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Abstract

We propose the first black-box construction of non-malleable commitments according to the stan-
dard notion of non-malleability w.r.t. commitment. Our construction additionally only requires a
constant number of rounds and is based only on (black-box use of) one-way functions. Prior to our
work, no black-box construction of non-malleable commitments was known (except for relaxed no-
tions of security) in any (polynomial) number of rounds based on any cryptographic assumption. This
closes the wide gap existent between black-box and non-black-box constructions for the problem of
non-malleable commitments. Our construction relies on (and can be seen as an instantiation of) the
recent non-malleable commitment scheme of Goyal (STOC 2011).

We also show how to get black-box constructions for a host of other cryptographic primitives. We
extend our construction to get constant-round concurrent non-malleable commitments, constant-round
multi-party coin tossing (improving a recent result of Pass and Wee), and non-malleable statistically
hiding commitments (satisfying the notion of non-malleability w.r.t. opening). All of the mentioned
results make only a black-box use of one-way functions.

Our primary technical contribution is a novel way of implementing the proof of consistency typically
required in the constructions of non-malleable commitments (and other related primitives). We do this
by relying on ideas from the “zero-knowledge from secure multi-party computation” paradigm of Ishai,
Kushilevitz, Ostrovsky, and Sahai (STOC 2007). We extend in a novel way this “computation in
the head” paradigm (which can be though of as bringing powerful error-correcting codes into purely
computational setting).

To construct a non-malleable commitment scheme, we apply our computation in the head techniques
to the recent (constant-round) construction of Goyal. Along the way, we also present a simplification
of the construction of Goyal where a part of the protocol is implemented in an information theoretic
manner. Such a simplification is crucial for getting a black-box construction. This is done by making
use of pairwise-independent hash functions and strong randomness extractors.

We show that our techniques have multiple applications, as elaborated in the paper. Hence, we
believe our techniques might be useful in other settings in future.

∗Work done while visiting University of California at Los Angeles, USA.
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1 Introduction

The notion of non-malleable commitments was introduced in the seminal work of Dolev, Dwork and Naor
[DDN91] and has been widely studied since then. Non-malleable commitments (and related primitives
like non-malleable zero-knowledge) form the foundations of modern techniques for dealing with man-in-
the-middle attacks in cryptographic protocols. Man-in-the-middle attacks could be of concern either if
there is a single protocol execution with multiple parties (e.g., non-malleable commitments have been
useful in constructing round-efficient multi-party computation protocols [Bar02, KOS03, Pas04, LP09,
Wee10, Goy11]), or, when there are several executions. There has been a large body of literature on
constructing protocols in the concurrent setting (c.f., the lines of works on getting concurrent security in
the plain model [Pas03, PS04, BS05, MPR06, VV08, OPV08, OPV10, CLP10, CVZ11] and on getting
universally composable protocols in various settings [CLOS02, BCNP04, Kat07, LPV09]). Many of these
works use non-malleable protocols in some form as a crucial technical tool.

After the initial feasibility results by Dolev et. al., a fruitful line of research has focused on efficiency.
Round complexity, a natural measure of efficiency has been studied in several works. Barak, in a break-
through work [Bar02] gave the first constant-round construction of non-malleable commitments using the
so called non-black-box simulation techniques [Bar01]. Since then, a number of works have investigated
the round complexity of non-malleable protocols. There have been super-constant-round protocols based
on one-way functions [LP09, Wee10]. Constant-round protocols using non-standard or sub-exponential
hardness assumptions were proposed in [PPV08, PW10]. Constant-round protocols using non-black-box
simulation techniques can be found in [Bar02, PR05a, PR05b, OPV09, CVZ10]. Very recently, constant-
round constructions based only on one-way functions (OWF) (with black-box simulation techniques)
were proposed independently by Goyal [Goy11] and Lin and Pass [LP11]. In all of these works, con-
structions according the the traditional security notion (of non-malleability w.r.t. commitment) make a
non-black-box use of underlying cryptographic primitives.

While round complexity is an important measure of efficiency, a fundamental step in obtaining efficient
protocols is to obtain a black-box construction (i.e., one where the underlying cryptographic primitives is
used only as an oracle). Construction making use of the underlying primitive in a non-black-box way can
typically only be seen as a feasibility result (regardless of the round complexity). To see the difference
between black-box and non-black-box constructions, consider the following example (due to Ishai et. al.
[IKLP06]).

Suppose that due to major advances in cryptanalytic techniques, all basic cryptographic primitives
require a full second of computation on a fast CPU. Non-black-box techniques require parties to prove
(e.g., in zero-knowledge), statements that involve the computation of the underlying primitives, say a
one-way function. These zero-knowledge protocols, in turn, invoke cryptographic primitives for any gate
of a circuit computing a one-way function. Since (by our assumption) a one-way function takes one second
to compute, its circuit implementation contains trillions of gates, thereby requiring the protocol trillions
of second to run. A black-box construction, on the other hand, would make the number of invocations
of the primitive independent of the complexity of implementing the primitive.

Obtaining black-box constructions for various cryptographic primitives has been an active line of
research in recent years (c.f., [IKLP06, PW09, Wee10]). However the state of art on constructing non-
malleable commitments making a black-box use of cryptographic primitives is far from satisfactory. There
have only been results according to new and relaxed notions of security [PW09, Wee10, Goy11] (see the
end of this section for a more detailed discussion). To summarize, there is sharp contrast in what is known
using non-black-box construction (constant-round protocols using only one-way functions) and black-box
constructions (no construction known as per the traditional definition) for the problem of non-malleable
commitments. This raises the following natural question:

Does there exist a black-box construction of non-malleable commitments following the traditional se-
curity notion [DDN91, PR05b, PR08a, LPV08] from any cryptographic assumption with any round com-
plexity?
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The main difficult in resolving the above question seems to be in developing a cut and choose technique
having the appropriate coding theoretic properties [PW09, Wee10].

Our results. We resolve the above question in the affirmative by providing a black-box construction
of non-malleable commitments. Our construction follows the traditional notion of non-malleability w.r.t.
commitment [DDN91, PR05b, PR08a, LPV08]. Our construction is additionally optimal in terms of
round complexity and cryptographic assumptions. That is, our construction uses only a constant number
of rounds and is based only on (a black-box use of) one-way functions. This completely closes the wide
gap between the state of knowledge between black-box and non-black-box constructions for non-malleable
commitments. Our construction relies on (and can be seen as an instantiation of) the recent non-malleable
commitment scheme of Goyal [Goy11]. Our key technical contribution relates to the construction of a
commitment scheme which allows one to prove any arbitrary relation over the committed values in zero-
knowledge in a black-box manner (which, in turn, we use in the commitment scheme of Goyal [Goy11]).

Once we obtain such a construction, black-box constructions for several other primitives can be
obtained in a natural way. We generalize our construction to get concurrent non-malleable commitments.
This construction is constant-round as well and is based on one-way functions. We obtain constant-round
multi-party coin tossing (with a broadcast channel) based only on a black-box use of one-way functions.
This is a direct improvement over the work of Pass and Wee [PW09] which provided such a construction
only for the two-party case (indeed, for the case of two parties, one does not run into issues of man-
in-the-middle attacks). We also provide a black-box construction of non-malleable statistically hiding
commitments (satisfying the notion of non-malleable w.r.t. opening [PR05a, PR08b]1). Our construction
builds on a stand-alone statistically hiding commitment and converts it into a non-malleable statistically
hiding commitment. This allows us to get a non-malleable statistically hiding commitment in constant
rounds based on (a black-box use of) collision resistant hash functions. Furthermore, one can also have a
construction based only on one-way functions in O(n/ log(n))-rounds. To our knowledge, this is the first
black-box construction of non-malleable statistically hiding commitments.

Along the way we also give several corollaries of independent interest most notably a black-box non-
malleability amplification preserving security against general (non-synchronizing) adversaries. This is an
improvement over the analogous result of Wee [Wee10] which required non-black-box access to a one-way
function.

Technical Overview. Traditionally, constructions of non-malleable commitment schemes have relied
on executing a basic protocol block somehow several times and then proving consistency among all of
them. The proof of consistency typically makes use of underlying cryptographic primitives in a non-
black-box way. The question of constructing non-malleable commitments in a black-box way has been
raised in a number of previous works [LP09, PW09, Wee10, Goy11]. The main difficulty encountered in
previous works is in coming up with a cut-and-choose technique having the right properties to replace
the zero-knowledge proof of consistency.

Our main technical construction of this work is a novel way of implementing the zero-knowledge proof
of consistency that is typically required in non-malleable commitment protocols. Our technique is based
on ideas from the “zero-knowledge from secure multi-party computation” paradigm of Ishai, Kushilevitz,
Ostrovsky, and Sahai [IKOS09]. In this paradigm, we have a prover who runs a multi-party computation
protocol “in his head” and proves the correctness of the result to the verifier. This form of computation in
the head approach was proposed in [IKOS09] in the context of improving the communication complexity
of zero-knowledge protocols. Our goal and the way we use these ideas are somewhat different. Our basic
idea will be as follows.

