5PM: Secure Pattern Matching*

Joshua Baron,? Karim El Defrawy,? Kirill Minkovich,? Rafail Ostrovsky,! and Eric Tressler?

! Departments of Mathematics and Computer Science, UCLA, Los Angeles, CA, USA 90095
2 Information and System Sciences Laboratory, HRL Laboratories, LLC, Malibu, CA, USA, 90265
{jwbaron,kmeldefrawy,kminkovich,eptressler}@hrl.com, rafail@cs.ucla.edu

Abstract. In this paper we consider the problem of secure pattern matching that allows single-
character wildcards and substring matching in the malicious (stand-alone) setting. Our protocol, called
5PM, is executed between two parties: Server, holding a text of length n, and Client, holding a pattern
of length m to be matched against the text, where our notion of matching is more general and includes
non-binary alphabets, non-binary Hamming distance and non-binary substring matching.

5PM is the first secure expressive pattern matching protocol designed to optimize round complexity
by carefully specifying the entire protocol round by round. In the malicious model, 5PM requires
O((m + n)k?) bandwidth and O(m 4 n) encryptions, where m is the pattern length and n is the text
length. Further, 5PM can hide pattern size with no asymptotic additional costs in either computation or
bandwidth. Finally, 5PM requires only two rounds of communication in the honest-but-curious model
and eight rounds in the malicious model. Our techniques reduce pattern matching and generalized
Hamming distance problems to a novel linear algebra formulation that allows for generic solutions
based on any additively homomorphic encryption. We believe our efficient algebraic techniques are of
independent interest.

1 Introduction

Pattern matching is fundamental to computer science. It is used in many areas, including text
processing, database search [I], networking and security applications [2] and recently in the context
of bioinformatics and DNA analysis [3/4)5]. It is a problem that has been extensively studied, re-
sulting in several efficient (although insecure) techniques to solve its many variations, e.g., [G/7U89].
The most common interpretation of the pattern matching problem is the following: given a finite
alphabet Y, a text T' € Y™ and a pattern p € XY™, the exact pattern matching decision problem
requires one to decide whether or not a pattern appears in the text. The exact pattern matching
search problem requires finding all indices i of T' (if any) where p occurs as a substring starting
at position 7. If we denote by T; the ith character of T', the output should be the set of match-
ing positions M P = {i | p matches T beginning at 7;}. The following generalizations of the exact
matching problem are often encountered, where the output in all cases is the set M P:
— Pattern matching with single-character wildcard:ﬂ: There is a special character “x” ¢ X' that
matches any single-character of the alphabet, where p € { XU {x}}" and T' € X™. Using such

* This work was done while the first author was at UCLA. The work of the first and fourth author is supported in
part by NSF grants CCF-0916574, I11S-1065276, CCF-1016540, CNS-1118126, CNS-1136174, and by US-Israel BSF
grant 2008411. It was also supported by the OKAWA Foundation Research Award, IBM Faculty Research Award,
Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research Award and Lockheed-
Martin Corporation Research Award. The material contained herein is also based upon work supported by the
Defense Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-
11-1-0392. The views expressed are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. Government. The authors would like to thank Jonathan Katz, Sky Faber and
Matt Cheung for helpful discussions and comments.

! Such wildcards are also called “do not cares” and “mismatches” in the literature.

1 (© 2011 HRL Laboratories, LLC. All Rights Reserved



PaperNB Hamming| Exact |Wildcard|NB Substring|Security
Distance |Matching/Matching| Matching
[13] No Yes No No HBC/M
[14] Yes™ Yes Yes Yes™ HBC/M
[15] Yes No** No™* No** HBC
5PM Yes Yes Yes Yes HBC/M

Table 1. Comparison of previous protocol functionality, NB=non-binary HBC=honest but curious,

M=malicious, *=using unary encoding and additional tools, **=can be extended

a “wildcard” character allows one pattern to be specified that could match several sequences
of characters. For example the pattern “I"Ax” would match any of the following character
sequence in a textﬂ TAA, TAC, TAG, and TAT.
— Substring pattern matching: Fix some [ < m; a match for p is found whenever there exists in
T an m-length string that differs in [ characters from p (i.e., has Hamming distance [ from
p). For example, the pattern “T"’AC” has m = 3. If [ = 1, then any of the following words will
match: *AC, T x C', or T Ax; note that this is an example of non-binary substring matching.
A secure version of pattern matching has many applications. For example, secure pattern matching
can help secure databases that contain medical information such as DNA records, while still al-
lowing one to perform pattern matching operations on such data. The need for privacy-preserving
DNA matching has been highlighted in recent papers [10/11/12]. In addition to the case of DNA
matching, where substring matching may be particularly useful, Hamming distance-based approx-
imate matching has also been demonstrated in the case of secure facial recognition [3]. We note
that both of these settings require computation over non-binary alphabets.

1.1 Owur Contributions

This paper presents 5ecure Pattern Matching (or 5PM), a new protocol for arbitrary alphabets that
addresses, in addition to exact matching, more expressive search queries including single-character
wildcards and substring pattern matching, and also provides the ability to hide pattern length.

5PM has communication complexity sublinear in circuit size (as opposed to general MPC, which
has communication complexity linear in circuit size) to securely compute non-binary substring
matching in the malicious model. In addition, our extension of Hamming distance computation
to substring matching has minimal overhead; our protocol makes a single computation pass per
text element, even for multiple Hamming distance values, and therefore is able to securely compute
non-binary substring matching efficiently (see Table (1| for a comparison of protocol functionality
and Tables [2[ and [3| for a comparison of protocol overhead).

5PM performs exact, single-character wildcards, and substring pattern matching in the honest-
but-curious and malicious (static corruption) models. Our malicious model protocol requires O((m+
n)k?) bandwidth complexity. Further, our protocol can be specified to require two (one-way) rounds
of communication in the semi-honest model and eight (one-way) rounds of communication in the
malicious model.

We construct our protocols by reducing the problems of Hamming distance and pattern match-
ing, including single-character wildcards and substring matching, to a sequence of linear operations.

2 Here and throughout, we use the DNA alphabet (X = {A, C,G, T}) for examples.



Paper|Encryptions|Exponentiations|Multiplications|Bandwidth [Rds
[16] |O(mn) O(mn) O(mn) O(mnk?) O(1)
[14]  |O(n+m) O(nlogm) O(nm) O((n +m)k?)|0(1)
5PM |O(n +m) O(nm) O(nm) O((n +m)k?)|8

Table 2. Detailed comparison with [14] and [16] for single-character wildcards and substring match-
ing in malicious model with text length=n, pattern length=m, security parameter==k, rounds=Rds.

Paper|Encryptions|Exponentiations|Multiplications|Bandwidth Rds
[15]  |O(n+m) O(nm) O(nm) O((nm)k) |0(1)
5PM  |O(n+m) O(n+m) O(nm) O((n+m)k)|2
Table 3. Detailed comparison with [15] for non-binary substring matching in HBC model with
text length=n, pattern length=m, security parameter==£k, rounds=Rds.

We then rely on the observation that these linear operations, such as the inner products and matrix
multiplication, can be efficiently computed in the malicious model using additively homomorphic
encryption schemes.

The security requirements (informally) dictate that the party holding the text learns nothing
except the upper bound on the length of the pattern, while the party holding the pattern only
learns either a binary (yes/no) answer for the decision problem or the matching positions (if any),
and nothing else.

1.2 Comparison to Previous Work

Exact Matching. In the exact pattern matching setting, the algorithm of Freedman, Ishai,
Pinkas and Reingold [I3] achieves polylogarithmic overhead in m and n and polynomial overhead
in security parameters in the honest-but-curious setting. Using efficient arguments [I7J18] with
the modern probabilistically checkable proofs (PCPs) of proximity [19], one can extend (at least
asymptotically) their results to the malicious (static corruption) model. However, the protocol in
[13] works only for exact matching and does not address more general problems, including single-
character wildcards and substring matching, which are the main focus of our work. Other protocols
that address secure exact matching (and not wildcard or substring matching) are [1220/21122123|11];
of these, only [22] obtains (full) security in the malicious setting. We note that [23] is more efficient
than [13], but only in the random oracle model; here, we are interested in standard security models.

Single-Character Wildcards and Substring Matching. Recently, Vergnaud [I4] built on
the work of Hazay and Toft [16] to construct an efficient secure pattern matching scheme for wildcard
matching and substring matching (requiring ¢ runs over the preliminary matching result to search
for t different Hamming distance values, which is also required by 5PM) in the malicious adversary
model. More specifically, [I4J16] take advantage of the fact that (p; — t;)? equals 0 if binary values
p; and t; are equal and 1 if they are not equal; therefore, binary Hamming distance can essentially
be computed by counting the number of 1s in a particular polynomial-based computation. However,
when p; and ¢; are non-binary, it is unknown how to obtain 0 when p; and ¢; equal, and 1 (or some
other fixed value) when they are not equal using oblivious polynomial evaluations.

However, non-binary elements can be computed by unary encoding; that is, an element a € X
can be encoded as an element o/ € {0, 1}'2 | with all Os except for a single 1 in the place representing



a (lexicographically). There are two subtleties of such an approach. The first is that if a # 3, then
o/ and ' will have Hamming distance 2 instead of 1; the second is, in the malicious case, zero
knowledge proofs are needed to demonstrate that o/ is well formed.

[14] requires O(m + n) encryptions, O(nlogm) exponentiations, O(nm) multiplications (of en-
crypted elements), and O(n+m) bandwidth, all in a constant number of rounds. By contrast, 5PM
has the same overhead except for O(nm) exponentiations (see Table [2). However, our work is of
interest for several reasons. The first is that we have implemented our protocol and believe it to
be more efficient (additional work is needed on this front). The second is that our techniques are
of independent interest and may be extended to additional functionalities. Finally, the protocol
presented here is fully specified; by contrast, additional work is needed to transform the work of
[14] into a protocol that can support non-binary alphabets for substring matching or to calculate
Hamming distance in the malicious case.

Non-binary Hamming Distance. Jarrous and Pinkas [I5] gave the first construction of a
secure protocol for computing non-binary Hamming distances. In order to count the non-binary
mismatches, they leverage 1-out-of-2 oblivious transfers. 5PM can also compute non-binary Ham-
ming distance even when the text and pattern have the same length (and where the output is not
blinded to only reveal whether or not a pattern match occurred). We note that [I5] can be used to
implement exact and substring matching with additional tools to blind Hamming distance output
(for instance, see [14]). [15], to compare two strings of length n, requires O(n) 1-out-of-2 OTs, O(n)
multiplications of encryptions and O(nk) bandwidth, while 5PM requires O(n) exponentiations
(which require less computation than OTs), O(n?) multiplications, and O(nk) bandwidth. The ad-
vantage of 5PM over [15] is twofold: the first is that 5PM is proven secure in the malicious model
while [15] is not; the second is that 5PM, in both the honest-but-curious and malicious models,
amortizes well in the substring matching setting, while [I5] does not amortize because it cannot
reuse OT outputs to compute substring matching (see Table |3)).

Other Techniques. In the most general case, secure exact, approximate and single-character
wildcards pattern matching is an instance of general secure two-party computation techniques (for
instance, [24125]26l27]). All of these schemes have bandwidth and computational complexity at
best linear in the circuit size. For instance, a naive implementation of Yao [24] requires bandwidth
O(mn) in the security parameter. In contrast, we aim for a protocol where circuit size is O(mn),
yet we achieve communication complexity of O(m + n).

Finally, we observe that with the construction of fully homomorphic encryption (FHE) schemes
[28], the following “folklore” construction can be executed for any pattern matching algorithm:
Client encrypts its pattern using an FHE scheme and sends it to Server. Server applies the ap-
propriate pattern matching circuit to the encrypted pattern (where the circuit output is a yes/no
indicating whether a match exists or not), and sends the FHE circuit output to Client. Client
decrypts to obtain the answer. Such a scheme requires O(m) bandwidth, but since FHE schemes
are not yet practical, we view the 5PM protocol outlined here as an efficient and practical solution
to secure pattern matching with single-character wildcards and substring matching.



2 Preliminaries

The rationale behind our secure 5PM protocol is based on a modification of an insecure pattern
matching algorithm (IPM) [29] that can perform exact matching, exact matching with single-
character wildcards, and substring matching within the same algorithm. In Section we show
how our modified algorithm can be reduced to basic linear operations whose secure and efficient
evaluation allows us to obtain our 5PM protocol.

2.1 Insecure Pattern Matching (IPM) Algorithm

To illustrate how our modified algorithm works, we begin by describing how it performs exact
matching; we then show how it handles single-character wildcards and substring matching.

2.1.1 Exact Matching. IPM involves the following steps:

a. Inputs: An alphabet X, a text T' € Y™ and a pattern p € L™,

b. Initialization: For each character in Y, the algorithm constructs a vector, here termed a
Character Delay Vector (CDV), of length equal to the pattern length, m. These vectors
are initialized with zeros. For example, if the pattern is: “T’TACT” over X = {A,C, G, T}, then
the CDV's will be initialized to: CDV(A) = [0,0,0,0], CDV(C) = [0,0,0,0], CDV(G) =
[0,0,0,0] and CDV(T) = [0,0,0,0].

c. Pattern preprocessing: For each pattern character p; (i € {1,...,m}), a delay value, d, , is
computed to be the number of characters from p; to the end of the pattern, i.e., dj =m —1
for the rth occurrence of p; in p. The d;, th position of CDV (p;) is set to 1. For example, the
CDVs of “TACT” would be:

CDV(A) =10,0,1,0] because dy =4 —2 =2

CDV(C) =[0,1,0,0] because di, =4 — 3 =1

CDV(G) =10,0,0,0] because G & p

CDV(T)=[1,0,0,1] because di. =4 —4=0and d> =4—1=3

d. Matching pass and comparison with pattern length: A vector of length n called the Activation
Vector (AV) is constructed, and its elements are initialized with zeros. For each input
text character T, CDV(Tj) is added element-wise to the AV from position j to position
min(n, j+m—1). To determine if there was a pattern match in the text, after these operations
the algorithm checks (when j > m) if AV; = m. If so, then the match started at position
j—m+ 1. The value j — m + 1 is added to the set of matching positions (M P). Note that
n — AV; is the non-binary Hamming distance of the pattern and the text starting at position
j—m-+1.

