n2 = 3m/(t + 1) local base sharings
[s(d)]d, with authenticated blocks [σ(d)]d. If a segment fails, then a new dispute is added to Disp, the data of
the segment is dismissed, and the players retry that segment. In the end, after at most 2n2 (possibly repeated)
segments, the Mseg and Sseg(d)’s (with the authenticated blocks) are combined to the full size data structure as
described in Section 2.6.

In the remainder of this section, we describe how the data structure for a fixed segment seg is prepared. We
take it as understood that as soon as a fault is detected, and as a consequence a new dispute is found (which may
also mean that a player is identified to be corrupt), the execution of that segment is aborted and re-done.

Base Sharings. First, the players generate m two-level sharings Ja1K, . . . , JamK with Kudzu shares of random
secret values a1, . . . , am ∈ F with underlying local base sharings. This is done by means of the following procedure
Base Sharings. It makes use of the fact that the transpose of a Vandermonde matrix acts as a randomness extractor
(see e.g. [16]).

12 Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky

Protocol Base Sharings

Every player Pd 6∈ Corr performs VerShared to produce degree-t Shamir sharings [s1(d)]d, . . . , [s
`/3(d)]d with Kudzu shares;

for players Pd ∈ Corr, [s1(d)]d, . . . , [s
`/3(d)]d are all set to all-0 sharings. Then, for every k ∈ {1, . . . , `/3} and every

j ∈ {0, . . . , t}, the data structure (xj1 · [sk(1)]1, x
j
2 · [sk(2)]2, . . . , x

j
n · [sk(n)]n) forms a two-level sharing J

∑
i x

j
is
k(i)K. The

resulting m = (t+ 1)`/3 two-level sharings are set to be Ja1K, . . . , JamK.

Fact 3 Except with probability at most mn/2κ, the following holds: protocol Base Sharings succeeds and the un-
corrupt players hold correct subshares of two-level sharings Ja1K, . . . , JamK, or it fails and a new dispute is found.
Furthermore, if it succeeds, then [a1], . . . , [am] are random and independent sharings of random and independent
values a1, . . . , am ∈ F.

We point out that the second-level shares are not independent. As a consequence, we have to be careful with
revealing those.

Similarly, the players produce m (verified) two-level sharings Jb1K, . . . , JbmK with Kudzu shares with underlying
local base sharings [s`/3+1(d)]d, . . . , [s2`/3(d)]d are produced. Finally, using a straightforward variant of the above
procedure, the players produce m (verified) two-level sharings Jr1K, . . . , JrmK and 〈〈r1〉〉, . . . , 〈〈rm〉〉 with Kudzu
shares with respective underlying local base sharings [s2`/3+1(d)]d, . . . , [s

`(d)]d and 〈s2`/3′+1(d)〉d, . . . , 〈s`(d)〉d.
M′seg is set to be the list of m quadruples (JakK, JbkK, JrkK, 〈〈rk〉〉), and, for every d, Sseg(d) is set to be the list

[s1(d)]d, . . . , [s
`(d)]d.

The communication complexity of preparing M′seg (or failing but finding a new dispute) is O(`n2φ+ n3κ) =
O(mnφ+ n3κ) bits plus n ·O(κ) · BC.15

Multiplication. Every quadruple (JaK, JbK, JrK, 〈〈r〉〉) ∈ M′seg is extended to (JaK, JbK, JcK, JrK, 〈〈r〉〉), where c is
supposed to be c = a · b, and we call the new (extended) list M′′seg. This is done by means of the following
procedure Mult, which is due to Damg̊ard and Nielsen [16], and which has a communication complexity of O(nφ)
bits per quadruple.

Protocol Mult
Let PK (the “king”) be the first player that is not in Corr. Every player Pj sends his share of 〈d〉 = [a][b] + 〈r〉 to PK ; if
Pj ∈ DispK , then Pj sends his share via a relay, i.e., via the first player that is neither in Dispj nor in DispK . PK then
reconstructs d by computing the unique degree-2t polynomial defined by the n shares, and sends d to every player, via a
relay for players in DispK . JcK is then computed (by means of local computations) as JcK = d− JrK.

Fact 4 The adversary learns no information on a and b from executing Mult. Furthermore, in case of no adver-
sarial behavior, the players hold correct two-level shares of c = a · b.

In the end, Mseg is obtained by removing the JrK and 〈〈r〉〉-components from the entries of M′′seg, but before-
hand, the players need to verify the correctness of the JcK’s: that the sharings are correct, and that indeed c = a ·b.
This is done as outlined below.

Auxiliary Structures. In order to be able to verify the multiplication triples, i.e., that indeed c = a · b, the
players need to produce some additional auxiliary data structures. One is an additional fresh list R◦seg of pairs of
verified two-level sharings (Jr1◦K, 〈〈r1◦〉〉), . . . , (Jrm◦ K, 〈〈rm◦ 〉〉) with Kudzu shares of random r1◦, . . . , r

m
◦ ∈ F; this has

clearly no effect on the asymptotic overall complexity. The other is a list M◦seg of m/n2 dummy multiplication
triples Jα◦K, Jβ◦K, Jγ◦K with the corresponding Jρ◦K and 〈〈ρ◦〉〉-components, but over K, i.e., α◦, β◦, γ◦, ρ◦ ∈ K.
This can be done by similar means as M′′seg is prepared, but using the field K instead of F. The communication
complexity of preparing M◦seg is O(mκ/n+ n3κ) bits plus O(nκ) broadcasts.

15 The broadcast complexity could be reduced to O(κ) by re-using the challenge in VerShare for the different dealers.
However, since the broadcast complexity will anyway be dominated by some other part of the protocol, this does not
affect the overall asymptotic complexity.

Near-Linear Unconditionally-Secure MPC with a Dishonest Minority 13

Verifying the Multiplication. The standard procedure to verify the correctness of multiplication triples, as
for instance used in [10, 11, 3] (see also Single Verify below), which verifies triples on a one-by-one basis, is too
expensive for us. We verify the correctness of the multiplication triples in batches of size N = n2 (or N = n2+const

for a general const).