1For statistically hiding commitments, the notion of non-malleability w.r.t. commitment is meaningless as the committed

value is not well defined. To analyze security in such a setting, the standard notion of non-malleability is w.r.t. opening as

studied for instance by Pass and Rosen [PR05a, PR08b].
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Suppose one needs to commit to a set of strings S = (s1, . . . , sn) (and prove a statement about these
strings later on). The committer starts to emulate k virtual players “in his head”. Each player is given as
input a share of S. Secret sharing is done using a verifiable secret sharing scheme (see, e.g., [CGMA85]).
Let the view of the players so far be view0

1, . . . , view
0
k respectively. The committer commits to these views

using a regular computationally secure commitment scheme.
At a later point in the interaction, suppose the committer needs to perform some computation f on

the committed strings, reveal the result f(S) to the verifier and prove its correctness. This can now be
done as follows:
• The committer continues to emulate the k virtual player in his head. The players will now compute

the following functionality: the functionality will take the share of each player, reconstruct the set
S and output f(S) to each player.

• The players jointly run a secure computation protocol (starting with the views already committed
to) to compute this functionality. The secure computation protocol being used is information
theoretically secure tolerating up to a constant fraction of corrupted parties such as BGW [BGW88].

• Let the new views of the players up to this point be view1
1, . . . , view

1
k. The committer now reveals

f(S) and commits to these new views.
• The receiver chooses a constant fraction of the players at random. The prover decommits to both the

views for the selected players. This includes the initial views view0
i as well as the new views view1

1.
• The receiver checks if the players behaved honestly during the entire computation and that their

views are “consistent” with each other (see Section 2 for the precise notion of consistency). If this
check is successful, “most” of the virtual players were correctly emulated by the committer. Hence
the output of the computation must be correct (since the protocol anyway tolerates a constant
fraction of corrupted players).

• The security of the committer is also preserved since revealing views for a constant fraction of players
does not reveal anything about the set of strings S that he started with (other than of course the
output f(S)).

The key difference from [IKOS09] is that in our setting, the statement we are proving actually inher-
ently involve a non-black-box use of the commitment scheme: “the evaluation of f on the set of committed
values results in f(S)”. The technique of [IKOS09] was later extended (with multiple commitments of
views) by Ostrovsky [Ost11] for proving relations over committed values in a black-box fashion and,
independently, by Goyal, Ishai and Sahai [GIS11] to get a black-box realization of the commit and prove
functionality. However both extensions are insufficient to obtain our results.

Our technique can also be seen as a way of proving a secret but committed statement (in a way that
does not involve the circuit of the commitment scheme in a non-black-box way).

We believe our technique to be of independent interest. The above technique might allow us to
obtain black-box constructions by eliminating zero-knowledge proofs of consistency in other settings as
well. Notice that we use a non-constant-round multi-party computation protocol such as BGW [BGW88]
in our construction. Indeed, obtaining a constant-round information theoretically secure multi-party
computation is currently a major open problem connected to the existence of short locally decodable
codes [IK04]. However our final protocol is still constant-round since this computation needs to be only
done “in the head” of the committer.

To construct non-malleable commitments in a black-box manner, our starting point is the recent
constant-round protocol of Goyal [Goy11] (which makes use of one-way functions in a non-black-box
manner). Goyal’s protocol has a zero-knowledge proof of consistency (on committed strings) which
we implement using the above secure computation in the head approach. However we note that the
protocol of Goyal, very informally, is still too “non-black-box” to admit a simple application of this
idea. The protocol of Goyal uses a proof of complex statements involving the randomness with which
a commitment is constructed. We present a simplification of the non-malleable commitment scheme
of Goyal. Our simplification involves making a part of the protocol purely information theoretic using
pairwise-independent hash functions and strong randomness extractors. This is done in a way such that
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the proof of non-malleability (w.r.t. commitment) still goes through.
We are finally left with a protocol where the only computational part is an initial commitment to a set

of random strings such that the consistency proof only needs to prove a statement above the committed
strings. Our MPC in the head technique discussed about is powerful enough to handle such a scenario.

Related Works. Pass and Wee [PW09] gave a construction of non-malleable commitments in O(log(n))
rounds (and in O(n) rounds for concurrent non-malleable commitments) making a black-box use of one-
way functions. Their construction is according to a relaxed security notion called non-malleability w.r.t.
extraction (which they introduce). Wee [Wee10] gave a O(log∗(n)) round construction following the same
notion of security. A limited black-box constant-round construction was given by Goyal [Goy11] for an
even weaker notion called non-malleability w.r.t. replacement. The construction of Goyal was restricted to
providing security only against synchronizing adversaries2 (as opposed to general adversary). This makes
it useful in stand-alone settings only. However in settings where there are more than one (uncoordinated)
executions, the construction of Goyal does not provide any security. Both these weaker notions of security
have been useful in constructing secure protocols for (stand-alone) multi-party computation in a black-box
manner.

In both of these notions, the adversary can indeed correlate (in a limited way) the value it commits to
in the right execution to the one in the left execution: in particular, if the value on left is 0, adversary may
be able to commit to 0, while if the value on left is 1, adversary commits to ⊥. Such a situation raises the
possibility of selective abort attacks. Even in settings where these notions have been useful, the analysis
is more complex than if one were using the standard notion of non-malleability w.r.t. commitment. Using
the standard security notion allows us to construct commitment scheme which can be useful in a wider
range of settings as well as obtain simpler and cleaner proofs of security.

2 Definitions and Tools

In our constructions, we will make use of Naor’s statistically binding commitment scheme [Nao91],
statistically-binding extractable commitment schemes, secure multi-party computation with statistical
security and perfect completeness, and, a verifiable secret sharing scheme with a deterministic recon-
struction phase.

Basic notation. Throughout this paper, we let N denote the set of all natural numbers and [m] be
the set {1, 2, . . . ,m} for any m ∈ N. Unless stated otherwise, we denote by k ∈ N the security parameter
and all quantities that are polynomial in k will be denoted by poly(k). For any x ∈ {0, 1}∗, we denote
the length of x (in bits) by |x|. Next, we recall the formal definitions of some tools and some facts from
information theory that we use in our construction.

Pairwise-independent hash functions. We will make use of a family of pairwise-independent hash
functions.

Definition 1 (Pairwise-independent hash functions) A family of functions H = {h : {0, 1}n →
{0, 1}m } is said to be pairwise-independent [CW79, WC81] iff ∀x 6= x′ ∈ {0, 1}n,∀y, y′ ∈ {0, 1}m,

Pr
h←H

[
h(x) = y ∧ h(x′) = y′

]
= 2−2m.

Theorem 1 (Pairwise-independent hash functions from linear maps) Let F be a finite field. Then

the family of functions H = {ha,b : F→ F}a,b∈F where ha,b = ax+ b is pairwise independent.

2Roughly, this means that the man-in-the-middle M sends the i-th round message on the right immediately after getting

the i-th round message in the left interaction.
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Seeded Randomness extractors. Assuming perfect randomness is usually a strong assumption, since
physical sources of randomness might fail on some bits. It is therefore very useful to use a randomness
extractor [NZ96, NT99] which is a deterministic polynomial-time function that transforms a weak source
of randomness into an almost uniformly random distribution. We recall the formal definitions as follow.

Definition 2 (Min-entropy) Let X be a random variable. Then the min-entropy of X is

H∞(X) = minx

{
log

1

Pr [X = x]

}
.

Definition 3 For random variables X and Y taking values in U , their statistical difference is defined as

∆(X,Y ) = maxT⊆U |Pr [X ∈ T ] − Pr [Y ∈ T ]|.

We say that X and Y are ε-close if ∆(X,Y ) ≤ ε.

Definition 4 (Randomness extractor) A function Ext(r, s) : {0, 1}|r| × {0, 1}|s| → {0, 1}m is said

to be a randomness (k, ε)-extractor if for every distribution of r with min-entropy k and any uniformly

distributed seed s, the output of Ext(r, s) is ε-close to the uniform distribution over {0, 1}m.

Definition 5 (Strong extractors) An extractor Ext(r, s) : {0, 1}|r| × {0, 1}|s| → {0, 1}m is a strong

(k, ε)-extractor if for every distribution of r with min-entropy k, it holds that Ext′(x, y) = (y, Ext(x, y))

is a standard (k, ε)-extractor.

Theorem 2 (Leftover hash lemma) if H = {h : {0, 1}n → {0, 1}m } is a pairwise-independent family

of hash functions where m = k − 2 log(1/ε), then Ext(x, h) = h(x) is a strong (k, ε)-extractor.