The intuition behind the algorithm is that when an input text character matches a character
in the pattern, the algorithm optimistically assumes that the following characters will correspond
to the rest of the pattern characters. It then adds a 1 at the position in the activation vector
several steps ahead, where it would expect the pattern to end (if the character appears in multiple
positions in the pattern, it adds a 1 to all the corresponding positions where the pattern might
end). If all subsequent characters are indeed characters in the pattern, then at the position where
a pattern would end the number of added 1s will sum up to the pattern length; otherwise the sum
will be strictly less than the pattern length. This algorithm does not incur false positives and always
indicates when (and where) a pattern occurs if it exists, as shown in [29].



Insecure Pattern Matching (IPM) Example. The pattern to be matched is “TACT” and the
text is “GATTACT... .” The first step is to construct the C'DV using the delays for the characters
of the pattern “TACT.” Delays for “T” will be 3 and 0, for “A” they will be 2, and for “C” they
will be 1. These delays are then converted to CDV's as shown in Figure [Il The activation vector
will be initialized to all zeros. The characters of the text are then considered one at a time. For
each input text character (T'[j]) at position j in text, the following steps have to be taken: (1)
retrieve CDV[T[j]]; (2) add elements of CDV[T[j]] to elements of activation vector from position
j to j+m—1; and (3) check if AV[j] is equal to the pattern length (|[TACT| =m = 4).

——  Activation Vector (AV)
S I 5 0 N N R
Vi G ploJofoJo]
[oTo o ToToToToTo o o]
b o
7 A [0 Jo[1]o]
Character Delay Vector [T
(CDV) for pattern “TACT” [oJoJoJtJoJoJoJoJo o]
: b
Character | Delay CDV
A 2 {0,0,1,0} > T ﬂlil
C 1 {0,1,0,01 [[]
G {0.0.0.0} [ofoJiJifoJrJofoJoTo]
T 0and3 | {1,0.0.1} L ]
ST —[0h
lofo[tTaToliTiToToTo]
&
NA S [1T0]
[ |
ofo[iTaJoliJ2ToJoTo]
\ =
C —— [T [iI0]
[ |
[ofoTrT2ToT1 s oo o]
+
Ny S
n
Matchoccurswhen |Q|0|1|2|0|1m0|0|1|
4 is found in the AV Final Resulting
Activation Vector %AV)

Fig. 1. Example of IPM’s operation

2.1.2 Single-Character Wildcards, Pattern Hiding and Substring Matching. Single-
character wildcards can be handled in IPM by representing a single-character wildcard with a

special character,“«” which is not in the text alphabet. When “x” is encountered in the pattern
preprocessing phase it is ignored; i.e., no 1s are added to any CDV. Additionally, at the last step



when elements of the AV are searched in the comparison phase, the threshold value being used
for comparison will be m — [ instead of m, where [ is the number of occurrences of “x” in the
pattern. The intuition behind single-character wildcards is that by reducing the threshold for each
wildcard, the algorithm implicitly skips matching that position in the text, allowing that position
of the pattern to correspond to any character. This operation does not incur any false positives for
the same reason that the exact matching IPM algorithm does not: there, for each pattern p, there
is only one encoding into CDV's and only one sequence of adding CDV's as one moves along the
text that could add up to m. The same reasoning holds when “x” is present in p (except that the
sequence adds to m — ).

We note that by using single-character wildcards, one can always hide pattern length by setting
p’ as the concatenation of p and a string of n —m wildcards, *"~", and using p’ to execute pattern
matching for p.

Substring matching, or matching text substrings of Hamming distance m — [ from the pattern,
is handled similarly to single-character wildcards; the threshold value being compared against in
the AV is decreased to m — [. For further details, we refer the reader to [29].

2.2 Preliminary Cryptographic Tools

This section outlines preliminary cryptographic tools required for our protocols. For z,y € Zj, we
define the inner product of x and y over Z,, denoted (z,y), as > x;y; mod gq.

Additively Homomorphic Encryption: We make use of additively homomorphic semantically
secure encryption schemes. For concreteness, in the rest of this paper we concentrate on the
additively homomorphic ElGamal encryption scheme whose security depends on the Decisional
Diffie-Hellman (DDH) computational hardness assumption. An additively homomorphic ElGamal
encryption scheme [30] is instantiated by choosing a group of appropriate prime order ¢, G,, with
generator g, and setting the secret key to be z € Z; and the public key to be (g,h = ¢*). To
encrypt a message m one chooses a uniformly random r € Z; and computes (g", g™h"). To decrypt
a pair (a, (), one computes log, a‘% It is important to note that for additive ElGamal the decryptor
has to both decrypt and also compute a discrete logarithm to discover the message. However, our
scheme only requires a determination of whether an encrypted value is of a 0 or not, which can be
accomplished without computing logarithms.

Threshold Encryption: The malicious model version of 5PM requires an additively homomor-
phic, semantically secure, threshold encryption scheme [31]. While we use threshold ElGamal, in
practice, any scheme is acceptable if it satisfies the required properties and supports the needed
zero-knowledge arguments. Threshold ElGamal, in the two-party case, can be informally defined
as follows [32]: party P; has share x; and party P, has share 5. The parties jointly set the secret
key to be z = x1 4+ x2 (this can be performed without revealing x; and z3, see subprotocol 7epe, in
Section . Without loss of generality, P; partially decrypts (o, ) by sending (o 8 ) to P5, who

) a1
B

a1tz ”

fully decrypts («, 5) by computing awlﬁaxQ = We denote the partial decryption algorithm
for party P; as Dp,.

Commitment Schemes: For the malicious model protocol, we will make use of perfectly hiding,
computationally binding commitment schemes (for further discussion, see [33]). The Pedersen com-
mitment scheme [34] is a well-known example of such a commitment scheme: for a multiplicative
group of prime order ¢, G, and for fixed generators g,h € G4, commitment to message s using

randomness r is g°h" = comm(g, h,r, s).



Zero-Knowledge Arguments of Knowledge: In order to construct a protocol that guarantees that
each party behaves properly even in the malicious setting, we use efficient interactive zero-knowledge
arguments of knowledge (ZK-AoKs). For further details, see Section

2.3 Computing Linear Operations Using Additively Homomorphic Encryption
Schemes.

Our secure pattern-matching protocol relies on the following observations about linear operations
and additively homomorphic encryption schemes. In what follows, let E be the encryption algorithm
for an additively homomorphic encryption scheme for key pair (pk, sk). Suppose the plaintext group
G can be expressed as Zj, for some n € N; in particular, G is a ring. Let M, ;,(G) denote the set of
matrices of size a X b with entries in G.

2.3.1 Matrix Multiplication. Consider two matrices, A and B, where A € M;;(G) and
B € M;,,(G). Suppose that P possesses pk, Ep,(A), the entry-wise encryption of A, and also
the unencrypted matrix B. Then P; can compute Ep(A - B), the encryption of the multiplication
of A and B under the same pk. Such an operation is possible because one can obtain an encryp-
tion of the inner product over G of an unencrypted vector (z1,...,2,,) with an encrypted vector

(E(y1), s E(ym)) by computing ITE(y;)™ = E(3_ xiy;)).

2.3.2 Matrix Operators. Consider a matrix A € Mj,;(G). One can construct a k x (k+1—1)
matrix A’ by initializing A’ as a matrix with all Os and then, for each row 1 < i < k, setting
(A'(i,1),..., A (i,i +1—1)) = (A(3, 1), ..., A(,1)). We denote such a function by A’ < Stretch(A),
and note that since this function is a linear operator, it can be computed using matrix multiplication.
We observe that for any encryption scheme E, E(Stretch(A)) = Stretch(E(A)), when E is applied
to each entry in A.

Consider a matrix A € My, ;(G). We denote Cut(A,j) as the matrix A" € My ;9,2 such that
for 1 <a<k 1<b<l1l-2j+2, A(a,b) = A(a,b+ j —1). In particular, such a function
outputs the middle I — 25 + 2 columns of Mj,;. We note that C'ut is a simple projection operator
and is also computable by matrix multiplication. We observe that for any encryption scheme F,
E(Cut(A, j)) = Cut(E(A), )

Finally, consider a matrix A € M}, ;(G). We denote by ColSum(A) the function that takes as
input A and outputs a 1 x [ vector whose ith entry is the sum of all entries in the ¢ column of A. In
particular, ColSum(A) = [1....1] - A. We observe that for any additively homomorphic encryption
scheme E, ColSum(E(A)) = E(ColSum(A)).

Since we will be composing these functions, a shorthand for their composition will be convenient.
For matrices A € My, ;(G) and B € M ,,,(G), we denote the composition function Col Sum(Cut(Stretch(A-
B)’])) by PMSPM(A7B7j)‘

2.3.3 Searching an Encrypted Vector, my pind. Suppose party P; possesses (pk, sk) for an
additively homomorphic encryption algorithm F, and a single value m € G and P, possesses a
vector of [ distinct encryptions E,(vec), where vec = (z1,...,2;) € G'. Then P; can determine if
E(vec) contains an encryption of m while learning nothing else about vec, while Py cannot learn
m, through the following protocol 7y ping:

(a) Py computes E(—m) from —m. P; sends E(—m) to Ps.



(b) P, computes E(vec') by multiplying (via the group operation of the ciphertext space) E(—m)
to each encrypted entry in E(vec). Note that an entry in E(vec’) will be an encryption of 0
if and only if one of the encryptions of E(vec) was an encryption of m. P» computes E(vec")
from E(vec’) by exponentiating each encrypted entry of E(vec’) by an (independent) random
exponent. P» sends F(vec") to P;.

(c) Py decrypts E(vec”) to obtain vec”; if a 0 exists at position i, the ith position of E(vec) is

Note that if P» wishes to hide the position of E(m) from P;, P» could randomly permute the
positions of E(vec”) and send the permuted vector to P;.

2.3.4 Efficiently Determining Equality of Two Matrices, myvecrq. Suppose parties Py and
P, have agreed upon an additively homomorphic threshold encryption scheme Ey;,. Further, suppose
P; and P», possess encrypted matrices Ey,(A) € My (G') and Ey,(B) € My (G'), respectively,
where the message space G’ is the group Zg, for a prime ¢. Let Dp, denote the partial decryption
algorithm of party P;. P; and P» wish to determine if their encrypted matrices are equal without
exchanging their decryptions. They can do so by hashing their encrypted matrices to a single group
element and exchanging the outcome of the hashes. More specifically, an affine hash function Z’;l —
Zg can be specified by letting P; and P, jointly compute a uniformly random pair (a,b) € Z’;l X Zyq
using standard commitment techniques and setting the hash to hf(z) = (z,a) + b, where (-,-) is
the inner product over Z, (here, we consider the matrices as ki-length strings). Note that such a
hash function can be computed on encrypted strings because the encryption scheme is additively
homomorphic. Denote by comm a (perfectly hiding, computationally binding) commitment scheme;
in practice we use Pedersen commitments [34]. We denote the following subprotocol by 7y ccrq:

(a) Pp selects (a1,b1) € Zlgl X Zg uniformly at random and computes Ey,(b1). Pi computes and
sends comm/(ay),comm(Ey,(b1)), comm(Ey,(A)) to Ps.

(b) Py selects (ag,ba) € ZK'xZq uniformly at random and computes Ey, (ba). P2 sends ag, Ey (b2), By (B)
to P;.

(c) P setsa = ai+az, Ey(b) = Ey(b1+b2) and computes z1 = Ey,((a, A)+0b), z2 = Ey({a, B)+
b). P; decommits to aj, Ey,(b1) and Ey,(A) to Py and sends Dp, (z1), Dp,(z2) to Ps.

(d) P, aborts if it does not accept the decommitments, else P, sets a = a1 + a2, Ep(b) =
Eth(bl + bg) and computes z; = Eth((a,A> + b), 2o = Eth(<a, B) + b) P sends Dp, (21),
DP2(Z2)> DP2(DP1(21))7 and DPQ(DP1 (z2)) to Pp.

(e) Pyabortsif Dp,(Dp,(z1)) # Dp,(Dp,(22)); otherwise P; sends Dp, (Dp,(z1)) and Dp, (Dp,(22))
to PQ.

(f) P, aborts if Dp, (DP2 (2’1)) #* Dp, (DP2 (ZQ)).

The bandwidth complexity of my..pg is dominated by the size of Ey,(A) (and Ey,(B)). Only
with probability 1/¢ will the decryptions equal each other when A # B because the hash function
is chosen uniformly at random. In the malicious case, arguments of consistency for correct partial
decryptions will also be needed.

3 5PM Protocol

This section uses the above observations and cryptographic tools to construct the secure pattern-
matching protocol (5PM). We develop 775133 s for the honest-but-curious adversary model and ﬁ% M
for the malicious (static corruption) adversary model.