Protocol Verify

The players execute the following batch verify procedure in parallel for every (disjoint) batch
(Ja1K, Jb1K, Jc1K, Jr1K, 〈〈r1〉〉), . . . , (JaN K, JbN K, JcN K, JrN K, 〈〈rN 〉〉) ∈ M′′seg of size N = n2, using the same challenge σ
in all the parallel executions, and the same challenge λ in all the parallel sub-calls to Single Verify.

Batch verify: For the considered batch (Ja1K, Jb1K), . . . , (JaN K, JbN K), define degree-(N − 1) polynomials f and g with
f(xk) = ak and g(xk) = bk for all k ∈ {1, . . . , N}. The players locally compute JakK and JbkK with f(xk) = ak and
g(xk) = bk for all k ∈ {N+1, . . . , 2N−1}. Furthermore, by using N−1 pairs (JrN+1K, 〈〈rN+1〉〉), . . . , (Jr2N−1K, 〈〈r2N−1〉〉)
from R◦seg (which are then removed from R◦seg) and invoking Mult, the players compute JcN+1K, . . . , Jc2N−1K where ck

is supposed to be ak · bk. Let h be the degree-(2` − 2) polynomial with h(xk) = ck for all k ∈ {1, . . . , 2N − 1}. The
players generate a challenge σ ∈ K (one for all the calls to batch verify) by means of Challenge and compute JαK, JβK
and JγK for α = f(σ), β = g(σ) and γ = h(σ) in K; this can be done by local computations since f(σ), g(σ) and h(σ)
are linear combinations of a1, . . . , aN , b1, . . . , bN and c1, . . . , c2N−1, respectively (with coefficients in K). Finally, they
perform Single Verify to verify that α · β = γ.

Then, every player PV broadcasts “ok” if he accepted all calls to Single Verify, else he broadcasts the number of the batch
for which Single Verify failed for him. For the first batch (Ja1K, Jb1K), . . . , (JaN K, JbN K) for which there was a complaint, and
for the smallest player PV that complained about that batch, fault localization of Single Verify is performed. Note that the
value δ and the sharings JρK and 〈〈ρ〉〉 (such that γ is supposed to be δ − JρK with 〈δ〉 = [α][β] + 〈ρ〉), required by the fault
localization of Single Verify, can be computed as a linear combination of the dk’s and the JrkK and 〈〈rk〉〉’s, respectively.

We observe that if ak · bk 6= ck for some k ∈ {1, . . . , N}, then f · g 6= h as polynomials (of degree at most
2(N − 1)), and thus there are at most 2N − 1 values σ ∈ K with f(σ) · g(σ) = h(σ). Thus, from Fact 1, and by
using union bound over all possible sets of corrupted players, we obtain the following.

Fact 5 For every batch (Ja1K, Jb1K), . . . , (JaN K, JbN K), if JckK is not a correct sharing or ak · bk 6= ck for some
k ∈ {1, . . . , N}, then the probability that JγK is a correct sharing and α · β = γ is at most 2(N − 1)/2κ.

It remains to show how the players verify the correctness of the multiplication triples (JαK, JβK, JγK). This is
done by means of the following standard protocol.

Protocol Single Verify

The players choose a fresh dummy multiplication triple (Jα◦K, Jβ◦K, Jγ◦K, Jρ◦K, 〈〈ρ◦〉〉) from M◦seg and remove it from the
list. Then, the players invoke Challenge to generate a challenge (one for all the parallel calls to Single Verify) λ ∈ K, and
[α′] = [α◦] + λ[α] and [o] = [γ◦] + λ[γ]− α′[β] are sequentially opened. The latter is done by exchanging all shares of [α′]
(and of [o]), i.e., every player Pj sends his share α′j of α′ (and similar for o) to every PV 6∈ Dispj . If one of the players PV
receives inconsistent shares or reconstructs o 6= 0, then he rejects, otherwise he accepts.

Fault localization: The players broadcast their shares of [α], [β], [ρ] and 〈ρ〉, and of [α◦], [ρ◦] and 〈ρ◦〉. Additionally, they
broadcast the values δ and δ◦.

Case 1: If the value δ broadcasted by some player Pi is different to the one broadcasted by PK (the “king” in Mult),
or to the one broadcasted by his relay Pr in case Pj ∈ DispK , then {Pi, PK}, or {Pi, Pr} respectively, is added to
Disp and Single Verify halts. Similarly in case there is an inconsistency for δ◦.

Case 2: If some sharing, say [α] for concreteness, is inconsistent, then every player Pj 6∈ DispV send his subshares
αj(1), . . . , αj(n) of JαK to PV . If the subshares of a player Pj are inconsistent with the share he broadcasted earlier,
then PV broadcasts “accuse Pj”, and {PV , Pj} is added to Disp and Single Verify halts. Else, there exists Pd 6∈ Corr
so that α1(d), . . . , αn(d) (not considering the shares of players Pj ∈ DispV) do not form a correct degree-t sharing,
and player PV broadcasts “open d”, upon which the players Pj 6∈ DispV ∪ Dispd have to broadcast αj(d). If
a player Pj broadcasts a different value than he had sent to PV before, then PV broadcasts “accuse Pj”, and
{PV , Pj} is added to Disp and Single Verify halts. Otherwise, Pd broadcasts “accuse Pj”, where Pj is a player that
broadcasted an incorrect share, and {Pd, Pj} is added to Disp and Single Verify halts.

Case 3: If δ 6= α · β + ρ or δ◦ 6= α◦ · β◦ + ρ◦ then PK broadcasts “accuse Pj”, where Pj is a player who has
broadcasted shares that are inconsistent with what he had sent him during Mult, and {PK , Pj} is added to Disp
and Single Verify halts.

14 Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky

Fact 6 Single Verify reveals no information on α, β and γ beyond the multiplicative relation γ = α · β.