We will use ≡ to denote perfect indistinguishability, ≡s to denote statistical indistinguishability and ≈
to denote computational indistinguishability. We denote by (A,B) a pair of interactive Turing machines A
and B, and denote by 〈A,B〉 the random variable that represents the interaction between two interactive
Turing machines A and B. More precisely, we denote by τ = 〈A(x), B(y)〉 the interactive execution of
(A,B) invoked with inputs x for A, y for B, and producing τ as the transcript of the execution. We now
give the formal definition of a commitment scheme.

Commitment scheme. A (bit) commitment scheme is a two-phase protocol between a sender Com
and a receiver Rec. In the former phase, called the commitment phase, Com commits to a secret bit b to
Rec. Let c be the transcript of the interaction. In the later phase, called the decommitment phase, Com
reveals a bit b′ and proves that it is the same as b that was hidden in the transcript c of the commitment
phase. Typically, there are two security properties w.r.t. a commitment scheme. The binding property
requires that after the commitment phase, a malicious sender cannot decommitment c to two different
values in the decommitment phase. The hiding property guarantees that a malicious receiver learns
nothing about b in the commitment phase. A commitment scheme can be either Statistically Binding
(but Computationally Hiding) or Statistically Hiding (but Computationally Binding).

Definition 6 (Commitment Scheme) A (bit) commitment scheme CS = (Com,Rec) is a two-phase

protocol consists of a pair of ppt Turing machines Com and Rec. In the commit phase, Com runs on

a private input b ∈ {0, 1} and a transcript c = 〈Com(b),Rec〉 is obtained after interacting with Rec. In

the decommitment phase, Com reveals a bit b′ and Rec accepts the value committed to be b′ if and only

if Com can convince Rec that b′ = b. In a commitment scheme, the following security properties hold for

any ppt adversary A.
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Correctness: if sender and receiver both follow the protocol, then for all b ∈ {0, 1}, when the sender

commits and opens to b, Rec outputs b.

Hiding: let dist
A(z)

CS (b) denote the random variable describing the output of a ppt adversary A running

on auxiliary input z, with a honest sender committing to a bit b by running CS. It holds that for

every ppt adversary A and auxiliary input z, the probability ensembles {distA(z)

CS (0)}k∈N,z∈{0,1}∗ and

{distA(z)

CS (1)}k∈N,z∈{0,1}∗ are computationally indistinguishable.

Binding: for every ppt adversary A, and for all but a negligible probability over the coins of Rec,

after the commitment phase, the probability that A can successfully open the commitment both as 0

and 1 is negligible.

Furthermore, a commitment scheme is statistically biding (resp. statistically hiding) if its binding
(resp. hiding) property is secure against any unbounded adversary A. We will often use schemes with
non-interactive opening. That is, the sender opens a commitment by sending the randomness used in the
commit phase. We now recall the existing commitment schemes that are relevant for our constructions.

Statistically binding commitment scheme. We will use Naor’s statistically binding commitment
scheme [Nao91] in our construction. Naor’s scheme only requires a black-box use of a pseudo-random
generator (which can be based on the black-box use of any one-way function [HILL99]), and we will use
Naor’s commitment scheme in a black-box manner. We denote by CS = (Com,Rec), Naor’s commitment
scheme executed by a sender Com and a receiver Rec with the following notation: c = Comσ(b;ω) denotes
a commitment to a bit b computed using randomness ω, where σ is the first message generated by Rec to
construct the commitment. To decommit and verify the commitment, Com sends (b, ω) and Rec verifies
that c = Comσ(b;ω). We stress that Naor’s commitment scheme can be used to commit to strings by
iterating it for each bit of the string. Moreover, we will use it with non-interactive opening.

Statistically hiding commitment scheme. Another complementary notion of commitment schemes
is statistically hiding but computationally binding. It is known how to construct a two-round statistically
hiding commitment scheme from any family of collision-resistant hash functions [HM96] or an O(n/ log n)-
round statistically hiding commitment from any one-way function [HR07, HNO+09]. In this dual setting,
the hiding property holds even against unbounded adversarial receivers for all but a negligible probability
(i.e., statistical hiding), while the binding property is required to hold only for polynomially-bounded
senders (i.e., computational binding). For two-round statistically hiding commitment scheme, we will use
the same notation used above for two-round statistically binding commitment scheme.

Extractable commitment schemes. Informally, a commitment scheme is said to be extractable if
there exists an efficient extractor that having black-box access to any efficient malicious sender ExCom∗

that successfully performs the commitment phase, is able to efficiently extract the committed string. We
first recall the formal definition from [PW09] in the following.

Definition 7 (Extractable Commitment Scheme) A commitment scheme ExCS = (ExCom,ExRec)

is an extractable commitment scheme if given an oracle access to any ppt malicious sender ExCom∗,

committing to a string, there exists an expected ppt extractor Ext that outputs a pair (τ, σ∗) such that

the following properties hold:

Simulatability: the simulated view τ is identically distributed to the view of ExCom∗ (when inter-

acting with an honest ExRec) in the commitment phase.
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Extractability: the probability that τ is accepting and σ∗ correspond to ⊥ is negligible. Moreover

the probability that ExCom∗ opens τ to a value different than σ∗ is negligible.

An extractable commitment scheme can be statistically binding (in such case also extractability
must hold against an unbounded ExCom∗) or statistically hiding. The construction of an extractable
commitment in [PW09] follows the one proposed by Rosen in [Ros04], which is a non-concurrent version
of the one originally proposed by Prabhakaran et al. in [PRS02], and formally defined as concurrent
extractable commitment by Ong et al. in [MOSV06]. Since we do not require concurrent extractability, we
will consider the non-concurrent (and round-efficient) version only. We also briefly recall the extractable
commitment scheme from [PW09] in the following.

One can construct an extractable commitment scheme ExCS = (ExCom,ExRec) with non-interactive
opening from any commitment scheme CS = (Com,Rec) with non-interactive opening in a black-box
manner as follows. Let ExCom be the sender, ExRec be the receiver, and Com(σ;ω) denote the commit-
ment to a message σ computed using randomness ω. We will now show the steps of a statistically-binding
extractable commitment scheme by assuming that if at any time the received message is inconsistent with
the protocol specification then the honest player aborts (e.g., the receiver would output ⊥).
Commitment Phase:

1. ExCom on input a message σ, generates k random strings {r0
i }i∈[k] of the same length as σ, and

computes {r1
i = σ ⊕ r0

i }i∈[k], therefore {σ = r0
i ⊕ r1

i }i∈[k]. Then ExCom uses CS to commit to
the k pairs {(r0

i , r
1
i )}i∈[k]. That is, ExCom and ExRec produce {c0

i =
〈
Com(r0

i , ω
0
i ),Rec

〉
, c1
i =〈

Com(r1
i , ω

1
i ),Rec

〉
}i∈[k].

2. ExRec responses to ExCom by sending a random k-bit challenge string r′ = (r′1, . . . , r
′
k).

3. ExCom decommits {cr
′
i
i }i∈[k] (i.e., non-interactively opens k of previous commitments, one per pair).

4. ExRec verifies that commitments have been opened correctly.
Decommitment Phase:

1. ExCom sends σ and non-interactively decommits the other k commitments {cr̄
′
i
i }i∈[k], where r̄′i =

1− r′i.
2. ExRec checks that all k pairs of random strings {r0

i , r
1
i }i∈[k] satisfy {σ = r0

i ⊕ r1
i }i∈[k]. If so, ExRec

takes the value committed to be σ and ⊥ otherwise.
The proof of hiding and binding can be found in [PW09]. The extractor can simply run as a receiver,

and if any of the k commitments is not accepting, it outputs σ∗ = ⊥. Otherwise, it rewinds (Step 2) and
changes the challenge until another k well formed decommitments are obtained. Then it verifies that for
each decommitment, the XOR of all pairs corresponds to the same string. Then the extractor can extract
a value from the responses of these two distinct challenges. The extractor by playing random challenges
in each execution of Step 2 is perfectly simulating the behavior of the receiver and the analysis in [PW09]
shows that its running time is polynomial. However, the extractor described above will produces over
extraction, which means that the extractor can output a value different from ⊥ when the transcript has
no valid opening.

In our constructions, we will also need an extractable commit scheme without over extraction, but
tolerating extraction failure.

Definition 8 (Weakly Extractable Commitment Scheme) A weakly extractable commitment scheme

WExCS = (WExCom,WExRec) is a commitment scheme such that given oracle access to any ppt mali-

cious sender WExCom∗, committing to a string, there exists an expected ppt extractor Ext that outputs

a pair (τ, σ∗) such that the following properties hold:

Simulatability: the simulated view τ is identically distributed to the view of WExCom∗ (when

interacting with an honest WExRec) in the commitment phase.
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Extractability: the probability that τ is accepting and σ∗ correspond to ⊥ is at most 1/2. Moreover

if σ∗ 6= ⊥ then the probability that ExCom∗ opens τ to a value different than σ∗ is negligible.

