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Abstract

It is well-known that the k-wise product of one-way functions remains one-way, but may no
longer be when the k inputs are correlated. At TCC 2009, Rosen and Segev introduced a new
notion known as Correlated Product secure functions. These functions have the property that a
k-wise product of them remains one-way even under correlated inputs. Rosen and Segev gave a
construction of injective trapdoor functions which were correlated product secure from the existence
of Lossy Trapdoor Functions (introduced by Peikert and Waters in STOC 2008).

The first main result of this work shows the surprising fact that a family of correlated prod-
uct secure functions can be constructed from any one-way function. Because correlated product
secure functions are trivially one-way, this shows an equivalence between the existence of these two
cryptographic primitives.

In the second main result of this work, we consider a natural decisional variant of correlated
product security. Roughly, a family of functions are Decisional Correlated Product (DCP) secure if
f1(x1), . . . , fk(x1) is indistinguishable from f1(x1), . . . , fk(xk) when x1, . . . , xk are chosen uniformly
at random.

We argue that the notion of Decisional Correlated Product security is a very natural one. To
this end, we show a parallel from the Discrete Log Problem and Decision Diffie-Hellman Problem to
Correlated Product security and its decisional variant. This intuition gives very simple constructions
of PRGs and IND-CPA encryption from DCP secure functions. Furthermore, we strengthen our
first result by showing that the existence of DCP secure one-way functions is also equivalent to the
existence of any one-way function.

When considering DCP secure functions with trapdoors, we give a construction based on Lossy
Trapdoor Functions, and show that any DCP secure function family with trapdoor satisfy the security
requirements for Deterministic Encryption as defined by Bellare, Boldyreva and O’Neill in CRYPTO
2007. In fact, we also show that definitionally, DCP secure functions with trapdoors are a strict
subset of Deterministic Encryption functions by showing an example of a Deterministic Encryption
function which according to the definition is not a DCP secure function.
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1 Introduction

In 2008, Peikert and Waters [PW08] introduced the notion of Lossy Trapdoor Functions (LTDFs), and
used them as a building block to create encryption secure against a Chosen-Ciphertext Attack (CCA).
In a recent result [RS09], Rosen and Segev considered a relaxation of the primitive that they called
Correlated Product secure functions. Intuitively, these are families of one-way trapdoor functions whose
k-wise products remain one-way even if the inputs on each coordinate are correlated. Rosen and Segev
showed that the original Peikert-Waters Construction of IND-CCA secure encryption remained secure
when instantiated with Correlated Product secure injective one-way trapdoor functions. They went
on to show that Lossy Trapdoor Functions were Correlated Product secure, yet there was a black-box
separation between LTDFs and Correlated Product secure one-way trapdoor permutations.

Correlated Product secure functions appear to be simpler to achieve than Lossy Trapdoor Functions
which have a statistical lossiness requirement. Despite this appearance of relative simplicity there have
been few examples of correlated product secure functions that are not Lossy Trapdoor Functions. The
notable exceptions are the constructions given in [Pei09] and [FGK+10].

In 2007, Bellare, Boldyreva, and O’Neill [BBO07] introduced a new notion known as Deterministic
Encryption (DE). The deterministic property of the encryption affords the scheme many practical
applications, such as searchable encryption, but at the same time requires new security definitions.
Subsequent works [BFO08, BFOR08] demonstrate equivalences between various definitions of DE and
show that the existence of a special kind of LTDFs imply the existence of deterministic encryption,
which in turn implies the existence of IND-CCA secure cryptosystems.

1.1 Our Results

In this work, we introduce (in Section 3) a notion of Decisional Correlated Product (DCP) security,
which strengthens the definition of Rosen and Segev. We argue that this is a natural stepping-stone
between Lossy Trapdoor Functions and Correlated Product secure functions. Intuitively, these are
families of functions such that for any k functions f1, . . . , fk, the distributions {(f1(x1), . . . , fk(x1))}
and {(f1(x1), . . . , fk(xk))} are indistinguishable when x1, . . . , xk are chosen uniformly at random. Of
course, a family of constant functions satisfies this definition, so for non-trivial results, we either specify
that the functions be (individually) one-way or that they be injective with large domain. It turns out
that, under either one of these assumptions, these families can be shown to also be Correlated Product
secure. This is proven in Section 4 as the following lemmas:
Lemma 2. If F = (G,F ) is a family of k-DCP secure functions with super-polynomial size domain
that are injective, then F is k-correlated product secure.
Lemma 3. If F = (G,F ) is a family of k-DCP secure one-way functions, then F is k-correlated product
secure.

In Section 5, we look at a number theoretic connection between DCP security and regular CP
security. Roughly speaking, we demonstrate that the function family fs(x) = sx is CP secure if the
Discrete Log assumption holds, and is DCP secure if the DDH assumption holds. Of independent
interest, we show that the classical DDH-based pseudorandom generator can be generalized to use DCP
secure functions. We show there exists a PRG with linear stretch that only makes 2 invocations to DCP
secure one-way permutations that are not necessarily trapdoor.

Our first main result considers families of one-way functions that are DCP secure. We show that
such families are automatically (plain) Correlated Product secure, and demonstrate a construction from
any pseudorandom function family. Due to the celebrated fact that a PRF family can be constructed
from any one-way function ([GGM86, ILL89, HILL99]), we obtain an equivalence between the existence
of one-way functions, DCP secure one-way function families, and CP secure function families. This is
proven in Section 6 as the following theorem:
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Theorem 1. The following statements are equivalent:

1. One-way functions exist.

2. k-DCP secure families of one-way functions exist.