The communication complexity of one call to batch verify of Verify (not counting the calls to Challenge and
Single Verify) is O(Nnφ) bits. The communication complexity of one call to Single Verify, not counting the sub-
call to Challenge and fault localization, is O(n2κ) bits. The communication complexity of fault localization is
O(n2κ) +O(nκ) · BC. It follows that the communication complexity of Verify (including the calls to Single Verify)
amounts to m/N ·O(Nnφ+ n2κ) = O(m(nφ+κ)) bits plus O(nκ) · BC.

Fact 7 The probability that all uncorrupt players PV 6∈ DispK accept Single Verify yet either JγK is not a correct
sharing or γ 6= α · β (or both) is at most 2−κ. If a player PV 6∈ DispK rejects, and fault localization is performed,
then a new dispute is found.

If for all the batches BatchVerify succeeds, then the players remove the JrK and 〈〈r〉〉-components from the
entries of M′′seg to obtain Mseg.

Computing the Tags. Finally, we need to “commit” the players to their shares of the local base sharings
[s(d)] ∈ Sseg(d) (for every Pd) by giving them authentication tags. Specifically, the following needs to be achieved.
For every player PV (acting as verifier) and every player Pi (the player that needs to be committed to his
shares), player PV should obtain a random long-term key µ ∈ K3m′/ne, and for every player Pd and every block
[σ(d)]d ∈ Sseg(d) (where σ(d) ∈ Kq), player PV should additionally obtain a random one-time key ν ∈ K and
player Pi should be given the tag

τ = µ� σi(d) + ν .

Recall that σ(d) is obtained as follows. We parse the ` sharings [s(d)]d ∈ Sseg(d) over F as `/e sharings
[σ1(d)]d, . . . , [σ

`/e(d)]d over K, and collect the [σk(d)]’s into n blocks [σ1(d)], . . . , [σn(d)] with σ1(d), . . . ,σn(d) ∈
Kq with q = `/(ne).

We stress that per segment, every PV has one fixed long-term key µ per player Pi (and uses that very same
key for the different players Pd and the different blocks [σ(d)]d ∈ Sseg(d)). The short-term keys and the tags, on
the other hand, are fresh for every PV , Pd, Pi and block [σ(d)]d.

What makes the computation of these tags non-trivial, is the fact that no-one beyond PV should learn µ and
ν, and no-one beyond Pi and Pd knows (and may know) σi(d). This means, no single player can perform the
computation, but τ needs to be computed jointly by the players in a multi-party fashion.

For the computation (or, actually, the verification) of the tags, the players will need, for every Pd, a random
dummy sharing [σ◦(d)]d. Preparing these does not increase the asymptotic overall communication complexity.

Protocol TagComp

For every player PV and Pi with {PV , Pi} 6∈ Disp, the following is performed.

Key generation: By means of (a straightforward variant of) VerShareV , player PV generates q verified twisted sharings
dµ1ciV , . . . , dµqciV with Kudzu shares of randomly chosen µ = (µ1, . . . , µq) ∈ Kq.

Then, for every PV , Pi, Pd with Pi 6∈ DispV ∪ Dispd, and for every of the (n + 1) blocks [σk(d)]d ∈ Sseg(d) ∪ {[σ◦(d)]d},
the players perform

Tag computation: The players execute SingleTagCompV,i,d (given below); as a result, PV obtains νk and Pi obtains τk

(supposed to be τk = µ� σki (d) + νk).

Then, the players produce a challenge λ ∈ K by means of Challenge and perform batch verification for every PV , Pi, Pd
with Pi 6∈ DispV ∪ Dispd.

Batch verification: Pi computes and sends σ′i(d) =
∑n
k=1 λ

kσki (d) + σ◦i (d) and τ ′ =
∑n
k=1 λ

kτk + τ◦ to PV . PV accepts
if τ ′ = µ� σ′i(d) + ν′ where ν′ =

∑n
k=1 λ

kνk + ν◦, else, PV rejects.

For every PV , if he accepted batch verification for every Pi 6∈ DispV then he broadcasts “ok”, otherwise he broadcasts
“fault” together the smallest Pi that he did not accept. For the smallest PV that did not broadcast “ok” and the
corresponding Pi, fault localization is performed.

Fault localization: Pi sends τ1, . . . , τn and σ1
i (d), . . . ,σni (d) to PV , and PV computes τ◦ = τ ′ −

∑n
k=1 λ

kτk and σ◦i (d) =
σ′i(d)−

∑n
k=1 λ

kσki (d). Then, PV finds and broadcasts the smallest index k ∈ {◦, 1, . . . , n} for which τk 6= µ�σki (d)+νk,
and then fault localization for a single tag of SingleTagCompV,i,d is invoked.

Near-Linear Unconditionally-Secure MPC with a Dishonest Minority 15

Fact 8 If τk 6= µ�σki (d)+νk for some player Pd, some block [σk(d)], and some uncorrupt players Pi and PV with
Pi 6∈ Dispd, then, except with probability n/2κ, the following holds: PV broadcasts “fault”, or Pi or PV becomes
corrupted. If some PV broadcasts “fault”, then fault localization for a single tag of SingleTagCompV,i,d will be

invoked for some player Pd, some block [σk(d)], and some player Pi 6∈ Dispd∪DispV for which τk 6= µ�σki (d)+νk

or for which PV or Pi is corrupt.

The communication complexity to run key generation for every PV and Pi is n2 ·O(qnκ+n2κ) = O(mnφ+n4κ)
bits plus O(n2κ) · BC. By doing the O(n2) executions of key generations in parallel, and using the same challenge
in all instances of VerShare, permits to reduce the broadcast complexity at least to O(nκ)·BC. The communication
complexity of batch verification for every i, d and V , including fault localization (which is executed at most once),
but not counting the call to SingleTagComp, is O(n3qκ) = O(mnφ) bits plus O(n) · BC.