In contrast to the previous definition, a weakly extractable commitment scheme can tolerate failures
in the extraction procedure. A construction that satisfies our definition on top of any commitment scheme
CS = (Com,Rec) is as follows:
Commitment Phase:

1. WExCom on input a message σ, generates a random strings r0 of the same length as σ, and
computes r1 = σ ⊕ r0. That is, WExCom sets σ = r0 ⊕ r1. Then WExCom uses CS to commit to
a pair of values (r0, r1). That is, WExCom and WExRec produce c0 =

〈
Com(r0, ω0),Rec

〉
, c1 =〈

Com(r1, ω1),Rec
〉
.

2. WExRec responses to WExCom by sending a random bit challenge string b.
3. WExCom decommits cb (i.e., non-interactively opens one of previous commitments).
4. WExRec verifies that cb has been opened correctly.

Decommitment Phase:
1. WExCom sends σ and non-interactively decommits the other commitment cb̄, where b̄ = 1− b.
2. WExRec checks that σ = r0⊕r1. If so, WExRec takes the value committed to be σ and ⊥ otherwise.
The proof of binding and hiding of WExCS are even simpler than the one given in [PW09]. Moreover,

there is no issue of over-extraction, rather there is an issue of under-extraction. Since the malicious
sender might refuse to open another commitment during rewinds, with probability 1/2, a cheating sender
commits successfully but the extractor fails. We will show later that this weak notion of extractability
suffices to prove the security of our main theorem.

Notice that in the two above constructions, when CS is the parallel version of Naor’s commitment
scheme (i.e., a statistically binding string commitment scheme where the sender commits to pairs of strings
which XOR corresponds to the string to be committed), then we obtain a constant-round extractable
(resp. weakly extractable) statistically-binding string commitment scheme based on the black-box use
of one-way functions. Similarly, a constant-round (weakly) extractable statistically-hiding commitment
scheme from any family of collision-resistant hash functions can be obtained from the scheme of [HM96],
and a O(n/ log n)-round (weakly) extractable statistically-hiding commitment from any one-way function
can be obtained from the scheme of [HR07, HNO+09].

Non-malleable commitment schemes. For the non-malleability of commitments, we follow the defi-
nition introduced by Pass and Rosen and by Lin et al. [PR05b, PR08a, LPV08]. LetM be the man-in-the-
middle adversary running on auxiliary input z, and NMCS = (C,R) denote a non-malleable commitment
scheme executed by a sender C and a receiver R. We briefly discuss two different types of non-malleability
in the following.

Statistically binding non-malleable commitment schemes. We use the notion of non-malleability
w.r.t. commitment from [DDN91] for statistically binding non-malleable commitment schemes. In this
setting, the adversary M is said to succeed in the experiment if M can commit to a message σ̃ that is
related to the message σ committed by the honest committer. Formally, let mimMNMCS(σ, z, tag) denote
a random variable that describes the value σ that M commits to in the right execution and the view
of M in the full experiment. In the simulated experiment, a simulator S directly interacts with R. Let
simSNMCS(z, tag) denote the random variable describing the value σ′ committed to by S and the output

of S. Notice that both in mimMNMCS(σ, z, tag) and in simSNMCS(z, tag) the values σ and σ′ are well defined
since the commitment scheme is statistically binding.

We will consider tag-based commitments, where an additional string referred to as tag is received in
input by both sender and receiver. The goal ofM receiving a commitment of σ in an execution with tag
tag , consists in committing to a related σ′ in an execution with a tag ˜tag such that tag 6= ˜tag . Therefore
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in mimMNMCS(σ, z, tag) we will assume that when the tag used in the right-hand execution is equal to the

one used in left-hand execution, then the message committed in mimMNMCS(σ, z, tag) is always defined as
⊥.

It is well known that tag-based non-malleable commitments imply plain non-malleable commitments
since one can use any signature scheme for this implication. Since it is known how to construct signature
schemes by using a one-way function in a black-box manner, we have that the sole notion to care about
in this work is that of tag-based non-malleable commitments.

Definition 9 (Non-Malleable Commitments w.r.t Commitment) A tag-based commitment scheme

NMCS is said to be non-malleable if for every ppt man-in-the-middle adversaryM, there exists a (expected)

ppt simulator S such that the following ensembles are computationally indistinguishable:

{mimMNMCS(σ, z, tag)}tag∈{0,1}k,σ∈{0,1}k,k∈N,z∈{0,1}∗ ≈ {simSNMCS(z, tag)}tag∈{0,1}k,k∈N,z∈{0,1}∗ .

Similarly, one can define the one-many (resp., many-many) variant of the above definition where the
view of M along with the tuple of values it commits to is required to be indistinguishable regardless of
the value (resp., values) committed to in the left interaction (resp., interactions) by the honest sender.
We refer the reader to [LPV08] for more details. We also define the notion of one-sided non-malleable
commitment where we only consider interactions where the players of the left execution use a common
value tag that is smaller than any value ˜tag used in any right interaction3.

Statistically hiding non-malleable commitment schemes. In the statistically hiding case, the
previous definition of non-malleability (w.r.t. commitment) does not make sense, because the committed
value is not necessary well defined. To analyze the non-malleability in such a setting, the standard
notion of non-malleability is w.r.t. opening and was studied by Di Crescenzo et al. [DIO98] and by
Pass and Rosen [PR05a, PR08b]. Briefly, in the notion of non-malleability w.r.t. opening, the adversary
is considered successful if after the commitment phase (where M commits to a message σ), and after
observing the decommitment to σ from a honest committer,M can decommit a message σ̃ that is related
to σ.

Let mimMNMCS(σ, z, tag) denote a random variable that describes the view ofM in the full experiment
and the value that M decommits to in the right execution when the sender commits and decommits to
σ. In the simulated experiment, a simulator S directly interacts with R, and will receive the value σ
only after the commitment phase has been completed. Let simSNMCS(σ, z, tag) denote the random variable
describing the output of S.

Definition 10 (Non-Malleable Commitments w.r.t. Opening) A tag-based commitment scheme

NMCS is said to be non-malleable w.r.t. opening if for every ppt man-in-the-middle adversary M, there

exists a (expected) ppt simulator S such that the following ensembles are computationally indistinguish-

able:

{mimMNMCS(σ, z, tag)}tag∈{0,1}k,σ∈{0,1}k,k∈N,z∈{0,1}∗ ≈ {simSNMCS(σ, z, tag)}tag∈{0,1}k,σ∈{0,1}k,k∈N,z∈{0,1}∗ .

Statistically secure multi-party computation (MPC). Informally, a secure multi-party computa-
tion (MPC) [BGW88, AL11] scheme allows n players to jointly and correctly compute an n-ary function
based on their private inputs, even in the presence of t corrupted players. More precisely, let n be the
number of players and t denotes the number of corrupted players. Under the assumption that there exists
a synchronous network over secure point-to-point channels, in [BGW88] it is shown that for every n-ary

3If there exists a right interaction with ˜tag < tag , the value b committed to in that right interaction is defined to be ⊥.
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function f : ({0, 1}∗)n → ({0, 1}∗)n, there exists a t-secure MPC protocol Πf that securely computes
f in the semi-honest model for any t < n/2, and in the malicious model for any t < n/3, with perfect
completeness and security. That is, given the private input wi of player i, after running the protocol Πf ,
each honest player i receives in output the i-th component of the result of the function f applied to the
inputs of the players, as long as the adversary corrupts less than t players. In addition, nothing is learnt
by the adversary from the execution of Πf other than the output.

More formally, we denote by A the real-world adversary running on auxiliary input z, and by S
the ideal-world adversary. We then denote by REALπ,A(z),I(x̄) the random variable consisting of the
output of A controlling the corrupted parties in I and the outputs of the honest parties. Following a
real execution of π where for any i ∈ [n], party Pi has input xi and x̄ = (x1, . . . , xn). We denote by
IDEALf,S(z),I(x̄) the analogous output of S and honest parties after an ideal execution with a trusted
party computing f .

Definition 11 Let f : ({0, 1}∗)n → ({0, 1}∗)n be an n-ary functionality and let π be a protocol. We

say that π (n, t)-statistically securely computes f if for every probabilistic adversary A in the real model,

there exists a probabilistic adversary S of comparable complexity4 in the ideal model, such that for every

I ⊂ [n] of cardinality at most t, every x̄ = (x1, . . . , xn) ∈ ({0, 1}∗)n where |x1| = . . . = |xn|, and every

z ∈ {0, 1}∗, it holds that: {IDEALf,S(z),I(x̄)} ≡s {REALπ,A(z),I(x̄)}.

We will later use MPC protocols with perfect completeness and statistical security.

Theorem 3 (BGW88) Consider a synchronous network with pairwise private channels. Then, for

every n-ary functionality f, there exists a protocol πf that (n, t)-perfectly securely computes f in the

presence of a static semi-honest adversary for any t < n/2, and there exists a protocol that (n, t)-perfectly

securely computes f in the presence of a static malicious adversary for any t < n/3.