3. k-CP secure families of one-way functions exist.

It is interesting to note that Correlated Product secure functions without trapdoor are equivalent
to one-way functions, while the recent results of Vahlis [Vah10] show that Correlated Product secure
functions with trapdoor cannot be constructed from enhanced one-way trapdoor permutations.

Our second main result considers DCP secure function families which also have trapdoor. We
investigate the connection between this and other primitives. In Section 7, we show a construction of
these one-way trapdoor DCP secure families from “universally lossy” LTDFs1. This is stated as the
following theorem:
Theorem 2. Let ε(λ) be any function such that 1/2ε(λ) is negligible in λ. Let F = (G,F ) be a family
of LTDFs on domain {0, 1}λ, where the lossy mode is universal and loses λ/2 + ε(λ) bits of the input.
Then F is a 2-DCP secure injective trapdoor function.

Finally, in Section 8, we show that these families definitionally satisfy the security requirements of
Deterministic Encryption, but the converse is not true in general. We informally have:
Theorem 3 (Informal). DCP secure function families with trapdoor are also PRIV1 secure deter-
ministic encryption schemes.

1.2 Previous Work

In [PW08] Peikert and Waters introduced a new paradigm for constructing IND-CCA secure encryp-
tion based on the newly defined primitive Lossy Trapdoor Functions (LTDFs). Their construction of
IND-CCA was natural and appealing, but LTDFs proved difficult to construct because of their strong
statistical lossiness properties. Despite the power of LTDFs, in [PW08] they were able to give construc-
tions from DDH and Lattice-based assumptions, and the authors of [BFOR08] and [RS08, FGK+10]
(independently) found identical efficient constructions of LTDFs from Paillier’s Decisional Composite
Residuousity Assumption.

In [RS09], Rosen and Segev examined which properties of LTDFs were necessary to construct IND-
CCA secure encryption via the methods in [PW08]. With this goal, they defined Correlated Product
secure functions, and gave a construction of IND-CCA secure encryption from Correlated Product se-
cure functions with trapdoor paralleling the construction in [PW08]. One of the main difficulties in
constructing Lossy Trapdoor Functions has been finding candidate functions where the lossy branch
is statistically lossy (i.e. the image of the function is significantly smaller than the domain). Corre-
lated Product secure functions do not have these statistical requirements, and thus should be easier
to construct than LTDFs. This intuition was reinforced in [RS09] where they showed that LTDFs are
Correlated Product secure, and showed a black-box separation in the opposite direction. Correlated
Product secure functions remain difficult to realize, however, and the recent results of Vahlis [Vah10],
show a black-box separation between (enhanced) one-way trapdoor permutations and Correlated Prod-
uct Secure functions.

The works [BFO08, BFOR08] show many different relationships between DE and other primitives.
Indeed, they show that any LTDF is almost immediately a DE scheme, and show how a weaker notion
of DE can be constructed from any one-way trapdoor permutation.

1This slight addition was introduced in [BFO08] to construct DE from LTDFs. We describe this in detail when we give
our construction.
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2 Preliminaries

If A is a PPT machine, then we use a $← A to denote running the machine A and obtaining an output,
where a is distributed according to the internal randomness of A. For a PPT machine A, we use
coins(A) to denote the distribution of the internal randomness of A. So the distributions {a $← A} and

{r $← coins(A) : a = A(r)} are identical. If R is a set, we use r $← R to denote sampling uniformly from
R.

If X and Y are families of distributions indexed by a security parameter λ, we use X ≈s Y to mean
the distributions X and Y are statistically close, i.e. for all polynomials p and sufficiently large λ we
have the statistical distance ∆(X,Y ) is sufficiently small:

∆(X,Y ) :=
∑
x

|Pr[X = x]− Pr[Y = x]| < ε(λ),

where ε(λ) is a negligible function. We use X ≈c Y to mean X and Y are computationally close, i.e.
for all PPT adversaries A, all polynomials p, and all sufficiently large λ,∣∣Pr[AX = 1]− Pr[AY = 1]

∣∣ < ε(λ),

where ε(λ) is a negligible function.
We define what we mean by the k-wise product of a Function Family.

Definition 1 (k-wise product). Let F = (G,F ) be a collection of efficiently computable functions. G
is a (randomized) algorithm which takes as input a size parameter 1λ and generates a key (or seed) s
for F . Each function F (s, ·) takes as input an element of some domain X and outputs some value in the
range Y , both of which implicitly depend on the parameter λ. For notational purposes, we also write
Fs(·) = F (s, ·).
For k ≥ 2, we define a family of k-wise products Fk = (Gk, F k) as follows:

• Key Generation:

Gk(1λ) independently generates si
$← G(1λ), for i = 1, . . . , k.

• Evaluation:
To evaluate F k on input ((s1, . . . , sk), (x1, . . . , xk)), we define

F k((s1, . . . , sk), (x1, . . . , xk)) = (Fs1(x1), . . . , Fsk
(xk)).

Definition 2 (Pairwise Independence). A family of functions H such that h : X → Y is called pairwise
independent if for all x1 6= x2 in X and for all y1, y2 ∈ Y , we have

Pr
h

$←H
[h(x1) = y1 and h(x2) = y2] =

1
|Y |2

.

In particular this says that if h is chosen uniformly from H, then h(x1) and h(x2) are uniformly and
independently distributed for all x1 6= x2.

We remind the reader of the leftover hash lemma [HILL99, ILL89, IZ89], which states that a pairwise
independent hash function acts as a strong extractor. In particular the hash function “smooths out” a
min-entropy source to look nearly uniform.