It remains to show how the tags are jointly computed by the players. Our description below is for a fixed
choice of PV , Pi, Pd and block [σ(d)]d = [σk(d)]d ∈ Sseg(d). For simplicity, we omit the argument d and write
[σ]d instead of [σ(d)]d, and we write (σ1, . . . , σq) for the coordinates of σ and (σ1

i , . . . , σ
q
i) for the coordinates

of σi.

The one-time key ν and the tag τ are chosen/computed by means of the following subprotocol, unless Pi is
in dispute with Pd or with PV . In the former case, his shares are fixed to 0 anyway, and µ and τ are simply both
set to 0, and in the latter, Pi and PV accuse each other anyway.

Protocol SingleTagCompV,i,d

Player PV chooses a random ν ∈ K and shares it (non-verifiably) as 〈ν〉iV with Kudzu shares. Similarly, player Pd shares
o = 0 (i.e., zero) over K as 〈o〉iV with Kudzu shares. The players locally compute 〈τ〉i =

∑q
k=1[σk]ddµkciV + 〈ν〉iV + 〈o〉id

and send their shares to Pi. If Pj ∈ Dispi then Pj sends his share of 〈τ〉i to Pi via a relay, i.e., via the first player that is
not in dispute with both Pi and Pj ; for any player Pj ∈ Corr, Pi takes 0 as this player’s share. Pi can now compute the
unique degree-2t polynomial that fits these shares and obtains τ as the evaluation at xi.

It is easy to verify that if all players follow the protocol, then Pi obtains τ = µ�σi+ν (where σi is determined
by [σ]d and ν by 〈ν〉iV). The communication complexity to run SingleTagCompV,i,d for every PV , Pi, Pd and for
every of the n blocks [σ] = [σ(d)] ∈ Sseg(d) is O(n5κ) bits.

Proposition 1 (Privacy of the keys). If PV remains honest and the adversary corrupts at most t− 1 players
different to Pi (which is e.g. satisfied if he eventually corrupts Pi), then the adversary learns no information on
µ = (µ1, . . . , µq) and ν, beyond τ =

∑
k σ

k
i µ

k+ν (for the correct shares σki , defined by the shares of the uncorrupt
players).

By the security of the underlying authentication scheme, this guarantees that if at some later point player Pi
lies about his shares, then he will be caught by PV except with probability 1/|K|. Interestingly, if the adversary
corrupts t players not including Pi (nor PV) then he actually learns player PV ’s long-term key µ (that PV uses
to verify Pi’s shares); however, in this case, Pi is guaranteed to remain honest and provide correct shares. So, this
does not help the adversary.

Proof. It is sufficient to prove the claim in case of a corrupt dealer Pd and a corrupt player Pi, and thus we
may assume that the adversary learns the shares of 〈τ〉i =

∑
k[σk]dµkciV + 〈ν〉iV , i.e., we may assume that all

the shares of o are 0. We understand [σk] as the correct sharing of some σk, determined by the shares of the
uncorrupt players. As such, the data structure 〈τ〉i =

∑
k[σk]dµkciV + 〈ν〉iV , and in particular τ , is well defined,

even though the corrupt players may perform additional computations on their shares of µk and ν. First note that
(by assumption) there are at most t − 1 corrupt players Pj that hold a (twisted) share of µk; thus, the dµkciV ’s
give away no information on the µk’s to the adversary. However, this is not sufficient to argue privacy, since the
adversary also learns all shares of 〈τ〉i =

∑
k[σk]dµkciV + 〈ν〉iV , which potentially may leak additional information

on the µk’s and on ν (beyond τ). To argue privacy, consider a twisted sharing dδ1ciV of an arbitrary δ1 ∈ K, but
with the additional property that the shares of all corrupt players are 0. Thus, the adversary cannot distinguish
the sharing dµ1ciV from dµ̃1ciV = dµ1 + δ1ciV = dµ1ciV + dδ1ciV . Furthermore, the adversary cannot distinguish the

16 Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky

sharing 〈ν〉iV from 〈ν̃〉iV = 〈ν − σ1δ1〉iV = 〈ν〉iV − [σ1]ddδ1ciV . But now, since

[σ1]ddµ̃1ciV +
∑
k>1

[σk]ddµkciV + 〈ν̃〉iV

= [σ1]ddµ1c+ [σ1]ddδ1ciV +
∑
k>1

[σk]ddµkciV + 〈ν〉iV − [σ1]ddδ1ciV = 〈τ〉i

it holds that the adversary has no information on whether µ1 and ν had been shared (even when given the
remaining µk’s), or µ̃1 and ν̃. This means that every pair (µ1, ν) with

∑
k σ

k
i µ

k + ν = τ is equally likely for the
adversary, and similarly one can argue for the other µk’s. ut

Proposition 2 (Privacy of the shares). If Pd remains honest, then the adversary learns no information on
σ = (σ1, . . . , σq).

Proof. The proof goes similar to the proof of Proposition 1. It is sufficient to prove the claim in case both Pi and
PV become corrupt, and thus we may assume that Pi learns the shares of 〈τ〉i =

∑
k[σk]dµkciV + 〈o〉id. Consider a

twisted sharing [δ1]d of an arbitrary δ1, but with the additional property that the shares of all corrupt players are
0. Thus, the adversary cannot distinguish the sharing [σ1]d from [σ̃1]d = [σ1 + δ1]d = [σ1]d + [δ1]d. Furthermore,
the adversary cannot distinguish the sharing 〈o〉id from 〈õ〉id = 〈o〉id − [δ1]iddµ1ciV , as both are (twisted) degree-2t
sharings of 0 with identical shares for the corrupt players (here we are using that the shares of [µ1]iV correctly lie
on a degree-t polynomial that vanishes at xi). But now, since

[σ̃1]ddµ1ciV +
∑
k>1

[σk]ddµkciV + 〈õ〉id

= [σ1]ddµ1c+ [δ1]ddµ1ciV +
∑
k>1

[σk]ddµkciV + 〈o〉id − [δ1]iddµ1ciV = 〈τ〉i

it holds that the adversary has no information on whether σ1 had been shared (even when given the remaining
σk’s), or σ̃1. This means that every pair σ1 is equally likely for the adversary, and similarly one can argue for the
other σk’s. ut

Note that the correctness of τ is verified within the batch verification of TagComp. In case a tag is detected to
be incorrect, the following fault localization for a single tag is performed.