We will refer to such a protocol πf mentioned in the above theorem as an (n, t)-perfectly secure MPC
protocol for f .

Notice that all the above communication requirements to run the MPC protocol will not result in
communication requirements for our commitment scheme, since we will use virtual executions of MPC
that will be run only locally by players.

Consistency of views. In an MPC protocol, the view of a player includes all messages received by that
player during the execution of the protocol, the private inputs given to the player and the randomness
used by the player. We further denote by viewi the view of player Pi. For a honest player Pi, the final
output and all messages sent by that player can be inferred from viewi by running a virtual execution of
the protocol. Next, we recall the following definition of view consistency adapted from [IKOS07].

Definition 12 (View Consistency) A viewi of an honest player during an MPC computation π con-

tains input and randomness used in the computation, and all messages received/sent from/to the com-

munication tapes. We have that a pair of views (viewi, viewj) are consistent with each other if, (a) both

the players Pi and Pj individually computed each outgoing message honestly by using the random tapes,

inputs and incoming messages specified in viewi and viewj respectively, and, (b) all output messages of

Pi to Pj appearing in viewi are consistent with incoming messages of Pj received from Pi appearing in

viewj, and vice versa.

4Comparable complexity means that S runs in time that is polynomial in the running time of A.
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Verifiable Secret Sharing (VSS) functionality. Informally, a verifiable secret sharing (VSS) [CGMA85]
scheme is a two-stage secret sharing protocol for implementing the following functionality. In the first
stage, a special player referred to as dealer shares a secret among the other players referred to as share-
holders in the presence of at most t corrupted players. In the second stage, players reconstruct the
secret shared by the dealer. The functionality ensures that when the dealer is honest, before the second
stage begins, all corrupted players have no information about the secret. Moreover, when the dealer is
dishonest, at the end of the share phase the honest players would have realized it through an accusation
mechanism that disqualifies the dealer.

In contrast to Shamir’s Secret Sharing scheme [Sha79], a VSS scheme can tolerate errors on malicious
dealer and players on distributing inconsistent or incorrect shares, indeed the critical property is that
even in case the dealer is dishonest but has not been disqualified, still the second stage always reconstruct
the same bit among the honest players.

We will consider a VSS scheme implementing the above VSS functionality, as defined below.

Definition 13 (VSS Scheme) An (n+ 1, t)-perfectly secure VSS scheme consists of a pair of protocols

VSS = 〈Share, Recon〉 that implement respectively the sharing and reconstruction phases as follows.

Share. Player Pn+1 referred to as dealer runs on input a secret s and randomness rn+1, while any

other player Pi, 1 ≤ i ≤ n, runs on input a randomness ri. During this phase players can send (both

private and broadcast) messages in multiple rounds.

Recon. Each shareholder sends its view vi of the sharing phase to each other player, and on input

the views of all players (that can include bad or empty views) each player outputs a reconstruction of the

secret s.

All computations performed by honest players are efficient. The computationally unbounded adversary

can corrupt up to t players that can deviate from the above procedures. The following security properties

hold.

Commitment: if the dealer is dishonest then one of the following two cases happen: 1) during the

sharing phase honest players disqualify the dealer, therefore they output a special value ⊥ and will

refuse to play the reconstruction phase; 2) during the sharing phase honest players do not disqualify

the dealer, therefore such a phase determines a unique value s∗ that belongs to the set of possible

legal values that does not include ⊥, which will be reconstructed by the honest players during the

reconstruction phase.

Secrecy: if the dealer is honest then the adversary obtains no information about the shared secret

before running the protocol Recon.

Correctness: if the dealer is honest throughout the protocols then each honest player will output the

shared secret s at the end of protocol Recon.

Direct implementations of (n + 1, bn/3c)-perfectly secure VSS schemes can be found in [BGW88,
CDD+99]. However since we are interested in a deterministic reconstruction procedure, we will use the
scheme of [GIKR01] that implements an (n + 1, bn/4c)-perfectly secure VSS scheme. We will denote
by ΠV SSshare the execution of an (n + 1, bn/4c)-perfectly secure protocol that implements the Share

stage of the above VSS functionality. We will denote by Πrecon the corresponding protocol executed by
shareholders to implement the deterministic Recon stage.

Synchronized Multi-Party Coin Tossing Protocol. One of the natural and basic applications of
the secure multi-party computation is coin tossing, which allows parties to generate a common unbiased
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random string. We assume that there exists a broadcast channel and the communication is synchronized
but allowing a rushing adversary. That is, our protocol will proceed in rounds, and in each round, all
messages exchanged by the players must be delivered before the next round begins. However, in each
round, the adversary is allowed to see all the messages sent by honest players before deciding how the
corrupted players should behave in current round. Also, the broadcast channel assures that all players
heard the same message and that the message cannot be disavowed. Note that in this notion, one string
is tossed in a multi-party protocol, which is different to the notions in [Lin01, PW09], where many (single
bit) coins are tossed in parallel (i.e, multiple protocol pairs are executed simultaneous by two parties).
In the two-party case, a constant-round parallel coin-tossing protocol was proposed by Lindell [Lin01].
In addition, the first constant-round non-malleable string-tossing protocol in the plain model is achieved
by Barak [Bar02].

Let ΠC be a synchronized multi-party coin tossing protocol, letA denotes the real-world adversary run-
ning on auxiliary inputs z, and let S be the ideal-world adversary. We then denote by REALΠC ,A(z)(1

n)
the random variable consisting of the output of A and the outputs of all parties. We denote by
IDEALf,S(z)(1

n) the analogous output of S and honest parties after an ideal execution with a trusted

party computing the n-ary function f : (1k)n → {0, 1}k, where each party has only the security parameter
k as its input and the output of f is uniformly and independently chosen from {0, 1}k.

Definition 14 (Synchronized Multi-Party Coin Tossing) A Synchronized multi-party protocol ΠC

implements an n-party coin tossing if for every ppt adversary A in the real model, there exists a ppt

adversary S of comparable complexity in the ideal model, such that

REALΠC ,A(z)(1
k) ≈ IDEALf,S(z)(1

k).

3 Construction of Non-Malleable Commitments

We now describe a simplified version of our protocol, which considers “short” tags with one-sided non-
malleability. Moreover security is guaranteed against synchronized adversaries only. A synchronized
adversary is a restricted adversary that plays the main-in-the-middle attack by playing exactly one
message on the right execution after a message is received from the left execution, and playing exactly
one message on the left execution after a message is received from the right execution. In our scheme
we will use an extractable commitment scheme ExCS as already used in previous work [PW09]. Such
a commitment scheme suffers of “over extraction”, which means that the extractor can output a value
different than ⊥ even when the committed message is not well formed (therefore the committed message
is undefined and can not be opened anymore). In addition, we use the commitment scheme WExCS which
instead suffers from “under extraction” as described in Section 2. We assume that each execution has a
session identifier tag ∈ [2n], where n is the length of party identity in bits. Let k be the security parameter
and ` = `(k) = k · tag . The commitment scheme NMCS = (C,R) between a committer C and a receiver R
proceeds as follows to commit to a k-bit string σ. We assume that λ = bk/4c. In the description below,
we have included some intuition in italics.

Commitment Phase.

0. Initial setup. R picks λ out of k players (which will be later emulated by the committer) at
random. That is, it randomly selects λ distinct indices Λ = {r1, . . . , rλ} where ri ∈ [k] for any
i ∈ [λ]. For each ri, R sends an extractable commitment ci of ri using ExCS.

1. Primary slot. Let ΠV SSshare be a protocol implementing the Share phase of a (k+ 1, λ)-perfectly
secure VSS scheme. We require the VSS protocol to have a deterministic reconstruction phase. The
committer C is given a k-bit string σ to commit.
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1.1. Commit: C first generates ` pairs of random strings {α0
i , α

1
i }i∈[`] of length 4k each, and a

k-bit random string s. Here the strings are such that the knowledge of both strings {α0
i , α

1
i } for

any pair will allow an extractor to extract the committed value. The string s is meant to serve
as a seed of a strong extractor used later on in the protocol. The purpose of the next two stages
(1.2 and 1.3) is simply to produce a specialized commitment to the strings {α0

i , α
1
i }i∈[`], s and

σ.
1.2. The committer C now starts emulating k + 1 (virtual) players locally “in his head”. C sets

the input of Pk+1 (i.e., the Dealer) to the concatenation of σ, s, and {α0
i , α

1
i }i∈[`], while each

other player has no input. Then C runs ΠV SSshare and each player Pi obtains shares wi, for
any i ∈ [k].

1.3. Let view1
1, . . . , view

1
k+1 be the views of the k+1 players describing the execution of ΠV SSshare.