Lemma 1 (Leftover Hash Lemma). Let H be a pairwise independent hash family, such that for all
h ∈ H, h : X → Y . Let DX be a distribution over X such that the min entropy H∞(DX) ≥ log |Y | +
2 log(1/ε). Then if we define Λ1 = {h $← H;x $← DX : (h, h(x))}, and Λ2 = {h $← H; y $← Y : (h, y)},
we have ∆(Λ1,Λ2) ≤ ε.
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2.1 Correlated Product Security

We review the definition of Correlated Product security, first defined in [RS09].

Definition 3 (Correlated Product Security). Let F = (G,F ) be a collection of efficiently computable
functions. Let Ck = Ck(1λ) be a distribution. We say that F is secure under Ck-correlated products if
Fk is one-way with respect to the input distribution Ck. We henceforth only consider the case where
Ck is the uniform k-repetition distribution, i.e. k copies of a uniformly chosen input.

We refer the reader to the Appendix for reminders of the definitions of the Discrete Log and DDH
assumptions, Deterministic Encryption, Lossy Trapdoor Functions, and Pseudorandom Functions.

3 Decisional Correlated Product Security

In this work we introduce the notion of Decisional Correlated Product (DCP) security, which can be
viewed as the decisional variant of Correlated Product security introduced in [RS09]. In [RS09], they
primarily took Ck to be the uniform k-repetition distribution, i.e. Ck uniformly samples x and outputs
k copies of x. We will also primarily focus on the k-repetition distribution, although we will consider a
decisional variant of the problem.

First, we remark that Correlated Product security seems to be a much stronger notion than simply
one-wayness. For example, the map fe : x 7→ xe mod n, is one-way trapdoor permutation under the
RSA assumption. However, given fe1(x), fe2(x), if gcd(e1, e2) = 1, we can immediately recover x, by
using the extended Euclidean algorithm to calculate s, t such that se1 + te2 = 1, and noticing that
(xe1)s(xe2)t = x. This example also shows that Decisional Correlated Product security does not follow
immediately from Computational Correlated Product security, because if d1, d2, d3 are relatively prime,
and ei = edi for some fixed e, then fe1 , fe2 , fe3 will be Computationally Correlated Product secure under
the RSA assumption, but will not be Decisional Correlated Product secure by a similar argument.

Definition 4 (Decisional Correlated Product Security). Let F = (G,F ) be a collection of efficiently
computable functions. We say that Fk is k-wise Decisional Correlated Product secure if for all efficient
PPT adversaries A, ∣∣∣Pr

[
Aindepdist = 1

]
− Pr

[
Arepdist = 1

]∣∣∣ < ν

for some negligible function ν, and where the games indepdist and repdist are defined as in Figure 1.

Independent Repetition

s1
$← G(1λ), . . . , sk

$← G(1λ) s1
$← G(1λ), . . . , sk

$← G(1λ)

x1
$← X, . . . , xk

$← X x
$← X

b
$← A(s1, . . . , sk, Fs1(x1), . . . , Fsk

(xk)) b
$← A(s1, . . . , sk, Fs1(x), . . . , Fsk

(x))
Return b Return b

Figure 1: Decisional Correlated Product Security

To illustrate the power of this definition, we construct a very natural IND-CPA secure encryption
from any family of 2-DCP secure injective trapdoor functions. Let the public key be F1, F2, h where
h is a pairwise independent hash function. Define encryption as E(m, r) = (F1(r), h(F2(r)) ⊕m). To
decrypt, we simply invert F1 to recover r, from this we can recover h(F2(r)) and recover the message.
If Fi have domain {0, 1}λ, and h maps from the range of Fi to {0, 1}λ/2, then the leftover hash lemma
tells us that (F1(r1), h(F2(r2)) ⊕m) is statistically close to (F1(r1), h(F2(r2))). So if y0, y1 are chosen
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from the repetition-distribution (y0, h(y1) ⊕m) is a valid ciphertext, while if (y0, y1) are chosen from
the independent distribution (y0, h(y1) ⊕m) is independent of m, thus this scheme will be IND-CPA
secure. We emphasize that this is not one of our main results, but simply an illustration of a natural
construction that follows from this definition.

The notion of Decisional Correlated Product security is clearly a stronger notion than the (Compu-
tational) Correlated Product security defined in [RS09] for injective functions. In the next section, we
examine under what conditions DCP security implies CP security.

4 Relations to (Computational) Correlated Product Security

The notion of k-DCP security seems like a stronger requirement than Computational Correlated Product
security, but we observe that if we do not put any requirements on the functions, then k-DCP security
may be satisfied by trivial functions. For example the constant functions are trivially k-DCP for any
k ≥ 2. The following lemmas give sufficient conditions for when a k-DCP secure family is k-correlated
product secure.

Lemma 2. If F = (G,F ) is a family of k-DCP secure functions with super-polynomial size domain
and are injective, then F is k-correlated product secure.

Proof. Let A be an efficient adversary that given s1, . . . , sk, and (Fs1(x), . . . , Fsk
(x)), finds the inverse

(x′1, . . . , x
′
k) = (x, x, . . . , x) with non-negligible probability ε, we exhibit an efficient distinguisher D that

uses A to break the k-DCP security of F .

Algorithm 1 D(s1, . . . , sk, y1, . . . , yk)

(x′1, . . . , x
′
k)

$← A(s1, . . . , sk, y1, . . . , yk)
if x′1 = x′2 = · · · = x′k and Fsi(x

′
i) = yi for i ∈ [k] then

return 1
else

return 0
end if

We must analyze the probability that D outputs 1 in the repdist and indepdist games.