Protocol SingleTagCompV,i,d

Fault localization for a single tag: The shares of dµ1ciV , . . . , dµqciV , 〈ν〉iV and 〈o〉id are sent to Pi, for each share by all
players that know it, e.g., the players (via relays for players Pj ∈ Dispi) and PV for the shares of dµkciV and Pd for
the shares of 〈o〉id.

Case 1: If PV sent an incorrect sharing dµkciV , then Pi broadcasts “accuse PV ”, and {Pi, PV } is added to Disp.
Similarly, if 〈o〉id sent by Pd is not a correct sharing of 0 then Pi broadcasts “accuse Pd”, and {Pi, Pd} is added
to Disp.

Case 2: If two players that do not involve a relay sent different values for the same share (e.g. Pj sent a different
value for µkj than PV), then Pi broadcasts an “open” command upon which the two players have to broadcast this
value. If the two players broadcast different values, then these two players are added to Disp. Else, Pi accuses the
player that broadcasted a different value than he had sent earlier, and this player is added to Disp along with Pi.

Case 3: If two players, one via a relay, sent different values for the same share (e.g. Pj sent a different value for µkj
than PV), then Pi broadcasts an “open” command upon which the two players and the relay have to broadcast
this value. If two of these three players broadcast different values, then these two players are added to Disp. Else,
Pi accuses the player not in Dispi that broadcasted a different value than he had sent earlier, and this player is
added to Disp along with Pi.

Case 4: If τj 6=
∑
k σ

k
j µ

k
j + νj + oj for some player Pj then the following is done. If Pj 6∈ Dispi then Pi broadcasts

“accuse Pj”, and {Pi, Pj} is added to Disp. If Pj ∈ Dispi then Pi broadcasts a request to have the relay resolve
the issue, and the relay then broadcasts “accuse Pj” if τj 6=

∑
k σ

k
j µ

k
j + νj + oj for the values received from Pj ,

and else “accuse PV ”. The relay together with the accused player is then added to Disp.
Case 5: If none of the above applies, Pi concludes that τ is actually correct and broadcasts “accuse PV ”, and
{Pi, PV } is added to Disp.

Near-Linear Unconditionally-Secure MPC with a Dishonest Minority 17

Fact 9 If τ 6= µ� σi + νk, or PV or Pi is corrupt, and Pi 6∈ Dispd ∪ DispV , then fault localization for a single
tag of TagCompV,i,d finds a new dispute.

The communication complexity of the above fault localization, which is invoked at most once (per segment),
is O(qnκ) = O(`φ) = O(mφ/n) bits plus O(κ) · BC. Adding up, the communication complexity of performing
TagComp is O(mnφ+ n5κ) +O(nκ) · BC.

One More Auxiliary Structure. In order to deal with the dependencies of the second-level shares of the
two-level sharings JwK ∈ ∪M, the players also produce t random and fully independent two-level sharings of zero
in the preparation phase. This is done by means of (a straightforward modification of) VerShared: every player
Pd produces t random and independent sharings [o1(d)], . . . , [ot(d)] of zero, and JoiK is set to be the two-level
sharing [oi(1)], . . . , [oi(n)] with oi =

∑
d o

i(d) for i ∈ {1, . . . , n}. The [oi(d)]’s are considered as part of S(d) and
are authenticated together with the other local base sharings, as part of a block [σ(d)]d. This can be done without
increasing the asymptotic communication complexity. The list of the two-level sharings Jo1K, . . . , JotK is denoted
by O.

3.3 The Input Phase

For every player Pi 6∈ Corr, and for every input x ∈ F of that player to the circuit, a sharing JxK needs to be
prepared. This job is divided into n2 segments, where in each segment, m = cI/n

2 such inputs x1, . . . , xm are taken
care of. We assume for simplicity that for each segment, the corresponding inputs x1, . . . , xm belong to one player
Pi. For the preparation of Jx1K, . . . , JxmK, the players make use of m multiplication triples (Ja1K, Jb1K, Jc1K) ∈M,
which are then removed from M.

Protocol Prepare Inputs

Every player not in Dispi sends his shares of [a1], . . . , [am] to Pi. If not all the sharings (not counting shares of players
in Dispi) form correct degree-t sharings, then Pi broadcasts “fault” and fault localization 2 is performed. Otherwise, Pi
reconstructs and sends d1 = x1 − a1, . . . , dm = xm − am to all the players not in Corr, using a relay for the players in
Dispi, broadcasts “ok”, and verification is performed.

Verification: The players generate a challenge λ by means of Challenge, and every player (including Pi) not in Corr
broadcasts δ =

∑
k λ

kdk. If a player Pj broadcasts a different value than Pi, then fault localization 1 is performed for
the smallest such Pj . Otherwise, the players compute JxkK locally as JxkK = dk + JakK for k = 1, . . . ,m and halt.

Fault localization 1: If {Pi, Pj} 6∈ Disp then {Pi, Pj} is added to Disp and Prepare Inputs halts. Otherwise, the relay
broadcasts δ, and the relay together with the player that broadcasted a different value are added to Disp, and
Prepare Inputs halts.

Fault localization 2: Pi broadcasts the smallest index k for which he had received inconsistent shares. The players not
in Corr then broadcast their respective shares of [ak]. If these shares form a correct sharing, then Pi broadcasts
“accuse Pj”, where Pj is the smallest player not in Dispi that broadcasted a different share than he had initially
sent to Pi, and {Pi, Pj} is added to Disp and Prepare Inputs halts. Otherwise, the players take a new JoK from O and
broadcast their shares of [ak]+ [o]. If these shares are inconsistent then the players apply the procedure AnalyzeSharing
below to the sharing JwK = JakK + JoK. Else, the (implicitly announced) shares of [o] are inconsistent, and the players
apply AnalyzeSharing to the sharing JwK = JoK. As a result, a new corrupt player is identified.