C uses WExCS to send a commitment V 1
i of view1

i to R, in parallel for any i ∈ [k]. At this stage,
the committer is now committed to σ, s and {α0

i , α
1
i }i∈[`].

1.4. Challenge: R sends a random `-bit challenge string ch = (ch1, . . . , ch`).
1.5. Response: C sends {αchii }i∈[`] to R. The goal of the extractor would be to rewind and learn

a pair {α0
i , α

1
i }. To ensure non-malleability, this would be done without rewinding the (inter-

leaved) left interaction.

2. Verification message. Let H be a family of pairwise-independent hash functions with domain
{0, 1}4k and range {0, 1}k, and Ext : {0, 1}4k ×{0, 1}k → {0, 1}k be a strong randomness (3k, 2−k)-
extractor.

2.1. R picks a function h at random from H and sends it to C.
2.2. C sends s, {h(α0

i ), h(α1
i ), Bi = σ ⊕ Ext(α0

i , s)⊕ Ext(α1
i , s)}i∈[`] to R.

Say that in the primary slot phase, the extractor rewinds the adversary and receives a value αji .
This phase enables checking such a received value for correctness (and for subsequent recovery of
the string σ). This phase is purely information theoretic but still provides for the right binding
properties. The corresponding mechanism in the construction of Goyal was implemented using
complex computations involving random tapes used to generate various commitments.

3. Consistency proof. Now the sender needs to prove the correctness of the values revealed in stage
1.5 and 2.2.

3.1. Let Πch be a (k, λ)-perfectly secure MPC protocol such that given ch as a public input and wi
as the private input of Pi for any i ∈ [k], at the end of the computation {αchii }i∈[`] is received
in output by Pi for any i ∈ [k]. C runs internally Πch and sends a commitment V 2

i of the view
view2

i of Pi when executing Πch using WExCS in parallel for any i ∈ [k] to R.
3.2. Let Πh be a (k, λ)-perfectly secure MPC protocol such that given a hash function h as a

public input and wi as the private input of Pi for any i ∈ [k], at the end of the computation
(s, {h(α0

i ), h(α1
i )}i∈[`], {Bi = σ ⊕ Ext(α0

i , s) ⊕ Ext(α1
i , s)}i∈[`]) is received in output by Pi for

any i ∈ [k]. C runs internally Πh and sends a commitment V 3
i of the view view3

i of Pi when
executing Πh using WExCS in parallel for any i ∈ [k].

3.3. R decommits {ci}i∈[λ].
3.4. C decommits {V 1

ri , V
2
ri , V

3
ri}i∈[λ] (i.e., it decommits the subset of views {view1

ri , view
2
ri , view

3
ri}i∈[λ].)

3.5. For j = 1, 2, 3, R verifies that all pairs of views in {viewjri}i∈[λ] are consistent (according to
Definition 12) and that the dealer Pk+1 has not been disqualified by any player, otherwise R
aborts; moreover for j = 1, 2 and i = 1, . . . , λ, R checks that viewjri is a prefix of viewj+1

ri ,
otherwise R aborts.

Decommitment Phase.
1. C decommits {V 1

i }i∈[k] as {view1
i }i∈[k].

13



2. R checks that all commitments to the views are opened correctly in the previous step. If a commit-
ment is opened incorrectly, R sets the corresponding revealed view to 0k (instead of just aborting).

3. Let ΠV SSrecon be a protocol implementing the Recon phase corresponding to the (k+1, λ)-perfectly
secure VSS Share phase (which includes the string σ) used in the commitment phase. R runs
ΠV SSrecon using view1

1, . . . , view
1
k+1 as input to reconstruct and output the first substring of the

value that the majority of the players would output in the reconstruction. If there is no majority,
then consider the committer to have aborted during the decommitment phase (and output ⊥).
We stress that the receiver does not perform any additional checks. In particular, even if it detects
that some of the views are not correctly constructed (and hence the committer behaved in a dishonest
way), it still accepts the decommitment phase as long as a majority of the players agree on a
value during reconstruction. This is crucial for getting security as per the non-malleability w.r.t.
commitment notion.

3.1 Security Analysis

As one could expect, we borrow several ideas from the analysis of Goyal [Goy11]5 with some crucial
modifications. Indeed the protocol of [Goy11] uses a zero-knowledge proof of consistency for (at least) two
different crucial purposes: 1) in the proof of non-malleability, the soundness of the zero-knowledge proof
guarantees that when the commitment phase is completed successfully, there exists a unique committed
string not equal to ⊥; 2) in the proof of hiding the zero-knowledge property of the zero-knowledge proof
guarantees that no information on the committed string is leaked.

Since our protocol does not use a zero-knowledge protocol, we prove the above two properties in a
different way by relying on our techniques.

Theorem 4 The commitment scheme NMCS is computationally hiding.

Proof. To prove the hiding property, we claim that any adversary A that breaks the hiding property
of NMCS can be used to break the hiding property of WExCS. More precisely, let distC(m) denote the random
variable describing the output of the adversary in NMCS when C commits to m, and let distWExCom(m)
denote the random variable describing the output of the adversary in WExCS when WExCom commits m.

We will show how to reduce an adversary A of NMCS to an adversary S of WExCom. More specifically,
given the above adversaries A and S, we show that if for some non-negligible function ν there exists a
ppt distinguisher D such that if Prb←{0,1} [D(distC(mb),m0,m1) = b] ≥ 1

2 + ν(k) for any pair of messages
m0 and m1, then there exists a non-negligible function ν ′ and a pair of messages m′0, m′1 such that
Prb←{0,1} [D(distWExCom(m′b),m

′
0,m

′
1) = b] ≥ 1

2 + ν ′(k).

To start with, let disti(m) (resp. dist(j)i (m)) denote the random variable describing the output of the
adversary of NMCS when S commits m in experiment Hi (resp. H(j)

i ). Then, we consider the following
sequence of hybrid experiments.

Experiment H0. In this experiment, S runs C. Clearly, distC(m0) ≡ dist0(m0).

Experiment H1. In this experiment, S executes the protocol identically to H0 except that it also runs
the extractor of ExCS to retrieve all the indices ri selected by A, and it aborts if the extraction fails.
After getting ri for all i ∈ [k], S executes the rest of the protocol as in H0. Since the only difference in
the view of H0 and H1 consists in the aborts performed when the extraction fails, by the extractability
of ExCS (indeed if A completes the commitment phase with non-negligible probability then the extractor
of ExCS fails with negligible probability only), we have that dist0(m0) ≈ dist1(m0).

5Parts of the text in this section is borrowed verbatim from [Goy11].
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Experiment H(1)

2 to H(3(k−λ)+1)

2 . These experiments deviate from H1 in the following way. For all
commitments of the views that will not be opened to A (i.e., {V 1

i , V
2
i , V

3
i }i/∈Λ), S will gradually replace

the committed values (corresponding to views that are consistent with the computations) by commitments
to random strings. Notice these changed commitments are never opened in the commitment phase, and
since the only difference in the views of H(j)

2 and H(j+1)

2 for any j ∈ [3(k − λ)] is just one commitment,
if there exists a distinguisher D that can distinguish two views in two consecutive experiments, we
can use it to construct an adversary A to break the hiding property of WExCS. Therefore, we have
dist1(m0) = dist(1)2 (m0) ≈ · · · ≈ dist(3(k−λ)+1)

2 (m0).

Claim 1 If there exists a distinguisher D that can distinguish two views in experiments H(j)

2 and H(j+1)

2 ,

for any j ∈ [3(k − λ)], then there exist an adversary A that breaks the hiding property of WExCS.

Proof. The proof of this claim relies on a hybrid argument and we provide a sketch as follows. Notice
that the views of experiments H(j)

2 and H(j+1)

2 are only different in one commitment. Now consider this
pair of particular commitment c(j) and c(j+1) that correspond to a commitment of a consistent view in the
former case and to a commitment of a random string in the latter case. If there exists a distinguisher D to
distinguish the views of experiments H(j)

2 and H(j+1)

2 , then one can use it to distinguish between c(j) and
c(j+1). The reduction is standard and simply consists in taking a challenge commitment and embedding
it in the experiment played with A. Since the output of A can be used to distinguish between H(j)

2 and
H(j+1)

2 , it can directly be used to distinguish a commitment of a consistent view from a commitment of a
random string.

Experiment H3. In this experiment, the simulator S proceeds identically to H(3(k−λ)+1)

2 with the fol-
lowing exception. Let SV SS , Sch and Sh be the simulators of underlying MPC protocols ΠV SSshare, Πch

and Πh. SV SS , Sch and Sh will simulate the views of the multi-party computations considering players
in Λ as malicious players (i.e., the query to the ideal functionality will be internally simulated by as-
suming all honest players play with shares of m0). Then for every player i ∈ Λ, our simulator S will
commit the views being generated by SV SS , Sch and Sh. Notices that since λ is below the threshold for
statistical security used by MPC protocols, we have that SV SS , Sch and Sh, can generate these views
so that they are statistically indistinguishable from the views of dist(3(k−λ)+1)

2 (m0). Therefore, we have
dist(3(k−λ)+1)

2 (m0) = dist3(m0).