Pr[Drepdist = 1] = Pr[x′1 = · · · = x′k ∧ Fsi(x
′
i) = yi|

x
$← X, si

$← G(1λ), yi = Fsi(x), {x′i}ki=1
$← A({si}ki=1, {yi}ki=1)]

= Pr[A successfully inverts] = ε.

Pr[Dindepdist = 1] = Pr[x′1 = · · · = x′k ∧ fsi(x
′
i) = yi|

xi
$← X, si

$← G(1λ), yi = Fsi(xi), {x′i}ki=1
$← A({si}ki=1, {yi}ki=1)]

= Pr[x′1 = · · · = x′k ∧ x′i = xi|

xi
$← X, si

$← G(1λ), yi = Fsi(xi), {x′i}ki=1
$← A({si}ki=1, {yi}ki=1)]

≤ Pr[x1 = x2|xi
$← X] ≤ 1

|X|
.

Thus the difference |Pr[Drepdist = 1] − Pr[Dindepdist = 1]| ≥ ε − 1
|X| is non-negligible, as |X| is

super-polynomial.
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Next, we show that if a family F = (G,F ) is a DCP secure, and each function is individually
one-way, then the family is also Correlated Product secure.

Lemma 3. If F = (G,F ) is a family of k-DCP secure one-way functions, then F is k-correlated product
secure.

Proof. Suppose on the contrary that they were not. Let A be a PPT algorithm that breaks the correlated
product security of (G,F ), in particular given {s1, . . . , sk, Fs1(x1), . . . , Fsk

(x1)} A is able to find a pre-
image (x′1, . . . , x

′
k) with some non-negligible probability ε, where the si are generated by G at random,

and x1 is chosen uniformly at random. We use A to build a PPT distinguisher D that can win in the
k-DCP game.

Algorithm 2 D(s1, . . . , sk, y1, . . . , yk)

(x′1, . . . , x
′
k)

$← A(s1, . . . , sk, y1, . . . , yk)
if Fsi(x

′
i) = yi for i ∈ [k] then

return 1
else

return 0
end if

We analyze the probability that D outputs 1. If indeed the inputs are correlated, i.e. yi = Fsi(x1),
then A succeeds with probability ε and so D will output 1 with that probability.

On the other hand, if the inputs are random and independent, i.e. yi = Fsi(xi), then (x1, . . . , xk)
is a uniformly chosen input from the product space. Because each Fsi(·) is a one-way function, the
product function (Fs1(·), . . . , Fsk

(·)) is also one-way. Since the inputs are uncorrelated, the probability
that A inverts it on a random value is negligible. Thus, in this case, D outputs 1 with only negligible
probability.

This contradicts the k-DCP security of (G,F ).

Many of the results in this work will focus on the case where the family F are in fact injective, or
injective with trapdoor, and so the Correlated Product security will follow immediately from the DCP
security of F .

5 A Number Theoretic Parallel

One way to illustrate the connection between Correlated Product security and DCP is to examine their
relationship to the Discrete Log Problem, which will lead us to novel and efficient constructions of DCP
secure functions.

Let G = G(λ) be a family of cyclic groups indexed by the security parameter λ, where |G| = ` = `(λ).

Lemma 4. If the Discrete Log Problem is hard in G, then the family in Figure 2 forms a family of
Correlated Product secure functions with respect to the uniform k-repetition distribution:

Key Generation: Evaluation:
G(1λ) will select an element s uniformly from G Fs(·) : [`]→ G

Fs(x) = sx ∈ G

Figure 2: Decisional Correlated Product Security from the Discrete Log Problem
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Proof. Suppose there exists an efficient adversary A that succeeds in breaking the uniform k-repetition
Correlated Product security of this family of functions. We will use A to solve the Discrete Log Problem
in G. Suppose we are given g, y ∈ G, and we would like to find x such that gx = y.

We will generate a1, . . . , ak uniformly from [`], and set si = gai ∈ G. Since g generates G, the si will
be uniformly distributed in G. Then we give A the vector (s1, . . . , sk, ya1 , . . . , yak). Since

yai = (gx)ai = (gai)x = sxi ,

we have
(s1, . . . , sk, ya1 , . . . , yak) = (s1, . . . , sk, Fs1(x), . . . , Fsk

(x)),

so if A succeeds in inverting Fk, we learn the discrete log of y to the base g.

Notice, however, that we cannot apply the results of [RS09] to get a Chosen-Ciphertext secure
cryptosystem based on the Discrete Log Problem because this construction does not have a trapdoor
(although it is injective).

Now, we will show a connection between the Decisional Diffie-Hellman problem (DDH) and DCP
secure functions.

We begin by showing that the DDH assumption is almost identical to the 2-DCP assumption.

Lemma 5. If the DDH problem is hard in G, then the construction in Figure 2 forms a family of 2-DCP
functions.

Proof. Suppose there exists an efficient adversary A that succeeds in distinguishing the uniform inde-
pendent distribution from the 2-repetition distribution with probability 1

2 +ε. We will use A to solve the
DDH problem in a cyclic group G or order `. The DDH challenger provides a 4-tuple (g, h1, h2, h3) ∈ G4,
where h1 = ga, h2 = gb, and h3 = gc where we would like to determine whether c = ab mod `.

We will generate r uniformly from [`], and set s1 = gr, and s2 = hr1. Then we give A the vector
(s1, s2, hr2, h

r
3). Now, if c = ab, then

(gr, hr1, h
r
2, h

r
3) = (gr, (ga)r, (gb)r, (gab)r) = (gr, gar, (gr)b, (gar)b) = (s1, s2, sb1, s

b
2) = (s1, s2, Fs1(b), Fs2(b)).