The reason for involving the zero-sharing JoK ∈ O in fault localization 2 is the following. In order to deal
with the inconsistent shares of [ak], the players need to look at the second-level shares. However, the second-level
shares of different secrets are not fully independent, and thus revealing the second-level shares of JakK would leak
information on other secrets. Therefore, we pad JakK with JoK, a sharing of zero with fully independent second-level
shares, and analyze the second-level shares of either JakK + JoK or JoK.

The communication complexity of Prepare Inputs (not counting the possible call to AnalyzeSharing) is of the
order O(mnφ) +O(nκ) · BC.

Fact 10 Except with probability m/2κ, after Prepare Inputs the players hold correct sharings Jx1K, . . . , JxmK (of
player Pi’s input if he remains honest) or a new dispute is found or AnalyzeSharing is performed on a sharing
JwK for which the players not in Corr have broadcast inconsistent shares [w]. Also, if Pi remains honest then no
information on x is leaked to the adversary.

18 Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky

The procedure AnalyzeSharing below allows the players to resolve the following problem: how to find a dishonest
player in case the players not in Corr have broadcasted inconsistent Shamir shares of a two-level shared value
JwK = ([w(1)]1, . . . , [w(n)]n) that is a known linear combination of the sharings in ∪M plus a zero-sharing
JoK ∈ O, and thus where every [w(d)]d is a known linear combination of the local base sharings [s(d)]d ∈ S(d),
i.e., [w(d)]d =

∑
s(d)∈S(d) us(d)[s(d)]d. Recall that S(d) can be partitioned into n3 blocks [σ(d)]d with σ(d) ∈ Kq,

with each such block being authenticated (for every player PV). For such a block [σ(d)]d, we write [w(d)|σ(d)]d
for
∑
s(d)∈σ(d) us(d)[s(d)]d, i.e., for the restriction of the linear combination to the sharings in block σ(d).

Protocol AnalyzeSharing

Every player Pj 6∈ Corr broadcasts the subshares wj(1), . . . , wj(n) he holds of JwK. If for some player Pj they do not add
up to the share wj , then Pi is declared dishonest and AnalyzeSharing halts. Otherwise, the players proceed as follows. Let
d be the smallest number such that the subshares wj(d) do not form a correct Shamir sharing for the players Pj 6∈ Corr.
If Pd 6∈ Corr then Pd broadcasts the index i of a player Pi 6∈ Corr who broadcasted an incorrect subshare wi(d) (note
that it may be that {Pd, Pi} ∈ Disp). Then, the players check the correctness of wi(d), and thus can identify Pd or Pi
to be dishonest, by means of fault localization 1, given below. Otherwise, i.e. if Pd ∈ Corr, the players engage into fault
localization 2 to identify a dishonest player Pi that announced an incorrect share wi(d).

Fault localization 1: By means of a three-round search (with Pi broadcasting n values in each round), the players identify
a block σ of S(d), such that the share zi(d) of [z(d)]d = [w(d)|σ(d)]d claimed by Pi is claimed to be incorrect by Pd.
Note that by definition, zi(d) is determined by player Pi’s share σi(d). Thus, the players can now verify the correctness
of zi(d) as follows.

Check share: For every player PV 6∈ Corr, player Pi sends σi(d) to PV , together with the corresponding tag τ . If zi(d)
is consistent with σi(d), and if τ = µ�σi(d) + ν for the corresponding µ and ν held by PV , then PV broadcasts
“correct”; else, PV broadcasts “incorrect”.

If t+ 1 or more players PV broadcast “incorrect”, then Pi is declared corrupt and added to Corr; else, Pd is declared
corrupt and added to Corr. Then, AnalyzeSharing halts.

Fault localization 2: By means of a three-round search (with every player broadcasting n values in each round), the players
identify a block σ of S(d), such that the players not in Corr claim an inconsistent sharing of [z(d)]d = [w(d)|σ(d)]d.
Now, for every share zi(d) (with Pi 6∈ Corr), its correctness is verified as in fault localization 1 by means of check share.
The first player whose share is claimed incorrect by t+ 1 or more players PV , is declared corrupt and added to Corr.

Fact 11 When AnalyzeSharing is performed on a sharing JwK for which the players not in Corr have broadcast
inconsistent shares [w], then a new corrupt player is identified except with probability n/2κ. Also, the adversary
learns no information beyond what he already knows and/or can simulate himself.

The most expensive part of AnalyzeSharing is fault localization 2. The search involves broadcasting 3n2 elements
in F. Then, invoking check share n times requires O(n2 · `/n) = O(M/n2) elements in F to be communicated
and n2 bits to be broadcasted. Since AnalyzeSharing finds a new corrupt player, and not just a dispute, it will be
invoked at most t times during the whole multi-party computation, and thus contributes O

(
Mφ/n) +O(n3φ) ·BC

to the total communication complexity.

3.4 The Computation Phase

During the computation phase, values JwK need to be reconstructed, where each JwK is a linear combination of the
global base sharings. This job is divided into n2 segments, where in each segment, m = (cM + cO)/n2 such values
JwK need to be reconstructed. These values JwK are in general determined adaptively, i.e., depend on previously
reconstructed values, with the exact dependencies determined by the circuit. We assume here that the circuit is
not too “narrow” so that in each segment seg, the set Wseg of shared values to be reconstructed can be divided
into m/N blocks W1, . . . ,Wm/N of average size N = nκ each, so that the values of each block only depend on
the values of the previous blocks, and thus can be reconstructed simultaneously.

The JwK’s are reconstructed block-wise by some designated player, and after each block, it is verified that
he reconstructed correctly. If some fault is detected, then the players try to detect the cause of the fault; this is
tedious but in the end rather straightforward. If this leads to a new dispute between two players, then these two
players are added to Disp and the segment is repeated.