Experiment H4. In this experiment, the simulator S proceeds identically to H3 with the following
exception. Instead of assuming that all honest players play with shares of m0, the simulator assumes
that all honest players play with shares of m1 when using SV SS , Sch and Sh to simulate the views.
That is, for every player i ∈ Λ, our simulator S will commit the views being generated by SV SS , Sch
and Sh. Moreover S will replace m0 by m1 when computing the encryptions Bi, therefore it will send
{Bi = m1⊕Ext(α0

i , s)⊕Ext(α1
i , s)}i∈[`]. Again, since λ is below the threshold for statistical security used

by MPC protocols, we have that SV SS , Sch and Sh, can generate these views so that they are perfectly
indistinguishable to the views of dist3(m0). The only remaining difference between the two games consists
therefore in the use of m1 instead of m0 when computing Bi, for any i ∈ [`]. Observe that both in dist3(m0)
and in dist4(m1), the encryption of the string is performed by using both Ext(α0

i , s) and Ext(α1
i , s). One

of these two values is actually known since both s and αchii are revealed for any i ∈ [`]. Therefore, the

capability to distinguish dist3(m0) from dist4(m1) reduces to distinguishing (h(α
¯chi
i ),m0⊕Ext(α

¯chi
i , s)) for

i ∈ [`] played in dist3(m0) from (h(α
¯chi
i ),m1 ⊕ Ext(α

¯chi
i , s)) for i ∈ [`] played in dist4(m1). Obviously the

two games would be indistinguishable if classical one-time pad is applied by computing Bi = m0 ⊕ α
¯chi
i

(resp., Bi = m1⊕α
¯chi
i ) where α

¯chi
i is a random k-bit string and no h(α

¯chi
i ) is sent. However the fact that

h(α
¯chi
i ) is sent6 breaks the use of classical one-time pad. Indeed, values h(α

¯chi
i ) decreases the entropy of

6This indeed will be crucial in the proof of non-malleability.
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α
¯chi
i . The use of H with that specified domain and range, and the selection of α

¯chi
i as a 4k-bit string,

guarantee that the min-entropy of α
¯chi
i is still k when h(α

¯chi
i ) is known. The strong randomness extractor

therefore generates an almost uniform random k-bit string (the statistical difference with the uniform

distribution is 2−k) from the k bits of min-entropy of α
¯chi
i , and thus we have that dist3(m0) and dist4(m1)

are statistically indistinguishable.

Experiment H(1)

5 to H(3(k−λ)+1)

5 . In these experiments we proceed identically to H4, except that for
all commitments that will not be opened to A (i.e., {V 1

i , V
2
i , V

3
i }i/∈Λ), S will gradually changes back

the committed values from the random strings to views that are consistent with committed value m1.
Therefore in these experiments there is a real-world execution that is mixed in part with a simulated
execution. More precisely, in two consecutive experiments H(j)

5 and H(j+1)

5 for any j ∈ [3(k − λ)], S
will executes the MPC protocols according to input m1. Then in H(j)

5 , S for a party i /∈ Λ and some

index j′ ∈ [3], S computes V j′

i as a commitment of a random string. Instead in H(j+1)

5 S changes the

commitments V j′

i to a view view
j′

i consistent with a run where the committed string is m1. By the same
arguments used in experiment H(j)

2 , these changed commitments are never opened in the commitment
phase, thus if there exists a distinguisher D that can distinguishH(j)

5 fromH(j+1)

5 for some j ∈ [3(k−λ)], we
can use it to construct an adversary A that breaks the hiding property of WExCS. The reduction is almost
identical to the one given in Claim 1. Therefore, we have dist4(m1) = dist(1)5 (m1) ≈ · · · ≈ dist(3(k−λ)+1)

5 (m1).

Experiment H6. In this experiment, the simulator honestly executes the protocol by committing to
the value m1 and outputs the corresponding views. The only difference between H6 and H(3(k−λ)+1)

5

is that the opened views in H(3(k−λ)+1)

5 are simulated by the MPC simulators. However, notice that
these simulated views are perfectly indistinguishable with respect to views of a real execution. Thus,
H(3(k−λ)+1)

5 (m1) ≡s dist6(m1) ≡ distC(m1).
Therefore, by applying the sequences of hybrid experiments shown above, we have distC(m0) ≈ distC(m1),
and if there exists an adversary that can distinguish distC(m0) from distC(m1), we can use it to break the
hiding property of WExCS. �

Theorem 5 The commitment scheme NMCS is statistically binding.

Proof. The statistical binding property follows in a straightforward manner from the statistical bind-
ing of WExCS. Indeed the only step performed by the unbounded adversarial sender in the decommitment
phase, consists in decommitting all the statistically binding commitments {V 1

i , V
2
i , V

3
i }i∈[k+1] sent in the

commitment phase through the extractable commitment scheme. The decommitted string is then derived
from running the reconstruction phase of the VSS using these views. Then since the reconstruction is
deterministic, regardless of how these views are constructed, there is a unique string which will be recon-
structed. Therefore to violate the binding of our scheme one has to violate the statistical binding of the
extractable commitment scheme. �

Theorem 6 The commitment scheme NMCS is a one-sided non-malleable commitment scheme with short

tags secure against synchronized adversaries.

Proof. To prove the non-malleability of NMCS, we show that there exists a black-box simulator S
such that for any man-in-the-middle adversary M, dist1 = {mimMNMCS(σ, z, tag)}tag∈[k],σ∈{0,1}n,z∈{0,1}∗

and dist2 = {simSNMCS(z, tag)}tag∈[k],z∈{0,1}∗ are computationally indistinguishable.
The simulator S is constructed as follows. S uses the adversaryM as a subroutine and interacts with

an external receiver R; in the left interaction, S honestly commits to the string 0n to M, while in the
right interaction it simply forwards the messages being sent out by M to R and vice versa. We claim
that given the above S, the ensembles dist1 and dist2 are computationally indistinguishable.
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Suppose, towards contradiction, that there exists a distinguisher D which can distinguish dist1 and
dist2 with an advantage r(k) ≥ 1

poly(k) for infinitely many values of k. That is,
∣∣Pr[D(dist1) = 1] −

Pr[D(dist2) = 1]
∣∣ ≥ 2r(k).

Now, fix any such generic k and consider the real experiment where the adversary M interacts with
a committer C in the left interaction and with a receiver R in the right one. Given the view ofM in such
real experiment, we then show how to construct an extractor E which outputs the value σ̃ committed by
M in the right interaction with probability at least 1 − r(k) without rewinding C (i.e., without having
access to the value and the random coins used by C in the left interaction, similarly to [DDN91, LPV08]).
However, the existence of such an extractor E along with the successful malleability attack, contradicts
the (stand-alone) computational hiding property of the commitment scheme NMCS. Therefore, to show
that there exists no such a distinguisher D, the only thing that remains to show is how to construct an
extractor that succeeds with probability at least 1−r(k). For simplicity, we analyze the failure probability
of our extractor conditioned on the event that given the completed (i.e., all messages have been played
in both sessions and no party aborted) main thread, there is exactly one value σ 6= ⊥ consistent with
the transcript of the right interaction. We prove it in the following lemma. Note that the corresponding
lemma in [Goy11] was immediate because of the usage of zero-knowledge proofs.

Lemma 1 Let R be an honest receiver that completes without aborting the commitment phase with a

PPT senderM. Then with all but negligible probability, the commitments Ṽ 1
1 , . . . , Ṽ

1
k sent byM uniquely

define the string corresponding to the concatenation of σ, s, and {α0
i , α

1
i }i∈[`] (i.e., the string that the

reconstruction phase of the VSS scheme would reconstruct), and, this string is not equal to ⊥. In fact,

at least 99 percent of the commitments are commitments to valid views such that these views are also all

consistent with each other.

Proof. For the receiver to not abort, the set of views selected by Λ does not contain any pair of
inconsistent views, and no view in the set disqualifies the dealer. Consider any arbitrary constant c.
Case 1: Large enough consistent set of views. Assume that there is a set of views of size ` > k−λ/c
such that all pairs of views in the set are consistent. By the definition of consistency, it holds that all
such views consist of honestly performed local computations. Moreover, the fact that all pairs of views
in the set are consistent means that outgoing messages in a view of each player in the set, correspond to
incoming messages of another player in the set (of course this is true only for messages sent to players
in the set). Therefore, we have that the above ` views correspond to an execution of VSS where these `
players are honest and the remaining less than λ (in fact less than λ/c) players can instead be corrupted.
Since the number of corrupted players is below the security threshold of the implemented VSS, we can
now rely on the commitment property of VSS. Indeed, it guarantees that there exists one fixed string that
ΠV SSrecon would reconstruct and give in output to those honest players, unless all those players accused
the dealer in the sharing phase. However this last case can not hold because (by pigeon hole principle)
at least one index of those ` views is in Λ and therefore the commitment phase would have showed the
disqualification of the dealer, and this has been already ruled out at the beginning of the proof.
Case 2: Too many inconsistent pairs of views. In contrast to Case 1, assume that there is no set of
views of size ` > k−λ/c such that all pairs of views in the set are consistent. Similar to [IKOS07], consider
the following inconsistency graph G, defined based on the k committed views. The graph G has k vertices
(corresponding to the k views) and there is an edge between two vertices in G if the corresponding pair
of views is inconsistent (see Definition 12).