On the other hand, if c is uniformly distributed in `, then

(s1, s2, hr2, h
r
3) = (s1, s2, Fs1(b), Fs2(a−1c mod `)),

and a−1c mod ` will be uniform modulo ` as long as gcd(a, `) = 1. Thus, by outputting the same output
as A, we succeed in solving the DDH problem with probability ε.

We would like to extend this proof to show that if the DDH problem is hard in G, then the con-
struction above gives a family of k-DCP functions for any polynomial sized 0 < k ∈ Z. This is true,
but requires one additional observation.

Lemma 6. If the DDH problem is hard in G, then the construction in Figure 2 forms a family of k-DCP
functions for any 0 < k ∈ Z.

Proof. Suppose there exists an efficient adversary A that succeeds in distinguishing the uniform k-
independent distribution from the uniform k-repetition distribution with probability 1

2 + ε. We will use
A to solve the DDH problem in G. Suppose we are given g, h1, h2, h3 ∈ G, where h1 = ga, h2 = gb, and
h3 = gc where we would like to determine whether c = ab mod `.

We will generate r1, . . . , rk and r′1, . . . , r
′
k uniformly from [`], and set

si = grih
r′i
1 = gri+ar

′
i ∈ G.
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It is easy to see that the si are distributed uniformly and independently in G. Now, let

yi = hri2 h
r′i
3 = gbri+cr

′
i ∈ G,

and give A the vector
(s1, . . . , sk, y1, . . . , yk).

If c = ab, then

yi = gbri+abr
′
i =

(
gri+ar

′
i

)b
= sbi ∈ G,

which is a valid sampling of Fk on the uniform k-repetition distribution. On the other hand, if c is
uniformly distributed in `, then , thus

yi = gbri+cr
′
i = s

(ri+ar
′
i)
−1(bri+cr

′
i) mod `

i ∈ G.

It is easy to see that if c 6= ab, then for distinct i the exponents are uniformly and independently
distributed modulo `. So, if A guesses that the sample is from the uniform k-repetition distribution,
we guess c = ab, and if A guesses the sample comes from the uniform k-independent distribution, we
guess that c 6= ab, by the above argument we are correct with the same probability that A is, i.e. with
probability 1

2 + ε.

Remark. The definition of k-DCP abstracts one of the most important properties of the DDH assump-
tion. To see this, recall a simple DDH-based PRG. The description of the function is the group G, and
two elements g, ga, and f(b) = (gb, (ga)b). The first element of the output is uniform if b is uniform,
and the pair is indistinguishable from uniform by the DDH assumption. Now, it is easy to see that this
construction will go through as before with an injective k-DCP family of functions. In particular, the
description of the PRG will be F , s1, . . . , sk, and f(x) = Fs1(x), . . . , Fsk

(x). If Fsi(·) is a permutation,
this will be a PRG as it is. If the Fsi(·) are merely injective, we will have to apply an extractor to
“smooth” the output, but the proof of security remains exactly the same as in the DDH case.

6 Equivalence of OWF and (Decisional) Correlated Product secure
families of OWFs

In this section, we aim to prove the main theorem relating the existence of OWFs to that of (Decisional)
Correlated Product secure OWF families.

Theorem 1. The following statements are equivalent:

1. One-way functions exist.

2. k-DCP secure families of one-way functions exist.

3. k-CP secure families of one-way functions exist.

To do this, we first show how to construct a DCP secure family of one-way functions from any
pseudorandom function family. The surprising idea is that a PRF family becomes DCP secure if we
swap what we call the seed, and what we call the input. If the PRF output is sufficiently long, then
the resulting functions are also one-way, thus we have a family of DCP secure one-way functions. The
exact lengths necessary are given in Lemma 8.

We then show that DCP secure one-way function families are also (ordinary) CP secure. This will
follow directly from the fact that a product of one-way functions remain one-way under uniform inde-
pendent inputs (Lemma 3). Finally, CP secure OWF families obviously are one-way, which completes
the cycle of implications.
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Let (PRFGen,PRF) be a PRF family, such that if s $← PRFGen(1λ), with s ∈ {0, 1}w(λ) then the
domain of

PRF(s, ·) : {0, 1}n(λ) → {0, 1}`(λ).

We can define a DCP family (G,F ), by

• Sampling: G(1λ) outputs a uniform value in {0, 1}`(λ).

• Evaluation: For any s ∈ {0, 1}n(λ),

Fs(·) : {0, 1}w(λ) → {0, 1}`(λ)

x 7→ PRF(x, s).

Lemma 7. (G,F ) forms a k-Decisional Correlated Product secure function family for any k = poly(λ).

Proof. Define the distributions Λ0,Λ1 by sampling s1, . . . , sk
$← G(1λ), and x1, . . . , xk

$← {0, 1}w(λ)

Λ0 = {s1, . . . , sk, Fs1(x1), . . . , Fsk
(x1)}

Λ1 = {s1, . . . , sk, Fs1(x1), Fs2(x2), . . . , Fsk
(xk)}

Thus we must show that any adversary who can distinguish Λ0 from Λ1 can distinguish the underlying
Pseudorandom Function from a truly random function.

Now, by the definition of F , we have

Λ0 = {s1, . . . , sk, Fs1(x1), . . . , . . . , Fsk
(x1)} = {s1, . . . , sk,PRF(x1, s1), . . . ,PRF(x1, sk)},

Λ1 = {s1, . . . , sk, Fs1(x1), . . . , . . . , Fsk
(xk)} = {s1, . . . , sk,PRF(x1, s1), . . . ,PRF(xk, sk)}.