Near-Linear Unconditionally-Secure MPC with a Dishonest Minority 19

Protocol Rec
Let PK (the “king”) be the first player not in Corr. Sequentially, for each block Wk (where k = 1, . . . ,m/N), consisting
of sharings Jw1K, . . . , JwN K to be reconstructed, the following block-reconstruction and block-verification sub-protocols are
performed. If one of these blocks fails for some player Pi (as specified below), then in all the subsequent blocks, he sends
some default symbol ⊥ for every message he is supposed to send (instead of the actual message).

Block-reconstruction: Every player not in DispK sends his shares of [w1], . . . , [wN] to PK . If all the sharings (not counting
shares of players in DispK) form correct degree-t Shamir sharings (this includes receiving no ⊥ as share), then PK
reconstructs and sends w1, . . . , wN to all the players not in Corr, using a relay for the players in DispK . Otherwise,
PK sends ⊥ instead, and the block fails for him.

Block-verification: The following is done for every player PV (acting as verifier). PV chooses a random λV ∈ K and sends
it to every player not in DispV , and every player not in DispV sends his share of [ωV] =

∑
k λ

k
V [wk] to V . If these

shares lie on a degree-t polynomial and reconstruct to ωV =
∑
k λ

k
V w

k, then PV accepts the reconstruction of this
block; otherwise, this block fails for PV .

At then end, every player PV broadcasts “ok” if no block failed for him, or else broadcasts “fault”. In case all players
broadcast “ok”, Rec halts. Otherwise, the following fault localization is performed.

Fault localization: Every player PV that broadcasted “fault”, broadcasts the index k for the smallest block Wk that
failed for him, together with an identifier that specifies the cause of the failure, i.e., whether (1) he received ⊥ from
PK instead of w1, . . . , wN , (2) he received ⊥ from some player Pi instead of the share ωVi , (3) the shares do not form
a correct sharing, or (4) the shares do not reconstruct to ωV =

∑
k λ

k
V w

k. Now, a fixed verifying player PV is chosen
among all PV 6∈ Corr that broadcasted the smallest value for k. If there is such a PV with PV 6∈ DispK among those,
then the first with this property is selected; otherwise, the first among all (that broadcasted the smallest value for k).
Depending on the identifier this PV broadcasted, one of the following is performed (where the case number corresponds
to the above enumeration) for the smallest block k PV complained about.

Case 1: If PV ∈ DispK , and hence he had received ⊥ from his relay (which by choice of PV has not complained about
this block), PV and his relay are added to Disp and Rec halts. Otherwise, i.e. if PV 6∈ DispK , the players proceed
as follows. If PK had not sent ⊥ to PV (but w1, . . . , wN), then PK broadcasts “accuse PV ”, and {PK , PV } is added
to Disp and Rec halts. Otherwise, PK broadcasts the index k of the first sharing [wk] for which the reconstruction
failed. The players not in Corr then need to broadcast their shares of [wk]. If these shares form a correct sharing,
then PK broadcasts “accuse Pi”, where Pi 6∈ DispK is a player that had sent a different share to PK during
the block-reconstruction procedure, and {PK , Pi} is added to Disp and Rec halts. Otherwise, i.e. if the shares do
not form a correct sharing, the players identify a corrupt player Pj 6∈ Corr, and Pj is added to Corr and Rec
halts. Identifying Pj is done by taking a new JoK from O, broadcasting the shares of [wk] + [o], and by applying
AnalyzeSharing to JwK = JwkK + JoK or JwK = JoK, depending on which is incorrect.

Case 2: PV broadcasts “accuse Pi”, where Pi 6∈ DispV is a player that had sent ⊥ to PV instead of a share, and
{PV , Pi} is added to Disp and Rec halts.

Case 3: PV broadcasts λV . If a player Pi 6∈ DispV had received a different value for λV during block-verification, then
he broadcasts “accuse PV ”, and {Pi, PV } is added to Disp and Rec halts. Otherwise, every player Pi 6∈ DispV
sends his shares w1

i , . . . , w
N
i of [w1], . . . , [wN] to PV . If ωVi 6=

∑
k λ

k
V w

k
i for some player Pi, then PV broadcasts

“accuse Pi”, and {PV , Pi} is added to Disp and Rec halts. Else, PV broadcasts the smallest index k for which the
shares wki do not form a correct sharing. The players not in Corr are then required to broadcast their shares of
[wk]. If the broadcast shares do form a correct sharing, then PV broadcasts “accuse Pi”, where Pi 6∈ DispK is a
player that had sent a different share wki to PV before, and {PV , Pi} is added to Disp and Rec halts. Otherwise,
the players take a new JoK from O and broadcast their shares of [wki] + [o], and, as in case 1, use AnalyzeSharing
to identify a corrupt player Pj 6∈ Corr, and Pj is added to Corr and Rec halts.

Case 4: If PV ∈ DispK , and hence he had received w1, . . . , wN from his relay (which by choice of PV has not
complained about this block), PV and his relay are added to Disp and Rec halts. Otherwise, {PV , PK} is added
to Disp and Rec halts.

Protocol Rec (including a possible call to fault localization, given below) requires m/N · O(Nnφ + n2κ) =
O(mnφ) bits of communication, plus O(n) broadcasts. In case the circuit is “narrow” so that the blocks Wk need
to be chosen smaller than specified above, then the communication amounts to O(mnφ) bits plus an additional
O(n2κ) bits per block. Note that in total (over all segments), the number of blocks is bounded by the multiplicative
depth dM of the circuit.

Fact 12 Except with probability mn/2κ, at the end of Rec the uncorrupt players hold the correct openings of all
JwK ∈ Wseg or fault localization is performed. In the latter case, a new dispute is found. Also, the adversary learns
no information beyond w and what he already knows and/or can simulate himself.