3.1

Notation Description Section‘

T Pattern matching algorithm secure in HBC adversary model 3.2

. Pattern matching algorithm secure in malicious adversary model|3.3

Key Key generation algorithm for homomorphic encryption scheme [2.2

E Homomorphic encryption algorithm 2.2

D Decryption algorithm for encryption scheme E 2.2

Dp, Partial decryption algorithm for party P; 2.2
using F for threshold encryption T

Stretch(A) Function from n by m matrices to 2.3.2
n by n 4+ m — 1 matrices that “stretches” rows of A

Cut(A,n) Function that outputs the first n columns of matrix A 2.3.2

ColSum(A) Function that outputs the sums of the columns of matrix A 2.3.2

PMspn (A, B,n)|Composition function ColSum(Cut(Stretch(A - B),n)) 2.3.2

TV Find Two-party protocol that determines if encryption of P;’s value [2.3.3
exists in P»’s encrypted vector

Gencpv Algorithm with input of a pattern p € (¥ U {*})™ 3.1
outputs | X| x m matrix Mcpv

Genr Algorithm that on input of a text T € X" outputs 3.1
the n x |X| matrix My

TV ecEQ Two-party protocol that determines equality 2.3.4
of two encrypted vectors (725 ,7)

Arer Arguments of consistency require for malicious protocol (71'?113 M) 3.3.2|

Table 4. Notation used for 5PM protocols

Converting IPM to Linear Operations.

For a fixed alphabet X, a text T' € X", and pattern p € (X' U {x})™, IPM can be represented in
terms of linear operations described in Section [2.3] as follows:

a.

The text T can be transformed into an n x | X| matrix, Mp. The transformation is performed
by applying a unary encoding of alphabet characters to T', i.e., Mp(i,T;) = 1,Vi € {1,...,n};
all other entries in Mp are 0. We denote the algorithm that computes Mp from T as Mp +
Genp, (T).

The CDV's of alphabet characters can be grouped into a |X| x m matrix, Mcpy . This step is
equivalent to constructing C'DV's for alphabet characters (steps b and ¢ in Section .We
denote the algorithm that compute Mcpy from p as Mcopy < Genn,py, ()-

. Multiply M7 by Mcpy to obtain an n x m matrix Mpcpy) that represents T' row-wise

in terms of C'DV's, where the ith row is CDV(T;). In reality, since My and Mcpy are 0/1
matrices, multiplication is more computationally expensive than necessary, and vectors can
simply be selected (as shown in the IPM description in Section .

Compute Mpcpyy = Stretch(Mpcpyy). This transformation, jointly with the previous
step, constructs a matrix of CDV's where the ith row contains only C DV (T;), which starts
in the ith position in the ith row (sets up step d in Section .

. Compute AV = ColSum(Cut(Mycpyy,m)) to obtain the final activation vector AV of

length n — m + 1. Entries in AV are checked to see if any are equal to the threshold value
m, or m — [ for single-character wildcards or substring matching (completes step d in Section
2.1.1]).

A key observation is that if only one of M7 and M¢py are encrypted, an encrypted activation
vector, E(AV'), can be obtained by both parties, as shown in Sections and

10



3.2 Honest-Cut-Curious (HBC) 5PM Protocol

We begin by describing the intuition behind required modifications to secure IPM in the HBC
adversary model. We then describe details of the HBC protocol, WEIZD M-

3.2.1 Protocol Intuition. Let E be an additively homomorphic encryption scheme. When
Client sends Server E(Mcpy ), by the reasoning of Sections[2.3|and [3.1] Server can compute E(AV),
an encrypted activation vector, using only My and E(M¢py ). This is because the pattern matching
operation can be reduced to a sequence of linear operations (namely matrix multiplication and the
functions Stretch, Cut, and ColSum). Since Client sends only E(Mcpy) and E(m — 1), Server
learns nothing about Client’s pattern due to semantic security of the encryption scheme.

Next, Client, for pattern-matching threshold m (or m—I in the single-character wildcards/substring
matching case), executes Ty ping specified in Section where Client uses F(AV) to discover
whether (and where) a pattern exists. Because of the security of 7y ping, Server does not learn m
and Client learns nothing about E(AV), other than whether or not (and where, if the pattern-
matching locations are not hidden by Server) an encryption of m exists in E(AV). In practice,
Client sends E(m) in the same (first) round as E(M¢cpy ), and Server’s response to 7y ping Occurs
in the second round, concluding execution of the secure pattern-matching protocol.

Client Server
Input: p € (XU {x})™ Input: T € X"
Initialization:

1) (pk, sk) < Key(lk)
2) Mcpy GeTlCDv(p)
3) E(Mcpv) < Mcpy

E(fm+ l) — —m+1 4)E(Mcpv);E(—=m+1);pkc

Activation Vector Formation:
5) Mr « Genp(T);

E(AVs) < 1:’]\45191\4(]\47*7 E(MCD\/), m)
6) E(AVS) < mvrina(E(AVs, E(—m +1)))
7) Optional: Permute E(AVY)

. . 6)E(AVy)
Decrypting and Determining
Matches:
8) MP = {i | D(E(AVg[i])) = 0}
Output: Output:
MP = {j|T;...Tj4+m-1 = p} Nothing

Table 5. Overview of 5PM protocol for HBC adversary model, WgD - See Table || for notation.

3.2.2 ng y Protocol Specification. Recall that over a specified alphabet X', Server holds text
T € X™ and Client holds a pattern p € (X'U{x})™. The output of Server is an encrypted activation
vector E(AV) of length n. We refer the reader to Sections and for the notation used here.
The protocol operation is as follows:
a. Client computes (sk,pk) < Key(1¥) using the key generation algorithm of an additively
homomorphic encryption scheme, F.
b. Client computes Mcpy < Gencpy(p). In the case where Client wishes to hide the length of
p, Client computes Mcpy for the pattern p’ equal to the concatenation of p with ==,

11



c. Client encrypts Mcpy entry-wise using public key pk to obtain E(Mcpy ).
d. Client sends E(M¢cpy ) and pk to Server. In addition, Client sends E(—m) (or E(—m+1) in
the single-character wildcards or substring matching cases).
e. Server computes Mp < Genp(T). Server computes E(AV) =
E(PMspy(Mrp, Mopy, m)), which is computed as specified in Sections and
f. Server executes round 2 of 7y g (see Section using E(—m) and E(AV). Server sends
output of the subprotocol, denoted E(AVY), to Client.
g. Optional: Per 7y ping, Server randomly permutes E(AVY) to hide possible pattern match
locations.
h. Client executes round 3 of Ty pjnq using E(AV{) to determine results of the pattern matching.
We note that 7T5HP s can perform substring matching for multiple substring lengths (such as a
Hamming distance bound) simultaneously by sending multiple E(m — ) values at step 6 in the
specification shown in Table |5, Then, for each value of [, Server constructs a distinct E(AV') and
sends Client a distinct corresponding E(AVY) indicating matching locations for that [ value. In
particular, 7T5HP a does not require multiple independent protocol executions to compute substring
matching for a range of substring length values. In addition, 775133 s can simply compute the Hamming
distance of the pattern with each consecutive m positions of the text by simply not executing
Ty ring and sending the output of the protocol at step 5, and Client can decrypt to obtain all of
the Hamming distance values between the pattern and the text.

Theorem 1. Given an additively homomorphic semantically secure encryption scheme over a
prime-order cyclic group (Key, E, D), ngM 1s secure in the HBC model.

See Section [7] for a detailed security proof.

3.3 Malicious Model 5PM Protocol

In this section we explain how to modify WgDM to obtain a protocol, ﬂ% > Which is secure in
the malicious (static corruption) model. We describe an instantiation of w24, based on additively
homomorphic threshold ElGamal encryption (see Section for concreteness; generalization to
other encryption schemes follows provided they have efficient X' protocols for the statements re-
quired here. First, we explain the intuition behind W% - Second, we give interactive zero-knowledge
consistency arguments that will be required. Finally, we divide ﬂé‘ﬁ s into six subprotocols and de-
scribe their construction and how they are combined into the final protocol W% a- In the interest
of clarity and space, we leave the exact protocol specification and security proof to Sections [f]
and [7] respectively. Note that this protocol, as shown in Section 2.1.2] can be modified to both
hide pattern length (by using, for pattern p, the pattern p’ equal to to p concatenated with *™~"™)
and also to match against multiple substring values without multiple executions of the entire proto-
col (i.e., by sending multiple E(m —1) values and computing a new activation vector for each value).

3.3.1 Protocol Intuition. The eight round protocol for the malicious model, ﬂé‘;fg A consists of
the following six subprotocols:
(a) Tener: initializes an additively homomorphic threshold encryption scheme.
(b) ms av: allows Server to construct an encrypted activation vector for Client’s encrypted pattern
and Server’s text.
(¢) mc,av: allows Client to construct an encrypted activation vector for Client’s pattern and
Server’s encrypted text.

12



(d) myec: allows Client and Server to verify that their activation vectors are equal without revealing
them.

(e) Trang: allows Server to send an encryption of its randomized activation vector to Client.

(f) mans: shows to Client where the pattern matches the text (if at all).

The intuition behind constructing 775%[3 s 1s as follows: In ng - only Server performs the com-
putation to obtain the activation vector, AV. In the malicious setting, Client has to verify that
Server correctly computed AV. Since Server performs O(nm) multiplications when computing AV
in 7T5HP > requiring a zero-knowledge argument for each multiplication therefore would require band-
width of at least O(nm). Such overhead is unacceptable if bandwidth O(n + m) is desired.

We utilize a more bandwidth-efficient approach to ensure that a malicious Server has computed
the correct AV: in 7%, . both Client and Server perform secure pattern matching independently
using the function PMspys where one of Mcopy and My are encrypted, and then compare their
results. Each party computes an AV in parallel (see subprotocols m¢ 4y and mg av, respectively,
in Section using an additively homomorphic threshold encryption scheme (instantiated using
subprotocol 7epe- in Section . To ensure that no cheating has occurred, Client and Server then
check that each other’s AV was computed correctly. Therefore, proving that Server has behaved
honestly is reduced to proving that Client and Server have obtained the same result from matching
p against T'. To efficiently perform a comparison of encrypted AV's, Client and Server check that
their encrypted AV's are equal using subprotocol my..gg described in Section m (in addition to
some zero-knowledge arguments to demonstrate well-formedness). Only if hashed AV values match
will Server provide Client with its decrypted (and blinded) AV (using the subprotocols m;.q,q and
Tans I Section . The comparison subprotocol is denoted by 7Tye. in Section m

Throughout, both Client and Server will have to use various arguments of consistency outlined
in Section to prove that they have not deviated from the protocol.

There is one additional technical difficulty that we have to overcome: In order to prove security
we must provide simulators that simulate transcripts when interacting with adversarial parties (see
Section (7| for security definitions and simulator constructions). When constructing the simulator for
Client’s view, the simulator receives the actual answer that it must provide to Client from the ideal
functionality only at the last moment (if Client does not abort). Thus, the simulator must provide
a final answer which is not consistent with the previous interactions, while the real Server must
be unable to do so. To achieve this, we demonstrate that the simulator can extract the knowledge
of the exponent of some h* specified by Client during the first subprotocol (mener); then, the final
subprotocol (7gns) uses a zero-knowledge argument of knowledge that demonstrates that either
the final randomized AV is correct or that Server knows the discrete logarithm of A*. Since a real
Server cannot extract the discrete logarithm of A*, but the simulator can by construction, this
allows the simulator to reveal the correct randomized AV even when it is inconsistent with the
previous outputs of the conversation. We stress that we do not use NP-reductions but rather build
highly efficient protocols to fit our needs.

3.3.2 Zero-Knowledge Arguments of Knowledge (ZK-AoKs) of Consistency. We first
describe five required interactive arguments which we rely on to prove statements required for the
W% s protocol. They are designed for use with the specified threshold ElGamal encryption scheme
(Section . We apply a standard construction outlined in Section M| of this paper to transform
three-move arguments of knowledge and construct five-move ZK arguments of knowledge wpy,
TisBit, TegDL and T ¢y, respectively. All ZK-AoKs are executed between a prover P and a verifier V

13



in five moves; we note that either Client or Server may execute the arguments of consistency as P
while the other party will then execute as V. wpy, is the only ZK-AoK used on its own in ngg o it
proves knowledge of a discrete logarithm of a public h = ¢*. msprr is a ZK-AoK that proves that
an encryption is either of 0 or of 1; meypr is a ZK-AoK that proves that two discrete logarithms
are equal; and 7y;, is a ZK-AoK that proves that either two discrete logarithms are equal or that
P knows the discrete logarithm of a public h = g*. The five required interactive arguments are:

(a) Ano1, an AoK of Consistency for Matriz Formation 0/1: P, for an [ X u matrix of encryptions,
E(M), proves to V that each column of E(M) contains encryptions of 0 and at most one 1.

(b) Awmai, an AoK of Consistency for Matriz Formation 0/1-1: P, for an [ x u matrix of encryptions,
E(M), proves to V that each row of E(M) contains encryptions of 0 and ezactly one 1.

(¢c) App, an AoK of Consistency for Partial Decryption: P, for a vector of [ encryptions, (z;,y;)
and a vector of their [ partial decryptions (z},y}), proves to V that the partial decryptions are
correctly constructed.

(d) ARanda, an AoK of Consistency for Randomization: P, for a vector of [ encryptions (x;,y;) and
a vector of their exponentiations, (z',y;*), proves to V that P knows r; for each i.

(e) App, an AoK of Consistency for Final Decryption: P, for a vector of [ encryptions (z;,y;),
their partial decryptions (2}, y;), and some g%, proves to V that either P has computed all the
partial decryptions correctly or that it possesses the discrete logarithm w of g%.

3.3.3 7751,‘;-’3 y Protocol Outline. We provide the details of ﬂ% by describing individual sub-
protocols that constitute it, Teper, 5,4V, TC,AV, Tvees Trand and Tans. These subprotocols use the
interactive arguments described in Section to prove various statements of consistency. We
denote comm(s) as the (perfectly hiding, computationally binding) commitment of s, which, us-
ing Pedersen commitments [34], is g°h" = comm(g, h,r,s). For the exact protocol specification of
W%M, including precisely how the subprotocols are interleaved so that Wé\/IPM requires only eight
rounds, see the Section we will, however, mention here during which global rounds (1 through
8) in which these subprotocols occur.