Now, it is clear that the security of the Pseudorandom Function gives

Λ0 ≈c {s1, . . . , sk, U`(λ), . . . , U`(λ)} ≈c Λ1,

which gives the result.

Lemma 8. If the size of the key space of F is a negligible fraction of the size of the output space, i.e.
1/2`(λ)−w(λ) is negligible in λ, then (G,F ) forms a family of one-way functions.

Proof. Suppose to the contrary that for some key s, the function Fs(·) was not one-way. Let A be a
PPT inverter that succeeds with non-negligible probability ε, i.e.

Pr
x

[Fs(z) = Fs(x)|z ← A(Fs(x))] = ε

We use A to construct a PPT algorithm B that distinguishes between oracle access to PRF (with a
randomly chosen seed x) and a truly random function RO. The algorithm queries s on the oracle, and
receives y, which is either y = PRF(x, s) = Fs(x) for some x, or a truly random value. The distinguisher
B runs A on y, and receives some output x′. If it is the case that Fs(x′) = y, then B outputs 1,
otherwise B outputs 0.

We analyze the probabilities Pr[BRO(·) = 1] and Prx[BPRF(x,·) = 1]. In the former case, the proba-
bility that a random value is in the range of PRF(s, ·) is |Range|

2` ≤ 2w

2` which we assumed to be negligible.
On the other hand,

Pr
x

[BPRF(x,·) = 1] = Pr
x

[PRF(z, s) = y|z ← A(y)]

= Pr
x

[PRF(z, s) = PRF(x, s)|z ← A(PRF(x, s))]

= Pr
x

[Fs(z) = Fs(x)|z ← A(Fs(x))] = ε

This contradicts the pseudorandomness of PRF.
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Corollary 1. One-way functions imply k-DCP secure one-way function families.

Proof. In Hastad, Impagliazzo, Levin and Luby [HILL99] it was shown that one-way functions imply
PRGs, and in Goldreich, Goldwasser, Micali [GGM86] it was shown that PRGs imply the existence
of PRF families with sufficiently long output, thus combining these results with our result, we have
one-way functions imply k-DCP secure one-way functions.

Corollary 2. One-way functions imply k-CP secure function families.

Proof. This follows immediately from applying Lemma 3 to Corollary 1.

Since every Correlated Product secure function family is trivially a one-way function family, we find
that we have

One-Way Functions

Pseudorandom Generators

Pseudorandom Functions

One-Way DCP Secure Functions

CP Secure Functions

7 DCP with trapdoor from Lossy Trapdoor Functions

In the preceding sections, we examined DCP secure functions without trapdoors, and showed that one-
way DCP secure functions without trapdoor could be constructed from any one-way function. Now, we
show constructions of DCP with trapdoor. In particular, in this section, we show that lossy trapdoor
functions (with certain constraints) are, in fact, DCP secure injective trapdoor functions. We remark
that these are the same constraints on the LTDF which were used in [BFO08] to show that LTDFs are
secure DE. These constraints will allow us to show that the LTDFs are also DCP secure.

The two constraints are that the lossy mode loses sufficiently many bits, and that it is “universal”.
The LTDF has a “universal lossy mode” if the lossy mode induces a pairwise independent hash function
on its range. The main idea in showing LTDFs are DCP secure is that these constraints makes the lossy
mode satisfy the premises of the leftover hash lemma, thereby allowing us to break the correlation of
the inputs.

Theorem 2. Let ε(λ) be any function such that 1/2ε(λ) is negligible in λ. Let F = (G,F ) be a family
of LTDFs on domain {0, 1}λ, where the lossy mode is universal and loses λ/2 + ε(λ) bits of the input.
Then F is a 2-DCP secure injective trapdoor function.
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Proof. We show that distributions {s1, s2, Fs1(x), Fs2(x)} and {s1, s2, Fs1(x), Fs2(y)} are computation-

ally indistinguishable, where s1, s2
$← G(1λ), and x, y are sampled uniformly at random from the

domain.
The idea is that we view the pair (s1, s2) as a single key for the (product) hash function (Fs1 , Fs2).

First, by the indistinguishability of ordinary keys from lossy ones, we have (s1, s2, Fs1(x), Fs2(x)) ≈c
(s′1, s

′
2, Fs′1(x), Fs′2(x)), where s′1 and s′2 are now lossy keys. By the universality of lossy mode, Fs′1

and Fs′2 are pairwise independent on their respective ranges Y1 and Y2. The product (Fs′1 , Fs′2) is a
pairwise independent hash function on Y1 × Y2. The input distribution X is the diagonal distribution
on {0, 1}λ × {0, 1}λ, which has λ bits of (min) entropy. We have that

|Y1 × Y2|+ 2 log
(

1
1/2ε

)
= 2(λ/2− ε) + 2ε = λ ≤ H∞(X).

Therefore, by the leftover hash lemma, ∆({s′1, s′2, Fs′1(x), Fs′2(x)}, {s′1, s′2, y1, y2}) ≤ 1/2ε, where y1 and
y2 are uniform on the ranges Y1 and Y2 respectively. Finally, because the lossy functions are pairwise
independent, (s′1, s

′
2, y1, y2) is indistinguishable from (s′1, s

′
2, Fs′1(x), Fs′2(y)), which in turn is indistin-

guishable from (s1, s2, Fs1(x), Fs2(y)), where now the keys are for the injective functions.