20 Eli Ben-Sasson, Serge Fehr, and Rafail Ostrovsky

4 Conclusion

We showed that MPC with unconditional security against t < n/2 corrupt players is possible with amortized
asymptotic near-linear communication complexity O(n log n) bits per multiplication gate for binary circuits. For
circuits over a bigger field F, the log n term is replaced by max{log n, log |F}. This matches the communication
complexity of the best scheme in the much simpler honest-but-curious setting. Room for improvement exists in
the terms of the communication complexity that are circuit-size independent, for instance in the O(n7κ) term.
Improving this term permits the amortization to step in for smaller circuits.

Acknowledgment

E.B. was supported by the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant
agreement number 240258. S.F. is grateful to UCLA for being a regular host; it is thanks to these visits that
this project got started and crucial progress was made. R.O. was supported by NSF grants 0830803, 09165174,
1065276, 1118126 and 1136174, US-Israel BSF grant 2008411, B. John Garrick Foundation, OKAWA Foundation,
IBM, Lockheed-Martin Corporation and the Defense Advanced Research Projects Agency through the U.S. Office
of Naval Research under Contract N00014-11-1-0392. The views expressed are those of the author and do not
reflect the official policy or position of the Department of Defense or the U.S. Government.

References

1. D. Beaver. Multiparty protocols tolerating half faulty processors. In Advances in Cryptology—CRYPTO ’89, volume
435 of LNCS, pages 560–572. Springer, 1989.

2. D. Beaver. Efficient multiparty protocols using circuit randomization. In Advances in Cryptology—CRYPTO ’91,
volume 576 of LNCS, pages 420–432. Springer, 1991.

3. Z. Beerliová-Trub́ıniová and M. Hirt. Efficient multi-party computation with dispute control. In Theory of Cryptography
Conference (TCC), volume 3876 of LNCS, pages 305–328. Springer, 2006.

4. Z. Beerliová-Trub́ıniová and M. Hirt. Perfectly-secure MPC with linear communication complexity. In Theory of
Cryptography Conference (TCC), volume 4948 of LNCS, pages 213–230. Springer, 2008.

5. M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-cryptographic fault-tolerant distributed
computation. In 20th Annual ACM Symposium on Theory of Computing (STOC), pages 1–10, 1988.

6. E. Ben-Sasson, S. Fehr, and R. Ostrovsky. Near-linear unconditionally-secure multiparty computation with a dishonest
minority. In Advances in Cryptology—CRYPTO ’09, volume 7417 of LNCS. Springer, 2012.

7. J. L. Carter and M. N. Wegman. Universal classes of hash functions. Journal of Computer and System Sciences,
18(2):143–154, 1979.

8. D. Chaum, C. Crépeau, and I. Damg̊ard. Multiparty unconditionally secure protocols. In 20th Annual ACM Symposium
on Theory of Computing (STOC), pages 11–19, 1988.

9. D. Chaum, I. B. Damg̊ard, and J. Graaf. Multiparty computations ensuring the privacy of each party’s input and the
correctness of the result. In Advances in Cryptology—CRYPTO ’87, volume 293 of LNCS, pages 87–119. Springer,
1987.

10. R. Cramer, I. Damg̊ard, S. Dziembowski, M. Hirt, and T. Rabin. Efficient multiparty computations secure against an
adaptive adversary. In Advances in Cryptology—EUROCRYPT ’99, volume 1592 of LNCS, pages 311–326. Springer,
1999.

11. R. Cramer, I. Damg̊ard, and U. Maurer. General secure multi-party computation from any linear secret-sharing scheme.
In Advances in Cryptology—EUROCRYPT ’00, volume 1807 of LNCS, pages 316–334. Springer, 2000.

12. R. Cramer, I. Damgard, and V. Pastro. On the amortized complexity of zero knowledge protocols for multiplicative
relations. http://eprint.iacr.org/2011/301, 2011.

13. I. Damg̊ard and Y. Ishai. Scalable secure multiparty computation. In Advances in Cryptology—CRYPTO ’06, volume
4117 of LNCS, pages 501–520. Springer, 2006.

14. I. Damg̊ard, Y. Ishai, and M. Krøigaard. Perfectly secure multiparty computation and the computational overhead of
cryptography. In Advances in Cryptology—EUROCRYPT ’10, volume 6110 of LNCS, pages 445–465. Springer, 2010.

15. I. Damg̊ard, Y. Ishai, M. Krøigaard, J. B. Nielsen, and A. Smith. Scalable multiparty computation with nearly optimal
work and resilience. In Advances in Cryptology—CRYPTO ’08, volume 5157 of LNCS, pages 241–261. Springer, 2008.

16. I. Damg̊ard and J. B. Nielsen. Scalable and unconditionally secure multiparty computation. In Advances in
Cryptology—CRYPTO ’07, volume 4622 of LNCS, pages 572–590. Springer, 2007.

Near-Linear Unconditionally-Secure MPC with a Dishonest Minority 21

17. S. Goldwasser, S. Micali, and A. Wigderson. How to play any mental game or a completeness theorem for protocols
with honest majority. In 19th Annual ACM Symposium on Theory of Computing (STOC), pages 218–229, 1987.

18. M. Hirt and U. Maurer. Robustness for free in unconditional multi-party computation. In Advances in Cryptology—
CRYPTO ’01, volume 2139 of LNCS, pages 101–118. Springer, 2001.

19. M. Hirt and J. B. Nielsen. Upper bounds on the communication complexity of optimally resilient cryptographic
multiparty computation. In Advances in Cryptology—ASIACRYPT 2005, volume 3788 of LNCS, pages 79–99. Springer,
2005.

20. M. Hirt and J. B. Nielsen. Robust multiparty computation with linear communication complexity. In Advances in
Cryptology—CRYPTO ’06, volume 4117 of LNCS, pages 463–482. Springer, 2006.

21. T. Rabin and M. Ben-Or. Verifiable secret sharing and multiparty protocols with honest majority. In 21st Annual
ACM Symposium on Theory of Computing (STOC), pages 73–85, 1989.

22. A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613, November 1979.
23. A. Yao. Protocols for secure computations. In 23rd Annual IEEE Symposium on Foundations of Computer Science

(FOCS), pages 160–164, 1982.