We remark that in our construction of ZK arguments of knowledge from 3 protocols, whenever
a ZK subprotocol is required, the first two rounds of the five-round protocol can be completed in
parallel at the very beginning of the overall protocol ﬂé‘ffg - Such “preprocessing” does not affect
security. Further, knowledge extraction used in the security proofs is not affected by this prepro-
cessing.

Tlencr 18 & two =party protocol executed between Client and Server that initializes an addi-
tively homomorphic threshold encryption scheme (e.g., ElGamal) and also sets up an independent
“trapdoor” s* alluded to in Section [3.3.1]and required for the simulator in the security proof. In the
ElGamal case, for simplicity, we assume that Client and Server have already agreed on appropriate
prime ¢ such that logq = O(k), G, and g € G,. This subprotocol begins at the first global round
and ends at global round 6. Client chooses its secret key s¢ and trapdoor s*, and sets hi < ¢g°¢,
h* < ¢°". Client sends hi, h* to Server. Client executes two parallel instantiations of 7py, proving
knowledge of the discrete logs of h; and h* (i.e., s¢ and s*). Then, Server chooses its secret key
sg, sets hg < ¢°5, and sends ho to Client and executes mpy proving knowledge of the discrete
logarithm of hsy (i.e., sg). Both parties set the public key to be h = hihy = g5¢ 55,

TC,AV is a two-party protocol executed between Client and Server which outputs to Client
an encrypted activation vector E(AVy) corresponding to matching Client’s p against Server’s T

14



This subprotocol starts at global round 2 and ends at global round 6. First, Server constructs
M7 < Geny, (T') as specified in Section Then, Server encrypts My and sends E(Myp) to
Client. Server also executes, for E(Mr), Ay to prove that E(Mr) is formatted correctly (namely,
that each row of E(My) has one encryption of a 1 per row and encryptions of 0 everywhere else.
Therefore, each row of E(Mry) corresponds to the encoding of exactly one element of the alphabet
Y). Client then obtains E(AV¢) by computing E(PMspy (Mr, Mepy,m)) (see Section [2.3.2)) and
then multiplying each encryption by E(—p;) (where p; is the pattern-matching threshold), observ-
ing that the function PMspys can be computed using encrypted E(Mrp).

TS,AV is a two-party protocol executed between Client and Server which outputs to Server an
encrypted activation vector corresponding to matching Client’s p against Server’s T'. This subpro-
tocol starts at global round 3 and ends at global round 5, with ZK preprocessing occurring during
global rounds 1 and 2. Client encrypts Mcopy and py, and sends E(M¢cpy) and E(p;) to Server.
Client also executes Apso1 to prove that E(Mecpy) is formatted correctly (namely, E(Mcpy) con-
sists of at most one encryption of 1 per column and consists of encryptions of 0 everywhere else.
This therefore ensures that there is at most one character delay value per distance). Server com-
putes E(AVs) by computing E(PMspp (Mp, Mcpy, m)) and then multiplying each encryption by
E(—p¢) (this slightly differs from Server’s actions during Wg; a since the consistency proof of mye.
must also include subtraction of the pattern-matching threshold p;).

Tlyvec 1S a two-party protocol executed between Client and Server that outputs to each party
whether their respective encrypted activation vectors are equal (without revealing their values).
This subprotocol begins at global round 3 and ends at global round 8, with ZK preprocessing oc-
curring during global rounds 1, 2 and 3. Client computes E(AV/,) by multiplying each element of
AVe with an encryption of 0; Server computes E(AVY) from E(AVs) similarly. Client and Server
execute TyecpQ (see Section where Client has input E(AV{,) and Server has input E(AVY).
In addition, whenever a party sends the other a partial decryption, they execute App to prove that
the execution is well formed. Note that the probability that my..pg will complete without abort
for unequal vectors AVg and AV is negligible (%)

Trand is a two-party protocol executed between Client and Server that outputs to Client an
encrypted vector E(AVY) that contains randomizations of the values in non-matching (non-zero)
positions in E(AV{). This subprotocol starts at global round 6 and ends at global round 8, with
ZK preprocessing occurring during global rounds 2 and 3. Server computes E(AVE) from E(AVY)
by exponentiating each encryption in F(AVY{) by a random value. Server sends E(AVY) to Client
and executes A,q,q to prove that E(AVY) was obtained correctly from E(AVY).

Tans 18 a two-party protocol executed between Client and Server that outputs to Client the
randomization, AVY, of Server’s activation vector AVg. Note that AVY will have a 0 wherever there
is a match; every non-matching entry will contain a random element. Client is assumed to already
know E(AVY). This subprotocol starts at global round 6 and ends at global round 8, with ZK
preprocessing occurring during global rounds 2 and 3. We present a slightly modified version of the
actual subprotocol used because in practice this protocol must be rearranged slightly to keep W% M
at 8 rounds (see Section for details). Server sends Dg(E(AVY)) to Client and executes App
to prove that either Dg(E(AVg)) was obtained correctly or that Server knows s* (for h* sent by
Client in the first round of meper). Client aborts if it does not accept App and otherwise obtains
AV by computing De(Dg(E(AVY))).

15



3.3.4 Protocol Efficiency and Security. Overall the bandwidth of ﬂé‘fp u 1s dominated by the
O(m|X|) encrypted values that Client sends to Server in mg 4y and O(n|X|) encrypted values that
Server sends to Client in m¢ a4y and 74ps. Since alphabet size, | Y|, is constant, we obtain the desired
bandwidth, including the ZK protocols, of O((m +n)k?) for security parameter k and total number
of encryptions of O(m+n). In particular, when Client hides pattern size, the corresponding pattern
will have length n, and therefore the bandwidth complexity is O(nk?). Computational complexity
for Client is dominated by the subprotocol m¢ av, where Client performs O(mn) exponentiations of
encrypted elements, and computational complexity for Server is dominated by subprotocols g v,
where Server performs O(mn) multiplications of encrypted elements, and 7y, and mgns, where
O(nk) exponentiations are needed for the ZK protocols.

Theorem 2. Assuming that the Decisional Diffie-Hellman (DDH) problem is hard, W%M 15 secure
in the malicious (static corruption) model.

See Section [7] for a detailed security proof.

4 Converting X protocols to Zero-Knowledge Arguments of Knowledge
(ZK-AoKs)

Here, we describe the construction used to convert a X protocol into an efficient zero-knowledge
argument of knowledge. We first provide the necessary definitions. We then give a construction of
an efficient extractable equivocable commitment scheme. We finally use this scheme to construct a
zero-knowledge argument of knowledge from a X' protocol for the same relation. We note that an
algorithm is expected PPT if it is a probabilistic algorithm that runs in expected polynomial time.

4.1 Definitions

Let R be a binary relation where for all (z,w) € R, |w| € poly(|z|). w is called the witness for

x. Consider an interactive argument consisting of a pair of PPT algorithms (P, V') (thought of as

probabilistic next-message functions). x is known to both P and V, while w is only known to P.

Informally, P proves to V' that there is a w such that (z,w) € R. We consider interactive protocols

that have the following specification:

a. P sends message a, |a| € poly(|z|).

b. V selects message e € {0, 1}P°!%(#)) uniformly at random and sends e to P. We denote e as the
challenge.

c. P sends a reply z € {0, 1}rewv(leD),

Note that this interaction is public coin for V. Based on the tuple (also called a conversation)

(a,e,z), V either accepts or rejects. For any x, we call a conversation (a,e, z) that V accepts an

accepting conversation.

Definition 1. A 3-move interactive protocol II = (P, V') of the above specification is said to be a

X protocol for a relation R if it satisfies the following properties:

a. Completeness: On common input x, if the honest prover P has as private input w such that
(x,w) € R, then honest V' always accepts.

16



b. Special Soundness: For any common input x and any pair of accepting conversations (a,e, z)
and (a, €', 2") for x where e # €', there exists a w that can be computed in polynomial time such
that (z,w) € R.

c. Special Honest-Verifier Zero-Knowledge (SHVZK): There exists a PPT M that on input x and
a properly formatted e oulputs an accepting conversation of the form (a,e,z) with the same
probability distribution (over e) as conversations between honest P and honest V.

Definition 2. An interactive protocol for a relation R consisting of a pair of PPT algorithms

(P,V) is an argument of knowledge with knowledge error k if the following properties are satisfied:

a. Completeness: On common input x, if the honest prover P has as private input w such that
(z,w) € R, then honest V always accepts.

b. Knowledge Soundness: There exists a (expected) PPT E called the knowledge extractor which,
given input = and oracle (black-box) access to P, attempts to compute w such that (x,w) € R.
For any prover P*, let e(z) be the probability that V accepts on input x. Then there exists a
constant ¢ such that whenever e(x) > k(zx), E will output a correct w in expected time at most
% where an individual oracle call to P* is considered as one step.

k can be thought of as the probability that V' can be convinced that there exists a w such that

(z,w) € R even if such a pair does not exist.

Lemma 3 ([35]) Let II be a X protocol for relation R where the challenge e is drawn uniformly
at random from {0,1}t. Then II is a proof of knowledge with knowledge error 27

Remark 1. Lemma [3] holds because Definition includes the special soundness property. 3 pro-
tocols that only have standard soundness will not always satisfy the lemma.

Definition 3. For any binary relation R, an interactive protocol consisting of a pair of PPT algo-

rithms (P, V) is a zero-knowledge argument if it satisfies the following properties:

a. Completeness: On common input x, if the honest prover P has as private input w satisfying
(z,w) € R, then honest V always accepts.

b. Soundness: For all x such that there does not exist a w with (z,w) € R, V will only accept with
negligible probability.

c. Zero-Knowledge: For all PPT V*, there is a PPT simulator M with oracle access to V* such
that, given input x and V*’s auziliary input, V*’s view of its interaction with real P is compu-

tationally indistinguishable from V*’s view of its interaction with M.

We demonstrate that any X protocol for a binary relation R can be converted into a ZK argument
of knowledge for R. We first construct an extractable equivocable commitment scheme and use this
scheme together with the X' protocol specification for the ZK-AoK construction.

4.2 Extractable Equivocable Commitment Schemes

To construct a ZK-AoK from a X protocol, an efficient extractable equivocable commitment scheme
will be required. Such a scheme is an interactive protocol between a PPT committer C' and a
PPT receiver R consisting of three functions: EFComSet instantiates the commitment scheme, com
computes the commitment, and EComVer verifies that decommitment is valid. More specifically,
R, for a security parameter k, computes (pk,t) «+— EComSet(1¥) and sends pk to C. C computes

17



¢ < com(s, r,pk) for message s and randomness r and sends ¢ to R as its commitment to m. To
decommit, C sends (r,m) to R. R computes {0,1} < EComVer(m,r,c, pk), accepts if 1 is output
and rejects otherwise.

Definition 4. A computationally binding equivocable commitment scheme is a pair of PPT algo-

rithms (R, C) that interact as above and satisfy the following properties.

a. Statistically Hiding: For pk correctly constructed and any messages s and s', the distributions
of com(s,r,pk) and com(s',r', pk) are statistically indistinguishable over the choice of random
input (e.g., r and r’).

b. Computationally Binding: For any PPT algorithm C' running in expected time polynomial in
k, the probability that C' on input pk can compute a tuple (s,r,s',r") such that com(s,r,pk) =
commit(s', ', pk) with s # s’ is negligible in k.

c. Equivocable: There is a PPT algorithm S that, on inputs t, pk, any commitment ¢ and any ac-
cepting decommitment (s,r) to ¢, can construct for any valid s' an r' such that ¢ = com(s',r’, pk).

An equivocable commitment scheme is extractable if there is a PPT algorithm E that, upon oracle

access to R, is able to obtain a trapdoor t in expected polynomial time.

We now give a construction of an equivocable commitment scheme, FP, based on Pedersen
commitments [34]. We assume that the receiver R and committer C' have already agreed on a
prime order group G, and generator g € G,. The committer C' has a message s. For b € {0,1}, we
denote b =1 — b.

EP - Commitment:
EP-1: R chooses for 1 < i < kand 0 < j <1, 10,%1,1,... ,Tk0,Tk,1 € Zg uniformly and
independently at random and sets h; j <= ¢**i. R sends (h1,0,h1,1, ..., hi0, hx,1) to C.
EP-2: C chooses ¢ € {0,1}*. C chooses ry,...r € Zq uniformly and independently at random.
C sets c = hfel . h;;]fek g% COMG,g.h1 ey sooshe, (s,r1,..rx). C sends e and ¢ to R.
EP-3: R sends (z1¢,,...,Tke,) to C.
C checks that for 1 <7 <k, h; g, = g**%. If not, C aborts.

EP - Decommitment
EP-4: C sends s,71, ..., 7%
EP-5: R verifies that ¢ = h'!

Ler

Ca h};’“ek - g° and aborts if equality does not hold.

The above EP protocol has bandwidth complexity O(k?) and computational complexity O(k? log? k).

Just like Pedersen commitments, this commitment scheme is statistically hiding and computa-
tionally binding.

We show that knowledge of any discrete logarithm z;; from the public key together with a
valid decommitment would allow S to open commitments to any value. Indeed, let the public key
be (hi,ers .-, Pke, ), Where hi o, = g®. Without loss of generality, suppose S obtained z; and also
obtained ¢, s, 71, ..., 7 such that ¢ = com(s,ry, ...,7, pk). Let s be any message. S sets r, = r; for
2 <i<kandsets r] = Hx;irll_sl mod q. Then com(s',r],r2,...,rx) = ¢ = com (8,71, ..., Tk)-

To demonstrate that this scheme is extractable, for any R we construct a simulator Mgr. Mg
runs EP honestly with R through EP-3, then rewinds to EP-2 and sends a new ¢’ € {0,1}"* to R.
Since €’ # e, Mg obtains some discrete logarithm x; ; of the public key (A1, , ..., bk, ) and therefore
can decommit to any s’. We require many possible trapdoors because the probability that R can
both complete the E'P protocol (namely the step EP-3) and not know or abort when asked for the

18



discrete logarithm of any of the h; ;s is roughly the same probability that Mpg will fail to extract
a trapdoor since knowledge of the discrete logarithms occurs at EP-3; therefore, we require many
trapdoors to ensure that the probability that R sends an invalid response at EP-3 is negligible in
the security parameter.