8 Decisional Correlated Product Security is Deterministic Encryp-
tion

In this section, we examine the consequences of DCP secure functions, again with trapdoor. We show
that any 2-DCP secure functions with trapdoor are – almost without modification – a PRIV1 secure
uniform deterministic encryption. We follow the terminology of [BFOR08], where a uniform determin-
istic encryption is one which is only guaranteed to be secure against message adversaries that choose
messages from the uniform distribution, instead of simply any high min-entropy distribution.

Let F = (G,F ) be a family of 2-Decisional Correlated Product secure Functions.
We can define a (Uniform) Deterministic Encryption by

KeyGen: Encryption: Decryption:

(s, t) $← G(1λ) E(pk,m) = Fpk(m) D(sk, c) = F−1
t (c)

pk = s, sk = t

Figure 3: Decisional Correlated Product Secure functions with trapdoor are PRIV1 secure

Theorem 3. The scheme outlined in Figure 3 is BB-CSS secure.

Proof. First, we recall the notion of BB-CSS (Balanced Boolean Comparison-based Semantic Security)
as defined in [BFOR08]. This is similar to the Comparison Semantic Security PRIV1, outlined by the
games privreal and privideal, except that the side information t is required to be a balanced boolean
function, i.e. Pr[t = 0] ≈ Pr[t = 1] ≈ 1

2 .
For simplicity, we assume that Pr[t = 0] = Pr[t = 1] = 1

2 , but it is easy to see that if the distributions
are only negligibly close to 1

2 then the argument goes through as well.
Notice that in this setting any adversary has a 1

2 chance of winning in the privideal game since
his view is independent of the actual side information, thus it is enough to consider the adversary’s
probability of winning in the privreal game.

Now, suppose there exists an adversary A = (Am, Ag), such that (m, t) $← Am(1λ), where m is
uniform on X the domain of fs, and t is uniform on {0, 1}. The guessing adversary Ag on input pk, c
outputs a guess t′. If c = E(Pk,m), then Pr[t = t′] = 1

2 + ε.
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We show how to use A to create a distinguisher D that can distinguish the 2-repetition distribution
from the 2-independent distribution. The algorithm D takes as input the description of two functions
s0, s1, and two outputs y0, y1, which come from either the repetition distribution (in which case yi =
Fsi(x)) or the independent distribution (in which case yi = Fsi(xi), for two independently sampled xi).

Algorithm 3 D(s0, s1, y0, y1)

t′0
$← Ag(s0, y0)

t′1
$← Ag(s1, y1)

if t′0 = t′1 then
return Repetition

else
return Independent

end if

Now, we must analyze the probability that D succeeds. If y0, y1 were generated from the repetition
distribution, then since Ag succeeds with probability 1

2 + ε, the probability that D guesses “repetition”
is (1

2 + ε)2 + (1
2 − ε)

2 = 1
2 + 2ε2. If y0, y1 were generated from the independent distribution, because the

side information is a balanced boolean function, the probability that the t0, t1 that would have been
generated by Am are equal is 1

2 . Intuitively, this should mean the probability that D correctly guesses
“independent” is just 1

2 . This is in fact the case, because

Pr[D correctly guesses independent]

=
1
2

Pr[D guesses independent|t0 = t1] +
1
2

Pr[D guesses independent|t0 6= t1]

=
1
2

(
2
(

1
2

+ ε

)(
1
2
− ε
))

+
1
2

((
1
2

+ ε

)2

+
(

1
2
− ε
)2
)

=
1
2
.

Thus the probability that D is correct is 1
2 + ε2.

Corollary 3. The scheme outlined above is PRIV1 secure.

Proof. In [BFOR08], they show that BB-CSS security (Comparison based Semantic Security against Bal-
anced Boolean side information) implies B-CSS security (Comparison based Semantic Security against
any Boolean side information), which in turns implies A-CSS which is security against Arbitrary side
information. A-CSS security is the terminology in [BFOR08] for PRIV1 security. The only thing to do
is to notice that both proofs in [BFOR08] go through unchanged when the adversaries are restricted to
be uniform adversaries.

Remark. We note that if the function family F = (G,F ) were assumed to be Decisional Correlated Prod-
uct (DCP) secure when the inputs were chosen not uniformly, but simply from some high min-entropy
distribution, the same proof would go through to show PRIV1 security against any (not necessarily
uniform) adversary Am.
Remark. On the other hand, there is an example (outlined below) of a PRIV1 secure uniform DE scheme
that is not n-DCP secure (treating the public key as the seed, key generation as G, and encryption as
F ), where n is the size of the message. This does not preclude the construction of a DCP secure family
from such a DE scheme, but instead shows that these two notions are not definitionally equivalent.
To see that a PRIV1 secure DE need not be n-DCP secure, take any IND-CPA secure (randomized)
encryption scheme, and transform it into a “leaky” scheme that leaks the first bit of randomness used
in encryption by simply taking an extra dummy bit of randomness and revealing it in the ciphertext.
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The construction of uniform DE from one-way trapdoor permutations given in [BFOR08] makes use of
an IND-CPA secure (randomized) encryption scheme.

Without fully reproducing the [BFOR08] construction, we only need to point out that the first bit
of randomness is the hard-core predicate defined by the dot product of the message and a vector from
the public key. If the “leaky” encryption of the same message under n different public keys is revealed,
the message can be reconstructed using linear algebra. This immediately breaks (Decisional) Correlated
Product security.

9 Conclusion and Open Problems

In this work we suggested a new primitive, the decisional variant of Correlated Product (DCP) secure
functions. We argue that this primitive has many appealing properties. To this end, we show a parallel
between Correlated Product security and DCP and the Discrete Log Problem and its decisional variant
DDH. We also show how to construct simple primitives from DCP such as PRGs and IND-CPA secure
encryption.