4.3 Construction of a ZK-AoK from Y Protocols

We give a construction for how to transform a three-move X argument of knowledge X, for a
binary relation R, into a five-move ZK argument of knowledge m,; for R,.; using the extractable
equivocable commitment scheme EP described in Section Recall from Section that we
denote the transcript for a X' protocol as (a,e, z), where e is chosen uniformly at random by V.
We assume that V' and P have already agreed on a multiplicative group G, with prime order ¢
and generator g € G,. P (z,w) € Ry¢; V possesses x. We denote the following construction by
X-ZK-AoK, which consists of the following steps:

rel-1: P executes EP-1 acting as receiver.

rel-2: V selects e according to the second message of X,..;. V executes EP-2 using e as the value
being committed.

rel-3: P computes a according to the first message specification of X,..;. P executes EP-3 and also
sends a to V.

rel-4: V executes EP-4, opening e.

rel-5: P executes EP-5 and aborts if P does not accept. P computes z according to the third
message specification of X..; in response to a, e and z. P sends z to V.

rel-6: V verifies (a, e, z) according to X.;.

T has bandwidth complexity O(k?) and computational complexity O(k?log? k) in addition to
that of X,.;.

Lemma 1. If X, is a X-protocol, then m.o; is a ZK argument of knowledge.

Proof: Completeness. Completeness follows from the completeness of X.;.

Soundness. To demonstrate soundness, assume that there exists an x such that there is no
w with (z,w) € R,¢ and yet V accepts m, with non-negligible probability. Let (a,e, z) be the
transcript for X,..; contained within m,..;. Then it follows that X,.; has a verifier V' that accepts a
transcript with non-negligible probability for the same x. This implies that there are at least two
distinct challenges e and e’ such that P can produce accepting transcripts (a, e, z) and (a,€’, 2’)
for X, within 7. (in fact, there must be a non-negligible number of such challenges). However,
by special soundness of X,..;, a w can be computed in polynomial time from these transcripts such
that (z,w) € R,¢. But such a w does not exist, which leads to a contradiction.

To demonstrate that m.. is zero-knowledge, for any verifier V*, we describe the simulator
My,. My acts as an honest prover for steps rel-1 through rel-4. At step rel-4, My receives V*’s
challenge e. My then, by the SHVZK property of X, computes (a,z) such that (a,e,z) is an
accepting transcript for . Note that in particular, the fact that X protocols are special honest
verifier zero knowledge is important, as it implies the ability to construct correct transcripts for
arbitrary (pre-selected) distributions of verifier messages. My rewinds to step rel-3 where it sends
a (as well as executes EP-3) and executes the rest of m,; honestly. In particular, My sends z at
step rel-5. V*’s view of its interaction with P is indistinguishable from its view of its interaction
with My because V* cannot affect the distribution of its challenges based on P’s messages since V*

19



commits to its challenge (in a perfectly binding fashion) before it receives the first message of X,.;.
Since the distribution of e is not affected by initial messages, My ’s transcript of X,..; within 7,
is computationally indistinguishable from P’s output for X,..; by the special honest-verifier zero-
knowledge (SHVZK) property of X,.;. Computational indistinguishability of the whole transcript
follows.

To show the existence of a knowledge extractor, Ep, for each P, let E,., p be the knowledge
extractor for X, and let Sp be the trapdoor extractor for the commitment scheme EP. Ep
then runs ZK-AoK using S as a subprotocol to extract the trapdoor for EP. Ep then rewinds
to rel-4, after P has already instantiated the commitment scheme and sent its initial message a
for Y., and changes its challenge for Y., according to the specification of F,. p. Note that Ep
will have to decommit to multiple challenges for X at step rel-4 in order to execute E,. p as
a subprotocol. However, since Ep possesses the trapdoor for EP and EP is equivocable, Ep can
decommit (e.g., construct messages for EP-4) to whatever challenge F,. p specifies. Since S can
extract the trapdoor in polynomial time, and E,;, can extract the witness for X, in (expected)
polynomial time, Fp can extract the witness for 7, in (expected) polynomial time.

Remark 2. We note that above, the zero-knowledge simulator My was able to interact with V
without actually knowing the witness w for x. This is because of the simulation soundness of X,.;
namely, since a simulator can produce accepting transcripts only by seeing the Verifier’s challenge
there (and without seeing w), My can produce proper transcripts for m,.; without ever knowing w.
Such a property is called simulation soundness and will be useful for a security reduction needed
for 2%, (see Section [7.3.3)).

5 Required X Protocols

In this section we outline specific X protocols needed for the malicious model version of 5PM,
7). These three-move protocols are executed between a PPT prover (P) and a PPT verifier
(V') and are used to construct zero-knowledge arguments of knowledge using the transformation in
Section [4-3] For each X' protocol, we first describe the relation demonstrated by P, and then we
describe the three protocol messages exchanged between P and V. We note that with the exception
of X, the security of each of the following X' protocols is proven in the places in which they are
cited; the security of Xy;, follows since it is a standard example of an OR X' protocol of two ¥
protocols already shown here (for more, see [35]).

1. ¥pr, Proving Knowledge of Discrete Logs [36]: For g and h = ¢, P demonstrates
knowledge of witness z. The relation Rpr, is ((Gq,q, 9, h),z) € Rpy, if h = g*. The X protocol steps
are:

- Xpr—1: P chooses r € Zy and sets a < ¢g". P sends a to V.
- Xpr—2: V chooses a challenge ¢ € Z, and sends c to P.

- Ypr—sg: Psets z <+ r+cx and sends z to V.

- Ypr—4: V checks that g* = ah® and aborts if not.

2. Yeyp1, Proving Equality of Discrete Logs [30]: For g,h,z,y € G,;, P demonstrates
knowledge of a witness w such that x = ¢g* and y = h". The relation Reqpr is ((Gg, ¢, 91, 92, h1, ha), w) €
Regpr if hi = g’ and ho = g3'. The X protocol steps are:

- Yeqpr—1: P chooses r € Zy and sets (a,b) < (¢",h"). P sends (a,b) to V.

20



- Yegpr—2: V chooses ¢ € Z4 and sends ¢ to P.
- Yegpr—3: P sets z < r +wc and sends z to V.
- Yegpr—4: V checks that g* = ax® and that h* = by“ and aborts if not.

3. Yispit, Proving Encryption of 0 or 1 [37]: P demonstrates that it possesses an ElGamal
encryption of m € {0, 1} with generators g, public key h and randomness r (recall that encryption
of m is of the form (g, g"™h") = (x,y)). P proves that either log, z = log;, y or log, z = log, y/g.
The relation Rispi is (G, q, g, b, , B), (b,7)) € Rispu if (o, B) = (g7, g°h") and b € {0,1}. The X
protocol steps are:

- 24sBit—1°
— If m = 1: P chooses ri,di, ws € Zy and sets a; < h™ (gh™) ™", ag < h™2,
— If m = 0: P chooses wy,r2,ds € Zg and sets a1 < h"', ag < h'? (h"g=1) 4%,
P sends (ay,az) to V.
- Yispit—2: V chooses ¢ € Z, and sends ¢ to P.
- ZisBit—8*
— Ifm=1: Psets dy < ¢c—dq, 9 < wg + rds.
—Ifm=0: Psetsdy < ¢c—do, 71 < wy + rdy.
P sends (dl,dz,Tl,Tg) to V.
- Yispit—y: V verifies that ¢ = di + dg, K" = ai(gmh")% and A" = as(¢™ 'h")% and aborts
if not.

4. Y¢in, Proving Equality of Discrete Logarithmss Or Knowledge of Discrete Loga-
rithm: P demonstrates for g, h, g1, h1, g2, ha € G4 that either it knows the value log, h1 = log,, ho
or he knows x such that h = ¢* given g. The relation Ry, is ((Gg,q, 91,92, h1,h2,9,h), (o, z)) €
Ry if either (DLE): hy = ¢¢ and hg = g§ or (DL:) h = g*. The X protocol steps are:

- Eﬁn—l :
— If DLE: P chooses 71,d1, w2 € Zq and sets aj < g h=% ay <+ gi* and a3 + g3>.
— If DL: P chooses wi,72,ds € Zg and sets aj < g“', as < g{zhl_d2 and a3 ggzh;dz.
P sends (gl, hl,gg, hg,g, h, al, az, CL3) to V.
- Ygn—2: V choses c € Z, and sends c to P.
- Eﬁn_gl
— If DLE: P sets dy < ¢ — dq, 19 + wy + ads.
— If DL: P sets dy < ¢ — do, r1 < wy + xd;.
P sends (dy,dg,m1,72) to V.
- Xpn—y: V verifies that di +do = ¢, g™ = a1h®1, g2 = ash®, and g5 = azhd? and aborts if
not.

6 Detailed WFJJ‘;IDM Specification

We provide here the detailed protocol specification of the malicious model version of 5P M, W% M-
First, we must specify the various zero-knowledge arguments of consistency that are required.

6.1 Arguments of Knowledge of Consistency

We first describe five required interactive arguments which we rely on to prove statements required
in the W% s brotocol. They are designed for use with the specified threshold ElGamal encryption

21



scheme (Section . We apply the Y-ZK-AoK construction outlined in Section |4/ to transform the
three-move arguments of knowledge outlined in Section [5|to construct the five-move ZK arguments
of knowledge 7mpr, TisBit, Teqpr and mp;,. All arguments are executed between a prover P and a
verifier V. wpr, is the only ZK-AoK used on its own in Tr%M; it proves knowledge of a discrete
logarithm of a public h = ¢*. misprr is a ZK-AoK that proves that an encryption is either of 0 or
of 1; meqpr, is a ZK-AoK that proves that two discrete logarithms are equal; and 7y, is a ZK-AoK
that proves that either two discrete logarithms are equal or that P knows the discrete logarithm
of a public h = ¢®. The five required interactive arguments are:

Anio1, an AoK of Consistency for Matriz Formation 0/1: In this interactive argument, P sends
an [ x u matrix of encryptions, E(M). P demonstrates to V' that each column in E(M) contains
at most one encryption of 1, and the rest of the encryptions are of 0. We assume that P has sent
E(M) to V. We denote by Apso1 the five-move interactive argument where P proves to V using
(I + 1)u parallel instantiations of m;sp; that each entry of F(M) is an encryption of either 0 or
1 and that each column-wise product of F(M) is an encryption of either 0 or 1. If V' accepts the
argument A1, then it accepts that each column is made up of entries that are either 0 or 1 and
sum up to 0 or 1; therefore, each column contains encryptions of 0 and at most one 1.

Ann, an AoK of Consistency for Matriz Formation 0/1-1: Similar to the above interactive
argument, P sends an [ X u matrix of encryptions, F(M). P demonstrates to V that (unlike the
above argument) each row in E(M) contains ezactly one encryption of 1 and the rest are encryp-
tions of 0. To prove that an encryption (z,y) is of 1, P sends y' = y/g and uses 7py, to prove
that log, » = log;, 3'. V then can see that (z,y) is an encryption of 1 only if y/y" = g. We assume
that P has sent E(M) to V. We denote by A the five-move interactive argument where P sends
(xi,y;) for each of the row-wise products, (x;,v;), of E(M) and then P proves to V using [ - u
instantiations of m;sp;: that each entry of E(M) is an encryption of a 0 or a 1 and proves to V using
u instantiations of mpy, that each row-wise product of E(M) is an encryption of a 1. If V' accepts
the argument Ay, then it accepts that each row is made up of entries that are either 0 or 1 and
sum to 1; therefore, each row contains encryptions of 0 and exactly one 1.

App, an AoK of Consistency for Partial Decryption: In this interactive argument, P possesses
and sends a vector of [ encryptions (z;,y;) and a vector of their | partial decryptions (z;,yi/x;"),
where sp is P’s private key. P demonstrates to V' that he has computed the partial decryptions cor-
rectly. We assume that P has already sent the vector of I encryptions and ! partial decryptions and
that V already knows ¢g°F. We denote by App the five-move interactive argument where P sends,
for each 4, 27", and proves to V using [ parallel instantiations of m.qpr,, that log, g°% = log,, z;"

ARand, an AoK of Consistency for Randomization: In this interactive argument, P possesses
and sends a vector of [ encryptions (z;,y;) and a vector of their randomizations, (x;",y;"), to V
and demonstrates knowledge of r; for each i. P proves, using meypr, that log, ' = log,, y;! for
each i. We assume that P has already sent the [ encryptions and [ randomizations. We denote by
ARand the five-move interactive argument where P proves to V, using [ parallel instantiations of
TegDL, that each of the | randomizations is formatted correctly.

22



Arpp, an AoK of Consistency for Final Decryption: In this interactive argument, P possesses
and sends a vector of [ encryptions (z;,y;), their partial decryptions (z;,y;/z;") as well as g* to
V and demonstrates that either P has computed their partial decryptions (z;,y;/x;") correctly
or that he possesses the discrete logarithm w of g%. We denote by App the five-move interactive
argument where P proves, using [ parallel instantiations of 7 f;,, that either the I encryptions (x;, y;)
has been partially decrypted correctly or that P knows the discrete logarithm of g*.

6.2 W%M Protocol Specification

The eight round protocol for the malicious model, Tré\j{; > consists of the following six subprotocols:

(a) Tener: initializes an additively homomorphic threshold encryption scheme.

(b) mg av: allows Server to construct an encrypted activation vector for Client’s encrypted pattern
and Server’s text.

(c) mc,av: allows Client to also construct an encrypted activation vector for Client’s pattern and
Server’s encrypted text.

(d) myec: allows Client and Server to verify that their activation vectors are equal without revealing
them.

(e) Trang: allows Server to send an encryption of its randomized activation vector to Client.

(f) mans: demonstrates to Client where the pattern matches the text (if at all).

In what follows, we describe 775% by specifying in detail the individual subprotocols that are
required and specifying for each subprotocol where each round of the subprotocol occurs in the
overall (global) rounds of 775%3 - Table |§| contains the notation used to describe the subprotocols in
Tables [7] to The required subprotocols utilize the interactive arguments described in Section [6.1
to prove various statements; these arguments are all five-move protocols between a prover (P) and
a verifier (V'), where, for instance, Af/}zl and AJ\V/’[J1 denote the ith and jth messages sent by P and V,
respectively, in interactive argument Ayr. We denote comm(s) as shorthand for the commitment
of s which, using Pedersen commitments [34], is ¢g°h" = comm(g, h,r, s).

We remark that in our construction of ZK arguments of knowledge from X' protocols, whenever
a ZK subprotocol is required, the first two rounds of the five-round protocol can be completed in
parallel at the very beginning of the overall protocol W%M. Such “preprocessing” will not affect
security since these rounds do not involve any X' protocol-related information from P, and as long as
V' commits to his X’ protocol challenge prior to seeing P’s first message of the underlying . protocol
(see Section ] for details of the ZK constructions and Section m for a proof that preprocessing does
not affect security).

p = Pattern of length m T = Text of length n

AV; = Activation vector of party i AVS = Randomized activation vector

AV; = Blinded activation vector Mecpy= Matrix encoding of p in terms of X
skc = Client’s secret key sks = Server’s secret key

p+ = Pattern match threshold (,) = Inner product over G4

W:_’ejl (z) = Party ¢’s jth message of 7, for x |E() = Additively homomorphic encryption
D;() = Partial decryption by party ¢ h = Threshold public key

s* = Simulator trapdoor M7 = Matrix encoding of T in terms of X
A% (z) =Player i’s jth message of A, for z

Table 6. Notation used in subprotocols in Tables [7] through

23



Global Client Messages Server
Round

« ha,h* m Db (ha),m i (B)

1 Scy 8" € Lqy h1 < ¢g°¢, h* «+ ¢°

ha,m D (ha)ym Df (ha)ym oF (h*)

2 SSEZq, hz(—gss,hZhlhz
3 b= hik 7w o (h1) w2 (h*),w 7 (ha)
= n1n2
A Tt (ha)m D7 (ha),m D7 (h*)
5 moE(ha), s (h*) w7 (ha)
6 w8 (ha)

Table 7. Subprotocol Teper

Tencr, shown in Table[7] is a two-party protocol for Client and Server that initializes a threshold
ElGamal encryption scheme. For simplicity, we assume that Client and Server have already agreed
on G4 and g € Gg. Client input is G4, 9 € G4. Server input is G4,g9 € Gy. Output to Client is
h = ¢°¢¢°s. Output to Server is h = ¢°¢ ¢, h* = ¢ . This subprotocol begins at the first global
round and ends at global round 6.

— At global round 1 Client chooses s¢, s* € Z4 and sets hy < ¢°¢, h* < ¢*". Client sends hi, h*
to Server. Client sends the Server two parallel instantiations of Wg’i proving knowledge of the
discrete logs of hy and h* (e.g., of s¢ and s*). The last message of Client’s instantiations of
mpr is exchanged at global round 5.

— At global round 2 Server chooses sg € Z, and sets hy < g*5. Server sends ho to Client, as
well as TI'S%, proving knowledge of the discrete logarithm of hg (e.g., of sg). The last message
of Server’s mpy, is sent at global round 6. Both parties set the public key to be h = hihs.

TC,AV, shown in Table 8} is a two-party protocol for Client and Server which outputs to Client
an encrypted activation vector corresponding to matching Client’s p against Server’s T'. Client input
is pattern p, threshold p;. Server input is text 7' and My, which is the | Y| x n matrix encoding T in
terms of X (see Section. Server receives no output. Output to Client is F(AV¢), an encrypted
activation vector corresponding to matching p against 7. This subprotocol starts at global round
2 and ends at global round 6.

— At global round 2 Server sends E(Mr) to Client. Server also sends, for E(Mr), Af/’lll to prove
that E(Mry) is formatted correctly. The last message of Server’s Ay is exchanged at global
round 6.

— During global round 3, Client computes E(AVy) from E(Mry), Mcpy for p, and p; by first
computing Mcpy - E(My). This can be performed by recognizing that one can obtain an en-
cryption of the inner product over Z, of an unencrypted vector (z1, ..., ,,) with an encrypted
vector (E(y1), ..., E(ym)) by computing ITE(y;)* = E(Y_ z;y;) (see Section [2.3.2).

TS,AV, shown in Table |§|, is a two-party protocol for Client and Server which outputs to
Server an encrypted activation vector corresponding to matching Client’s p against Server’s T.

24



Global Client Messages Server
Round

E(Mr),AL: 1 (E(MT))

2 MT < T, E(MT) < MT

AV (B(M7))

E(AVe) < Mcpv,pe, E(Mr)
AY2(E(Mr))

AY2(E(MT))

AYS(BE(Mr))

[ B

Table 8. Subprotocol m¢ av

Global Client Messages Server
Round

1 abl (B(Mcpv))

5 AVl (BE(Mcpv))

E(Mcpv),AL2 (BE(Mcpv))

3 E(Mcpv) < CDV, E(p:) < ps =

AYV:2 (B(M
, ro1(EMepyv)) E(AVs) + T, E(Mcpv), E(pt)
i Ayjor (BE(Mcpy))

Table 9. Subprotocol mg Ay

Client input is pattern p, M¢cpy for p, and p;, the matching threshold. Server input is 7'. Client
receives no output. Output to Server is E(AVg), an encrypted activation vector corresponding to
matching p against 7. This subprotocol starts at global round 3 and ends at global round 5, with
ZK preprocessing occurring during global rounds 1 and 2.

— At global round 3 Client sends E(M¢cpy) and E(p;) to Server. Client also sends A]\Pﬁn to prove

that E(Mcpy) is formatted correctly, where Afi%n and A]\Vﬂ)l occur during global rounds 1

and 2, respectively. The last message of Client’s Ajpsq1 is sent at global round 5.
— During global round 4, using E(M¢cpy), T and E(p;), Server computes E(AVs) (see step 5

in Section [3.2.2)).

T'vec, shown in Table[I0] is a two-party protocol for Client and Server that outputs to each party
the results of whether their respective encrypted activation vectors are equal (without revealing
their values). Client input is E(AV¢), E(AV() which is constructed from E(AVe) by multiplying
each element by an encryption of 0. Server input is E(AVyg), E(AV{) which is constructed from
E(AVg) by multiplying each element by an encryption of 0. Output to both Client and Server is
results of whether AV = AVg or not. This subprotocol begins at global round 3 and ends at global
round 8, with ZK preprocessing occurring during global rounds 1, 2 and 3. (-,-) denotes the inner
product over Zj.

— At global round 3 Client chooses 1 € Zg_mﬂ and r] € Z,. Client computes E(AV() by

multiplying each element of AV with an encryption of 0, thus blinding the ciphertext. Client
generates comm(E(AV/})), comm(r1), and comm(E(r])) and sends them to Server.

25



— At global round 4 Server chooses 9 € Zg_mﬂ and ry € Zg. Server computes E(AVY) by
multiplying each element of AVg by an encryption of 0, thus blinding the ciphertext. Server
sends 79, E(r5), E(AVY) to Client.

— At global round 5 Client sets r = 1 + 2 and E(r') = E(r] + r4). Client computes z; =
E((AVe,r) +1') and zp = E((AVg,r) +1'). Client opens the commitments of E(AV/), r1,
and E(r}) to Server. Client sends z; and 22 to Server. Client computes partial decryptions
Dc(z1), Dc(z2) and sends Dc(z1), Dc(z2) to Server, as well as A?IQD, to prove that the
partial decryptions D¢ (z1), Do (22) are computed correctly, whereas messages A?ll) and AIZ’;
are sent during global rounds 1 and 2, respectively. Execution of Client’s App continues until
global round 7.

— At global round 6 Server obtains z1, 2o from Dc(z1) and De(z2). Server aborts if z; # 2.
Server sets 1 = r1 + ro and E(r') = E(r] + 15). Server computes z1 = E((AVg,r) + 1)
and zo = E((AVg,r) 4+ 1"). Server computes partial decryptions Dg(z1), Ds(z2) and sends
Dg(z1) and Dg(z2) to Client, as well as AIP;%, to prove that the partial decryptions Dg(z1),
Dg(z2) are computed correctly, whereas Aﬁ% and Ag’z‘j are sent during global rounds 2 and
3, respectively. Execution of Server’s App continues until global round 8.

— At global round 7 Client obtains 21, zo from Dg(z1) and Dg(z2). Client aborts if z; # zo.

Since r and 7’ are uniform, the probability that z; and 29 have equal decryptions for unequal
vectors is negligible (%)

Trand, shown in Table is a two-party protocol for Client and Server that outputs to Client
an encrypted vector F(AVY) that contains randomizations of the values in non-matching (non-zero)
positions in F(AVY). Client input is nothing. Server input is E(AVY). Output to Client is E(AVY).
Server receives no output. Client is assumed to already know E(AV{). This subprotocol starts at
global round 6 and ends at global round 8, with ZK preprocessing occurring during global rounds
2 and 3.

— At global round 6 Server computes E(AVY) from E(AVg) by exponentiating each encryption

in E(AV{) by a random value. Server sends E(AV{) to Client and sends Aiﬁl 4 to prove that

E(AVg) was obtained correctly from E(AVg), where Aiﬁl 4 and A;/a}l 4 are sent during global
rounds 2 and 3, respectively . The last message of Server’s A,.qnq is exchanged at global round
8.

Tans, shown in Table [[2] is a two-party protocol for Client and Server that outputs to Client
the randomization, AV{, of Server’s activation vector AVg. Client input is none. Server input
is E(AVY). Server receives no output. Output for Client is AVg. Client is assumed to already
know E(AVY). This subprotocol starts at global round 6 and ends at global round 8, with ZK
preprocessing occurring during global rounds 2 and 3.

— At global round 6 Server sends comm(Dg(E(AVY))). Server also sends the message comm(A?’[Z)),
where App is the argument to prove that either Dg(E(AVY)) was obtained correctly or that
Server knows s* (for h* sent by Client in the first global round during 7y ), whereas Ag’é
and A?’é are sent during global rounds 2 and 3, respectively.

— At global round 7 Client sends Ag’é to Server (our AoKs are public coin so AIZ’]% is not
determined byAI{z%).

26



220y 1oo0r01dqng QT 9[qel

()5 v (17)5a) Iy 8
2z)S 0, = 1z)S 0,
(z2)5a@) Ly ((12)S @) Dy ((22) 2 q@) Ty ((12) 0 @) T (=)saea 7 ()sa)2a 2
Tz — ANNV,@Q Iz — AHNV,@Q
(4 {4 sAy ) — e
(4 (4 PAY))H — 12
QNNVOQVMWA\QSVUQVmﬁ%
m&nTﬁk\iL" 220, S = Iz)0 S
AA ) Qv a A 2 V axa QNNVMQVMM«\,A?NVWQVMM«\,AN&@Q“?NVMQ&NQN 9
= (2)2q ‘= > (12)°q
A + (4'5Ay))d — &=
(ot (e oAY))a — =
(z2)0a) Ly ((12)0q) Ly (22) O (12) O =+ 12
Ty Q T Tu —
(L) a)wooopt (Tu)woooap ((PAV)a) wooop A + vm A vm + E
(AV)d = (FAV)d 54— (G)a
¢h, Y Ty ¢ b EX]
L35 vl (Gna s (Sav)a v
(PAV)iH = (PAV)a T — (Lo
:mnvavQ&«\ :HNvavmi b b
¢ E Ty ¢ ERY)
AQLVQVEEOQAHLVEEQU»AAn\v\vv\VQVEEQQ N ! H.TEI@N M
(z2)2a) Ty ((=)2a) {av ((e)sa) Ldv((1=)sa) {dv ¢
(z)0q) Ly ((12)0q) Ly !
punoy

I9ATIDG

so3essaA

Jual[)

reqoro

27



Global Client Messages Server
Round

5 AL (B(AVE))

V,1
Arana(B(AVS))

3
E(AVE),AD? (BAVE))
6 S rand 5 E(AVZ) « E(AVY)
. AL ana(BAVD))
g AL a(BAVD))
Table 11. Subprotocol 7,44
Global Client Messages Server
Round
5 ADL(Ds(B(AVE))
5 AV L (Ds(E(AVE)))
comm(Dg(E(AVY))),
6 (Ds(B(AVE)) Ds(E(AVE)) « E(AVE)
comm(AD2 (Ds(B(AVE))))
. ApD (Ds(B(AVY)))
decom(Dg(E(AVE))),AD3 (D (BE(AVT)))
8 |AVE « De(Ds(E(AVE))) o =D a S
decom(AF’D(DS(E(AVS’,‘))))

Table 12. Subprotocol mg,s

— At global round 8 Server opens commitments of A?’é, Dg(E(AVY)) to Client. Server sends
A?’g to Client.
— Client aborts if it does not accept the argument App.

7 Security Analysis

: H M
Here we define and prove security for m:p,, and 75p,,.

7.1 Adversarial Model

Let F; be a functionality for two parties P; and P, where P; inputs x1, P inputs 2, P; obtains
f(x1,22), and P, obtains nothing. A protocol 7y that securely computes f can be defined as an
interactive two-party protocol. We refer the reader to [33/38] for further discussion of the definitions
given here.