Our main results examine two main cases: DCP functions with trapdoor and without trapdoor. We
show that DCP secure functions (and CP secure functions) without trapdoor are equivalent to one-way
functions. This is a somewhat surprising result since notions of correlated product security appear to be
much stronger than simple one-wayness. When examining DCP secure functions with trapdoor, we show
that they are implied by Lossy Trapdoor Functions, and that DCP secure functions are immediately a
Deterministic Encryption scheme.

An interesting line of future research would be to examine further constructions of DCP secure
functions with trapdoor.
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Appendix

A Review of Definitions

A.1 Discrete Log and Decisional Diffie-Hellman Assumptions

Recall the Discrete Log and DDH assumptions.
Let G = G(λ) be a family of cyclic groups indexed by the security parameter λ. With |G| = ` = `(λ).

Definition 5. We say that the Discrete Log Problem is hard in G if for all PPT adversaries A, we have

Pr[g $← G, x $← Z/`Z, h← gx, y ← A(g, h);x = y] < ε(λ)

where ε(λ) is a negligible function.

Definition 6. We say that the Decisional Diffie Hellman (DDH) problem is hard in G if the two
distributions

{(g, h, ga, ha)} {(g, h, ga, hb)}

are computationally indistinguishable, where g, h $← G and a, b
$← Z/`Z.

A.2 Deterministic Encryption

Deterministic Encryption was formally introduced in [BBO07], and many equivalent definitions and
constructions were made in [BFO08], [BFOR08]. Although there are many equivalent definitions of
security for a deterministic cryptosystem, we present the one that appears in [BBO07], since it will be
the easiest for us to work with in our constructions.

Definition 7. (Deterministic Encryption/PRIV1)
Let (G,E,D) be a Public Key Cryptosystem (PKC), we say that (G,E,D) is PRIV1 secure if∣∣∣Pr

[
Aprivreal = 1

]
− Pr

[
Aprivideal = 1

]∣∣∣ < ν

for some negligible function ν, and where the games privreal and privideal are defined in Figure 4.

PRIV1 Real PRIV1 Ideal

(pk, sk) $← K(1λ) (pk, sk) $← K(1λ)

(x1, t1) $← Am(1λ) (x0, t0) $← Am(1λ)

c
$← E(1λ, pk, x1) (x1, t1) $← Am(1λ)

g
$← Ag(1λ, pk, c) c

$← E(1λ, pk, x0)

If g = t1 then return 1 else return 0. g
$← Ag(1λ, pk, c)

If g = t1 then return 1 else return 0.

Figure 4: PRIV1 Security for Deterministic Encryption

More explicitly, in the real game,

• The challenger generates a public/private key pair.

• The message adversary generates a plaintext x1 and some side information t1 about x1.
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• Then the challenger encrypts x1 using pk.

• The guessing adversary tries to guess the side information t1 from the ciphertext, c and the public
key.

• If the adversary correctly guesses the side information t1, he wins the game, otherwise he loses.

In the ideal game,

• The challenger generates a public/private key pair.

• The message adversary generates two plaintext side-information pairs (x0, t0), (x1, t1).

• Then the challenger encrypts x0 using pk.

• The guessing adversary tries to guess the side information t1 from the ciphertext, c (which is
independent of x1) and the public key.

• If the adversary correctly guesses the side information t1, he wins the game, otherwise he loses.

In [BFO08], they give constructions of PRIV1 secure deterministic encryption from Lossy Trapdoor
Functions. We consider the weakening of Am to require that it returns a uniform distribution on xi it
outputs. This is the same modification used in [BFOR08] to be able to construct DE from OWTDP.
A DE scheme that is secure against this type of adversary is known as secure on uniform messages. In
[BFOR08], they give constructions of PRIV1 secure deterministic encryption on uniform messages from
one-way trapdoor permutations.

A.3 Lossy Trapdoor Functions

Lossy Trapdoor Functions were first defined in [PW08], and we review the definition here.
A tuple (Sltdf, Fltdf , F

−1
ltdf) of PPT algorithms is called a family of (d, k)-Lossy Trapdoor Functions if

the following properties hold:

• Sampling Injective Functions: Sltdf(1λ, 1) outputs s, t where s is a function index, and t its
trapdoor. We require that Fltdf(s, ·) is an injective deterministic function on {0, 1}d, and we have
that F−1

ltdf(t, Fltdf(s, x)) = x for all x.

• Sampling Lossy Functions: Sltdf(1λ, 0) outputs (s,⊥) where s is a function index and Fltdf(s, ·)
is a function on {0, 1}d, where the image of Fltdf(s, ·) has size at most 2d−k.

• Indistinguishability: The first outputs of Sltdf(1λ, 0) and Sltdf(1λ, 1) are computationally indis-
tinguishable.

A.4 Pseudorandom Functions

A Pseudorandom Function (PRF) [GGM86] is a deterministic function PRF : {0, 1}λ×{0, 1}a → {0, 1}b,
such that if RO : {0, 1}a → {0, 1}b is a truly random function, then for all PPT adversaries A,∣∣∣Pr[ARO(·) = 1]− Pr[APRF(s,·) = 1]

∣∣∣ < ν

for some negligible function ν = ν(λ). Here, the probability is taken over the coins of A, the choice of

s
$← {0, 1}λ, and the choice of RO. It is known how to construct a Pseudorandom Function from any

one-way function (see [GGM86, ILL89, HILL99]).
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