Execution of 7'['}4 in the real world: Let A denote the adversary model: H for honest but
curious and M for malicious (static corruption). Both parties are assumed to be probabilistic (ex-
pected) polynomial time (PPT) algorithms. In particular, we denote by P = (Py, P») a pair of PPT
algorithms that execute Tr}“, where at most one of the parties is adversarial (or corrupted). Such a
pair P is called admissible. Let r; be P;’s internal randomness, x; be P,’s private input and y; be
P;’s auxiliary input. Let P; <> P, be the transcript of the public interactions between parties P;
and P,. Note that parties can be defined via their next message functions; see, for example, [39].

28



In the honest-but-curious (HBC) adversary model, before the protocol begins, the adversary can
choose to corrupt one party for the duration of the entire protocol; that party may not deviate
from the protocol specification of 7rf In the (static corruption) malicious adversary model, before
the protocol begins, the adversary can choose to corrupt one party for the duration of the entire
protocol; this party may deviate arbitrarily from the protocol specification of Wj\/ . In particular, the
corrupted party may choose to abort and to not complete the protocol at all. Denote by x, y¢, ¢
the internal input, randomness and auxiliary input of a corrupted party, respectively (if there is
no corrupted party, then this sequence is the empty sequence). Denote = = (z1,22), ¥ = (y1,¥2),

’TI'A
7 = (r1,7r2). We denote REALPf (Z,9,7) as (Te, Te, Yo, P > Po).

Execution of W}“ in the ideal world: In the ideal world setting, an admissible pair of two PPT
parties P’ = (P{, P}) interact with a trusted ideal functionality to jointly compute the function f
specified by W;‘. At any point, a dishonest party may send abort rather than send what it is supposed
to.

Ideal functionality ]:fl for the honest-but-curious (HBC) model: Pj sends its input, 2, to the
ideal functionality. The ideal functionality sends the size of z9, |z2|, to P[. P| sends its input,
x1, to the ideal functionality. The ideal functionality sends the size of zi, |z1|, to Pj. The ideal
functionality provides the correct value of f(x1,22) to P{. An honest party must output what was
output to it by the ideal functionality (in particular, if P} is honest, it outputs nothing); a dishonest
party may output what it wishes. We denote by IDEAL” P !(Z,7y,T ) as the pair of public outputs of
P/ and Pj.

Ideal functionality }'}VI for the malicious static corruption model: Py sends its input, za, to the
ideal functionality. The ideal functionality sends the size of z9, |z2|, to P[. P| sends its input, z1, to
the ideal functionality. The ideal functionality sends the size of z1, |z1], to Pj. Pj sends “proceed”
to the ideal functionality (note that an adversarial party can choose to abort this procedure at any
time). The ideal functionality provides the correct value of f(z1,x2) to P{. An honest party must
output what was output to it by the ideal functionality (in particular, if P; is honest, it outputs

nothing); a dishonest party may output what it wishes. We denote I DEAL (ac y,T) as the pair
of public outputs of P/ and Pj.
Using the standard ideal/real formulation, we obtain the following definitions of security.

Definition 5. 71]{{ securely realizes .7-";1 in the honest-but-curious (static corruption) model if, for

every admissible PPT pair P in the real world, there exists an admissible PPT pair P' in the
H H

ideal world such that REAL;f (z,9,7) and IDEAL;f, (Z,9,7) are computationally indistinguish-

able, where the distributions are over the uniformly random, independent choices of private input

x, randomness 7 and auxiliary input y.

Definition 6. 7'('}\4 securely realizes .7-"]])4 in the malicious (static corruption) model if, for every
admissible PPT pazr P in the real world, there exists an admissible PPT pair P' in the ideal world
such that REAL 5 ' (Z,9,7) and IDEAL (x,y, T) are computationally indistinguishable, where the

distributions are over the uniformly mndom independent choices of private input T, randomness T
and auzxiliary input y.

Simulation in the ideal world: In practice, for security to hold in the HBC (respectively mali-
cious) adversary model, for each corrupted party P/ in the real world, there exists a PPT simulator

29



Spy in the ideal world with oracle access to P! such that REAL;;f (z,y,7) and IDEAL;;, (z,9,7)
are computationally indistinguishable, where the other (honest) party of P and P’ acts honestly.
In particular, Spr, when it is allowed to output per the ideal-world specification, will attempt to
output a transcript that is computationally indistinguishable from P/’s view of the transcript in
the real world without knowing the private input of the real-world honest party.

7.2 Simulator Constructions and Security for TrgDM

We provide, for each admissible pair in the real world, an admissible pair in the ideal world such
H H
that REALWPF’P M(z,y,7) and I DEALTI;“",P M{(z,y,T) are computationally indistinguishable.

7.2.1 Simulator Specification for the Adversarial Server, Sg, for ﬂgg M- Without loss of
generality, consider the case where the matching locations are not hidden. Consider the admissible
pair P = (Client, Server) in the real world. We construct Sg for an admissible pair P’ =(Client,

H
Sg) in the ideal world (where Client behaves honestly in both cases) such that REAL;;SP M(z,q,T)

H
and [ DEAL;?,P M(z,qy,T) are computationally indistinguishable. Note that Sg has oracle access to
real-world Server.

Initial Interactions With the Ideal Functionality: We assume that the encryption scheme
(Key, E, D) is fixed. Server, upon oracle call to Sg, sends its text T to Sg, who forwards it on to
the ideal functionality. Once the ideal functionality reveals the length that the pattern should be,
Sg sets the pattern p, = p* to be all 1s (we state this without loss of generality; in the case that
1 ¢ ¥, an arbitrary a € X is chosen and p; is set to be all a’s) of the right length (any arbitrary
vector can be used here, but without loss of generality we use all 1s). The following is what Sg
outputs at the output phase of the ideal-world specification.

(a) Sg computes (skc,pkc) + Key(1¥). Using p;, Sg constructs Mcpy < Gencpy(p:) and
encrypts it to obtain E(Mcpy). Ss sends E(Mcpy) and pko to Server. In addition, Sg
sends E(—m), where m = |p;| (or E(—m + [) in the single-character wildcard or substring
cases, where [ is the threshold).

(b) Server considers each character in the text T; (1 < ¢ < n) and retrieves the corresponding
row of E(Mcpy ). This is the step that corresponds to multiplying My - Mcpy in Section
The resulting vectors are multiplied with the encrypted activation vector E(AV) element by
element in positions i, ...,4+m — 1 of the AV. This is the step corresponding to transforming
Mr(\epy) tO MT(MCDV) and then performing the multiplication [1...1]" - MT(MCDV) to get
the final AV. Server then multiplies E(—m) (= E(m)~!) to each of the entries in AV and
exponentiates each entry by a randomly chosen number to blind entries in E(AV). We call
the randomized activation vector E(AV{). Server sends E(AVY) to Ss.

(c) Sg aborts the ideal functionality before Client outputs its pattern-matching results obtained
from the ideal functionality.

30



7.2.2 Simulath Specification for the Adversarial Client, S¢, for ﬂg_—,M. Consider the
admissible pair P = (Client, Server) in the real world. We construct Sg for an admissible pair
P’ =(Sc, Server) in the ideal world (where Server behaves honestly in both cases) such that

REAL;E,?P M(z,y,7) and I DEAL;%IP M(z,y,7) are computationally indistinguishable. Note that Sg
has oracle access to real-world Client.

Initial Interactions with the Ideal Functionality: We assume that the encryption scheme
(Key, E, D) is fixed. Upon oracle call to Client, Client sends pattern p to S¢, who forwards it on to
the ideal functionality. Once the ideal functionality reveals the length that the text should be, S¢
sets the text "= T™ to be all 1s (we note that, as above, if 1 & X, T* can be set to all a’s for any
a € X)) of the right length (any arbitrary vector can be used here, but without loss of generality
we use all 1s).

(a) Client computes (skc, pkc) + Key(1¥). Using, p, Client constructs Mcpy < Gencpy (p) and
encrypts it to obtain E(Mcpy). Client sends E(Mcpy) and pke to Sc. In addition, Client
sends F(—m), where m = |p| (or E(—m + [) in the single-character wildcard or substring
cases, where [ is the threshold).

(b) The ideal functionality sends Sc the pattern-matching results with the correct (e.g., real
world) pattern and text (e.g., all positions where the pattern should match). S¢ constructs a
new vector of encryptions, E(AVrr), by using Client’s public key to encrypt an (m +n — 1)-
length vector with Os where the pattern should match, and random elements elsewhere. S¢
sends E(AVrr) to Client.

7.2.3 Security of ﬂgg a+ We prove that 7(5D A securely realizes .7-"5}{3 s in the honest-but-curious

M
T5PM

(static corruption) model by demonstrating the computational indistinguishability of REAL Z* (Z, g, 7)
M

and IDEALZPM (z,9,7).

Theorem 4. Given an additively homomorphic semantically secure encryption scheme over prime-

order cyclic groups (Key, E, D), Fg;M securely realizes fggM in the honest-but-curious (static
corruption) model.

Proof (Theorem . We demonstrate that the two simulators Sg and S¢ output transcripts such
H H
that REALFPE’P M(z,y,7) and I DEALTE,P M(z,y,T) are computationally indistinguishable.

Case 1: Adversarial Server. The transcript in the real world is the transcript (pkc, T, E(Mcpy )p, E(—m)),
where by E(Mcpy), we mean the encrypted Mcpy matrix constructed from p. Note then that
E(Mcpv)p is the encrypted Mepy matrix constructed from p;. The view in the ideal world is
(pkc, T, E(Mcpv)p,, E(m)), where p; is a string of m 1s. Suppose a distinguisher D can distin-
guish the distributions of the real and ideal transcripts with non-negligible probability. In particular,
D distinguishes (E(Mcpv)p) from (E(Mcpy)p,) with non-negligible probability given pkc and T'.
In particular, let a distinguisher D have as input pkc and T'. Define the distribution

Xi = (E(Mcpv)p1, - E(Mcpv)pk, E(McDv )py jt15 s E(McDV ) pym)5))

where E(Mcpv)p,,i is the ith encrypted element in E(Mcpy) constructed from the pattern p;
(where the matrix here is thought of as a string). By a hybrid argument, for some 0 < k <

31



m|X|, given pkc and T', D can distinguish X}, from Xj; in polynomial time with non-negligible
probability. But this violates the semantic security of E since D only has the public key of F and
T, both of which are independent of p/p;.

More precisely, let the hybrid experiment H;, 0 < ¢ < m|X| be such that the first ¢ encryptions
sent by the simulator come from M¢ DV, while the remaining encryptions come from Mcpy,. Note
that Hy is the distribution of the real Client while H,, 5 is the distribution of the simulator in the
ideal world. Suppose that H; is computationally indistinguishable from H;,; for some i. Then we
reduce security to the semantic security of ElGamal encryption. Namely, we consider a player P,
who encrypts and another R who receives. P, is given, as auxiliary inputs, the p and T such that
H; and H;;, are computationally distinguishable with non-negligible probability via a distinguisher
D. P.,. sends R the public key, which R uses to internally execute H; and H;; using p;, p and T'.
At the i 4+ 1 encryption, R sends P.,. the two plain texts from MODth and Mcpy, used for the
i+ 1 encryption in the respective hybrids; P.,. sends back the encryptions in a randomized order.
P, continues the internal execution. Note that these distributions are identical to H; and H; .
If H; and H;;1 are computationally distinguishable with non-negligible probability using D, then
R, using D, can distinguish the two encryptions with non-negligible probability, which implies that
FElGamal encryption is not semantically secure; this a contradiction.

Case 2: Adversarial Client.

The transcript in the real world is the transcript (skc,p, m, AVY), while the view in the ideal
world is the transcript (skc,p, m, AV/p). Indistinguishability here is statistical; namely, by con-
struction, AV¢ and AV have zeros in the same places, so that their non-zero locations contain
elements chosen uniformly (and independently) at random since the group has prime order. This
implies statistical indistinguishability of the transcripts (in particular, in this case, security does
not rely on the semantic security of the encryption scheme at all, other than to hide the matching
result from an eavesdropper).

7.3 Simulator Constructions and Security for W%M

We provide, for each admissible pair in the real world, an admissible pair in the ideal world such
M M
that REALWPF’P M(z,y,7) and I DEALTI;“",P M{(z,y,T) are computationally indistinguishable.
In what follows, we assume that if a message is incorrectly formatted, the simulator will simply
abort; since this might occur at every individual interaction, we omit it for simplicity.

7.3.1 Simulator Specification for an Adversarial Server, Sg, for ﬂ'é\;l;M. We describe
how an adversarial Server interacts with Sg for ﬂé‘f‘g A In particular, consider the admissible pair
P = (Client, Server) in the real world. We construct Sg for an admissible pair P’ =(Client, Sg)

M
in the ideal world (where Client behaves honestly in both cases) such that REAL;;E’P M(z,y,7) and

1 DEAL;%’@ M(z,y,7) are computationally indistinguishable. Note that Sg will have oracle access to
Server.

We list the subprotocols of TF%M and describe how an adversarial Server interacts with Sg.
Recall that ey is a protocol to instantiate a threshold ElGamal encryption scheme, m¢ 4y is for
Client to compute an activation vector, mg 4y is for Server to compute an activation vector, myec
is for the parties to determine that their activation vectors are equal, m,qnq is for Server to send

32



Client an encrypted vector that only reveals matching locations upon decryption, and mgys is for
Server to partially decrypt that encrypted vector. We refer the reader to Section and Section
for protocol details.

Initial Interactions With the Ideal Functionality: We may view the following interaction
with the ideal functionality as occurring during the execution of m¢ 4y between Sg and Server.
Upon oracle call, Server reveals the length of its text to Sg (it will do so in the protocol when it
sends E(Mr) during 7¢ 4y, since this matrix is of size |T'| x |X|). For the purpose of ideal func-
tionality interaction, Sg will set the text 7" to be all 1s (here and throughout this specification,
this is without loss of generality assuming 1 € X; else another character may be used) with length
the same as Server’s text, and send T” to the ideal functionality. The ideal functionality will return
the length of Client’s pattern. Sg sets the pattern p; = p* to be all 1s of the length of the pattern
(any arbitrary vector can be used here, but without loss of generality we use all 1s). Sg will then
abort the ideal functionality so that (ideal world) Client does not output anything in the ideal
functionality. The following is what Sg will output for I DEAL™sPu (explaining how Sg makes
oracle calls to Server).

Tencr:
This subprotocol begins at the first global round and ends at global round 6.

(a) Sg chooses sc,s* € Z, and sets hy < g°, h* < g% . Sg sends hi,h* to Server. Sg sends
the Server two parallel instantiations of TrS’}J for hy and h* with witnesses s¢ and s*. This
continues through global round 5.

(b) Server sends hs (normally equal to g°5) to Sg as well as Wg’i for ho with witness sg. Protocol
mpr, continues through global round 6. Both parties set h = hjhg as the public key (with
secret key s = s¢ + sg).

TC,AV:
This subprotocol starts at global round 2 and ends at global round 6.
(a) Server sends E(Mr) to Sg. Server also sends, for E(Mr), A]\Pfl to demonstrate that E(Mr)
is formatted correctly . Apsq continues through global round 6.
(b) During global round 3, Sg computes E(AVy) from E(Mr), p; and p as specified in w5, ;.

TS,AV':
This subprotocol starts at global round 3 and ends at global round 5, with ZK preprocessing
occurring during global rounds 1 and 2.
(a) Sg sends E(Mcpy), constructed using p;, and E(|p|) to Server. Sg also sends Aﬁ’%l to
demonstrate that F(Mcpy) is formed correctly, where A]\]%l and A}%l occur during global
rounds 1 and 2, respectively. Aprg1 continues until global round 5.

Tvec:
This subprotocol begins at global round 3 and ends at global round 8, with ZK preprocessing
occurring during global rounds 1, 2 and 3. (-, -) denotes the inner product over G,.

33



(a) At global round 3 Sg chooses 1 € Gg_mﬂ and 7] € G4. S computes E(AV/,) by multiplying
each element of AVy with an encryption of 0 thus blinding the ciphertext. Sg generates
comm(E(AV(,)), comm(ry), and comm(E(r})) and sends them to Server.

(b) Server sends 79, E(15), E(AV{) to Ss.

(c) At global round 5, Sg sets r = r1+7r3 and E(r') = E(r]+71}). Sg computes 21 = E({AVe,r)+
') and zp = E((AVs,r)+7"). Sg opens the commitments of E(AV/), r1, and E(r}) to Server.
Sg sends z; and zy to Server. Sg computes partial decryptions D¢ (z1), De(z2) and sends
Dc(z1), Dc(z2) to Server as well as Ag’?) to prove that the partial decryptions D¢(z1),
D¢ (z2) are computed correctly, where messages A]I;’é and Ag’}) are sent during global rounds
1 and 2, respectively. Execution of Sg’s App continues until global round 7.

(d) At global round 6, Server sends (for independently obtained z; and 23), Ds(z1) and Dg(z2)
to Sg as well as AIIZ’E) to prove that the partial decryptions Dg(z1), Dg(z2) are computed
correctly, where Ai’é and Ag’é are sent during global rounds 2 and 3, respectively. Execution
of Server’s App continues until global round 8.

(e) At global round 7 Sg obtains z1, 29 from Dg(z1) and Dg(z2). Sg aborts if z1 # 29.

Sg aborts if the decryptions of z; and 2z do not equal each other.

Trand:*
This subprotocol starts at global round 6 and ends at global round 8, with ZK preprocessing
occurring during global rounds 2 and 3.
(a) Server sends E(AV{) to Ss and sends Aféi 4 that E(AVY) was obtained correctly from
E(AVY), where Aiﬁld and Ax’id are sent during global rounds 2 and 3, respectively. This
Arang continues until global round 8.

Tans:
This subprotocol starts at global round 6 and continues until global round 8.

(a) At global round 6, Server sends comm(Dg(E(AV{))). Server also sends the message comm(A?é),
where App is the argument to prove that either Dg(E(AV{)) was obtained correctly or that
Server knows s* (for h* sent by Sg in the first global round during meper), where A?}j and
AE‘) are sent during global rounds 2 and 3, respectively.

(b) At global round 7, Sg sends A‘}% to Server (our AoKs are public coin so Ag’% is not determined
by A?’lz)).

(c) At global round 8, Server opens commitments of A?lz), Ds(E(AVY)) to Ss. Server sends A?’%
to Sg.

(d) Ss aborts if it does not accept the argument App.

7.3.2 Simulator Specification for an Adversarial Client, S¢, for ré‘;’)M. Consider the

admissible pair P = (Client, Server) in the real world. We construct Ss for an admissible pair

P’ =(S¢, Server) in the ideal world (where Server behaves honestly in both cases) such that
7TAJ 71"]\/[ . . . . .

REALZ"™(z,y,7) and IDEAL o (z,y,7) are computationally indistinguishable. Note that Sg

has oracle access to real-world Client.

34



We list the subprotocols of wéVIPM and describe how Client interacts with S¢. Unlike the case
for Sg, S¢ must interact with the ideal functionality in the final rounds of the protocol because
Client receives an output from ﬂé‘f{pM; thus S¢ must retrieve this output in the final steps of the
simulation. Recall that mey,., is a protocol to instantiate a threshold ElGamal encryption scheme,
mc,av is for Client to compute an activation vector, mg 4y is for Server to compute an activation
vector, mye. is for the parties to determine that their activation vectors are equal, m,q,q is for Server
to send Client an encrypted vector that only reveals matching locations upon decryption, and gy
is for Server to partially decrypt that encrypted vector. We refer the reader to Section [3.3.3] and
Section [6.2] for details.

Initial Interactions With the Ideal Functionality: Once the ideal functionality reveals to
Sc the length that the text should be, S¢ sets the text 7' = T™ to be all 1s of the right length (any
arbitrary vector can be used here, but without loss of generality we use all 1s where 1 € 3 and
some other fixed character in X' otherwise).

Tencr:
This subprotocol begins at the first global round and ends at global round 6.

(a) Client sends hi,h* to S¢ (where in the honest execution, h; = ¢°¢ and h* = ¢*"). Client
sends S¢ two parallel instantiations of ﬂ'g’i for hy and h* with witnesses s¢ and s*. This
continues through global round 5.

(b) Sc chooses sg € Z, and sets hy < g°S. Sc¢ sends hy to Client as well as Wg’i for hy with
witness sg. Protocol wpy, continues through global round 6. Both parties set h = hi1ho as the
public key (with secret key s = s¢ + sg).

(c) Using as a subprotocol the extractor F, which guaranteed since wpy, is an argument of knowl-
edge, S¢ rewinds from global round 5 to global round 2 and interacts with Client until global
round 5 and then rewinds again until it extracts s* from Client, at which point it rewinds once
more and executes mpy, per the usual specification. S¢ only uses E for its responses related to
the proof of knowledge mpr, for s*; only messages relating to mpy, for s* are affected from one
rewinding to the next. S¢, using E, is guaranteed to succeed in extracting s* in (expected)
polynomial time since mpy, is an argument of knowledge.

(d) Using as a subprotocol the extractor E, which is guaranteed since 7pr is an argument of
knowledge, S¢ rewinds from global round 5 to global round 2 and interacts with Client until
global round 5 and then rewinds again until it extracts s¢ from Client and then rewinds again
until it extracts s* from Client, at which point it rewinds once more and executes mpy, per
the usual specification. S¢ only uses E for its responses related to the proof of knowledge
wpr, for s¢; only messages relating to wpy, for s¢ are affected from one rewinding to the next.
Sc, using E, is guaranteed to succeed in extracting s¢ in (expected) polynomial time since
mpyr, is an argument of knowledge. Note now that S can decrypt encryptions computed by
Client because S¢ possesses both sg and sc.

TC,AV:
This subprotocol starts at global round 2 and ends at global round 6.
(a) Sc sends E(Mr) to Client. S¢ also sends, for E(Mr), Affl that E(Mr) is formatted correctly.

Apr,1 continues through global round 6.

35



TS, AV
This subprotocol starts at global round 3 and ends at global round 5, with ZK preprocessing
occurring during global rounds 1 and 2.

(a)

(b)

Client sends E(Mcpy) and E(|p|) to Sc¢. Client also sends Af/}%l that E(Mcpy) is formed

correctly, where Aﬁlm and A}%l occur during global rounds 1 and 2, respectively. Ajso1
continues until global round 5.

During global round 4, using E(Mcpy), T and E(|p|), Sc computes E(AVs) as specified in

H
T5PM-

Further Interaction With the Ideal Functionality: Sc can decrypt encryptions com-
puted by Client because it extracted Client’s secret key s¢ during meye,. During ms 4y, Sc obtains
E(Mcpv). Therefore, S¢ obtains the pattern p that Client is trying to have matched (which may
be different than the pattern Client output to the real-world transcript). S¢ resets the ideal func-
tionality, now using this p. The output for the ideal functionality to S¢ will be the correct matching
of the pattern with the text that real Server is using. See 7,5, where S¢ uses this ideal functionality
output.

Tvec:
This subprotocol begins at global round 3 and ends at global round 8, with ZK preprocessing
occurring during global rounds 1, 2 and 3. (-,-) denotes the inner product over G,.

(a)
(b)

()

At global round 3, Client chooses r1 € G~ *! and 7| € G,. Client computes E(AV/,). Client
generates comm(E(AV(,)), comm(ry), and comm(E(r})) and sends them to Sc.

At global round 4, S¢ chooses o € Gg_mH and 1y € G4. S¢ computes E(AVY{) by multi-
plying each element of AVs by an encryption of 0, thus blinding the ciphertext. S¢ sends
T2, E(14), E(AVY) to Client.

At global round 5, Client opens the commitments of E(AV/), r1, and E(r}) to Sc. Client
sends elements z; and z9 to S¢. Client sends D¢ (21), Dco(z2) to So as well as Ag’é to prove
that the partial decryptions D¢(z1), Do(z2) are computed correctly, where messages A];’})
and Ag’ll) are sent during global rounds 1 and 2, respectively. Execution of Client’s App
continues until global round 7.

At global round 6, S¢ obtains z1, 29 from Dg(z1) and Dg(z2). Sc aborts if 21 # 29. S¢
sets r = r1 + 1o and E(r') = E(r] +1}). Sc computes z; = E((AVe,r) + ') and zp =
E({(AVg,r) +1'). S¢ computes partial decryptions Dg(21), Ds(z2) and sends Dg(z1) and
Dg(z2) to Client as well as Allj% to prove that the partial decryptions Dg(z1), Dg(z2) are
computed correctly, where A?}) and Ag’jlj are sent during global rounds 2 and 3, respectively.
Execution of S¢’s App continues until global round 8.

Trand*
This subprotocol starts at global round 6 and ends at global round 8, with ZK preprocessing
occurring during global rounds 2 and 3.

36



(a) Sc computes E(AVY) from E(AVY) by exponentiating each encryption in E(AVY) by a ran-
dom exponent. S¢ sends E(AV{) to Client and sends Aiﬁld that E(AVg) was obtained

correctly from E(AVY), where Afé}z 4 and A?":z]?-l 4 are sent during global rounds 2 and 3, respec-

tively. This A,q.nq continues until global round 8.

Tans*
This subprotocol starts at global round 6 and continues until global round 8.

(a) At this stage (global round 6), the ideal functionality sends S¢ the correct output that Client
should receive (e.g., the locations in a string of length |AVg| that tells Client where matches
occur (see “Further interactions with the ideal functionality” after mg 4y above). Denote AVip
as the string that Client should receive per the ideal functionality. Sc computes E(AV]y)
from AVip by setting the non-matching locations of AVjg to be random elements and then
encrypting the vector. S¢ computes and sends comm(Dg(E(AV/r))) to Client. S¢ also sends
the message comm(Ag’j%), where App is the argument to prove that either Dg(E(AV]R)) was
obtained correctly or that S¢ knows s* (for A* sent by Client in the first global round during
Tener), Where Ag’é and AI‘% are sent during global rounds 2 and 3, respectively. Note that
here, S¢ uses the witness for knowledge of s*.

(b) At global round 7, Client sends A;’é to S¢ (our AoKs are public coin so A;’% is not determined

by AL7).
(c) At global round 8, S¢ opens commitments of A?’E), Dgs(E(AV]y)) to Client. S¢ sends A?’g
to Client.

7.3.3 Security of ﬂ'é\;";.M. We prove that 775]\1{3 A Securely realizes .7-"51‘1/13 y in the malicious (static
corruption) model.

Theorem 5. Assuming the Decisional Diffie Hellman (DDH) problem is hard, ﬂé\}[,M securely re-
alizes F2%,, in the malicious (static corruption) model.

Proof (Theorem @ We proceed to prove Theorem |5 by considering two cases: the first where the
Client is corrupted and the second where the Server is corrupted.

Case 1: Client is Corrupted.

We prove security by examining a sequence of experiments. Note that we assume here that the
subprotocols of WE% a are run consecutively instead of interleaved in order to simplify the proof.
We will argue why interleaving does not affect our reasoning afterwards. We assume that Client
has pattern p and Server has text T

Intuition. The intuition for the proof is as follows: As long as S¢ completes the last proof my;,
according to specification, S¢ can use any text he wishes. What is required is a sequence of hybrid
arguments that begins with the real Server’s actual text and concludes with S¢ using a dummy
text T (namely 1™). However, for a security reduction to the semantic security of ElGamal, the
zero-knowledge arguments executed during 