Observe that the size of the minimum vertex cover of G is at least λ/c. This is because otherwise, we
get a fully consistent set of size greater than k − λ/c (which includes views corresponding to all vertices
except those in the vertex cover). Now, we observe that G must have a matching of size at least λ/2c.
This follows from the well known connection between the size of minimum vertex cover and the size of a
maximal matching. The following combinatorial claim is implicit in [IKOS07].
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Claim 2 Consider a graph G having k vertices and a matching of size at least k/C in G (where C is

a constant). Select a constant fraction of vertices at random. Then the probability that the resulting

subgraph does not cover any edge of the matching is negligible in k. [IKOS07]

This means that if we were to choose the set Λ at random after the graph is defined, Case 2 will happen
only with negligible probability. This is because the challenge Λ will select at least one inconsistent pair
of views (making the receiver abort). Instead in our protocol, Λ is committed by the receiver before the
graph G is fixed by the committer. Hence, we will now rely on the hiding of the commitment to Λ and
(weak) extractability of the commitments to views. Consider the following experiment.

An external challenger gives a commitment to Λ consisting of λ random indices in [k]. We will
construct an adversary A which guesses “non-trivial and hard to guess” information about Λ with non-
negligible probability thus contradicting the hiding property of the commitment to Λ.

The adversary A works as follows. It receives the commitment to Λ and simply forwards it to M.
Now A receives from M the commitments to the k views using WExCS. Next, A will rewind (multiple
times) M and extract at least k− log2 k views (by simply choosing a random k-bit challenge string each
time M is rewound). We now prove that this can be done in polynomial time. The proof relies on the
specific construction of weakly extractable commitment scheme shown in Section 2.

Claim 3 If M completes successfully the commitment phase with non-negligible probability, then the

extraction of the views fails for at most log2 k commitments.

Proof. The fact thatM completes successfully the commitment phase implies that, for some polynomial
p, M answers correctly (i.e., without aborting) to a 1/p(k) fraction of the k-bit challenge used in the
second round of the commitments of the k views through WExCS. Assume there are log2 k commitments
that are completed with probability at most 1/(p(k)k) (taken over the entire challenge space). Note
that any random challenge selects at least one of them except with negligible probability. Thus, with
probability 1/p(k) − ε(k), for a negligible function ε, M opens one of these shares. However by union
bound, this probability can be at most (log2 k)/(p(k)k). This is a contradiction. Therefore there exists
at least k− log2 k commitments that are opened with probability at least 1/p(k)k, and thus they can all
be extracted in polynomial time. �
Thus, observe that A has now extracted a subgraph of G consisting of at least k− log2 k vertices (corre-
sponding to the views it could extract). Since we are in Case 2, even this subgraph must have a matching
of size at least λ/2c− log2 k (this is because G is guaranteed to have a matching of size at least λ/2c).

The adversary A simply outputs the indices of the vertices of each edge from this matching and halts.
If Case 2 happens with non-negligible probability (i.e., there is no fully consistent set of size greater
than k − λ/c and still M manages to successfully finish the commitment stage), we have that with non-
negligible probability, A outputs a matching of size at least λ/2c− log2 k such that the challenge Λ does
not cover any edge in this matching (this follows from the fact when M is successful, all pairs of views
with indexes in Λ are consistent). If this happens, we say that A is successful.

By Claim 2, this should happen only with negligible probability if Λ was chosen at random after the
graph G was defined. However now since we are taking the commitment to Λ from an external challenger,
we can simply rely on the semantic security of the commitment scheme. Even if the external challenger
gives a commitment to an all zero string (instead of Λ), A will still be successful with non-negligible
probability. However this is a contradiction. �

The extractor E. Let ` = `(k) = k · tag and ˜̀ = ˜̀(k) = k · ˜tag . Given the view of M in the real
experiment as input, E first honestly simulates the view, by replaying the same messages; we refer to
this part of the execution as the “main thread” and denote it by MT. If the adversary M aborts before
the main thread is completed, E simply outputs ⊥ and halts (similar to [Goy11], if the parties C or R
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terminate the protocol before it was finished due to an obvious cheating byM, we consider the behavior

of M as an abort). Otherwise, E rewinds M up to k ˜̀(k)
r(k)3

times. For j ∈ [k
˜̀(k)
r(k)3

], do as follows.

• E rewinds the right interaction to the beginning of the Step 1.4 of the protocol. It sends to M
a new random challenge c̃h[j] ∈ {0, 1}˜̀

in the right interaction and receives from M a challenge
ch[j] ∈ {0, 1}` in the left interaction.

• Since E is not allowed to rewind the committer C to make additional queries, it has to prepare
the simulated response to the challenge ch[j] on its own. Notice that the challenge ch[j] induces
a selection of ` secrets on the left, and there are ` secret values {αchii }i∈[`] on the left already
“recovered” in the main thread (i.e., they were asked by M and given by C in the main thread).
Therefore, E should respond to M the same value if the same αchii appears in this recovered set.
Otherwise, E simply chooses a random string and uses that string as the response to M.

• E receives the response corresponding to c̃h[j] from M in the right interaction. E checks if there
exists an index i such that one of (α̃0

i , α̃
1
i ) was received during the main thread while the other was

received as part of the current response in rewinding j. If so, E further computes the hash values
of (α̃0

i , α̃
1
i ) using the same function h̃ sent in the main thread and compares these new hash values

with all the value it got in the main thread. If they match, E computes Ext(α̃0
i ; s) and Ext(α̃1

i ; s),
and then recovers and outputs the committed value σ̃ from B̃i. Otherwise, E goes to the beginning
of this loop.

If E did not success in outputting the value σ̃ after k ˜̀(k)
r(k)3

rewindings (e.g., due to M aborting or not

revealing the correct values associated with the commitments), it aborts and outputs Ext Fail. Notice
that since r(k) ≥ 1

poly(k) , it is clear that E runs in probabilistic polynomial time. Rest of the proof will

have two part: (a) we will analyze the probability with which the string σ̃ output by the extractor does
not correspond to the committed string (conditioned on the event E does not abort), and, (b) we will
analyze the probability with which E aborts and outputs Ext Fail in the rest of the proof.

Lemma 2 The probability with which the string σ̃ output by the extractor does not correspond to the

committed string (conditioned on the event E does not abort) is negligible.

Proof. In this proof, we will make use of the pairwise independence property of the hash function h.
In particular, we will rely on the fact that if during rewinding, the extractors extracts a value α̃ji which
is different from what was committed to, w.h.p., it will hash to a different value than the one appearing
in the main thread.

Recall that the extractor runs as honest receiver (in the main thread), gets ˜̀ secret values {α̃chii }i∈[˜̀]

first, and then performs the extraction procedure to get other secret values {α̃c̃hii }i∈[˜̀] such that at least

one of the hash values of these secrets (i.e., {h(α̃c̃hii )}i∈[˜̀]) was already received when playing as honest

receiver. Now, suppose that the honest receiver gets some α0
i first (in the main thread). Also, it received

u = h(α1
i ) in the main thread. Now say during rewinding, the extractor receives another value α′1i 6= α1

i .
Observe that at the point the extractor receives this value from the adversary, the adversary still has not
received the function h from E . This implies that by the pairwise independence of h, probability that
h(α′1i ) = h(α1

i ) is negligible. Hence, it follows that except with negligible probability, α′1i = α1
i . However

this means that the extractor has extracted the correct value σ̃.

Lemma 3 The probability that the extractor E aborts is bounded by r(k) for large enough k.

Proof. We will closely follow the definition and proof technique used in [Goy11]. First, we call a
main thread “bad” if the probability (over the randomness used in the rewinds) of E outputting Ext Fail
is noticeable. Then we divide these “bad” main threads into three different categories, where each of
them satisfy a different property. We also define the prefix of a given main thread as the transcript of the
left and the right interaction up to Step 1.3. For a fixed prefix, we denote by p the probability (over the
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randomness used by C and R after Step 1.3) that M completes the main thread without aborting, and
let q be the probability that E succeeds in extracting in a single rewinding using a simulated response.

Next, we recall the notion of a fraction of main threads. If the fraction of main threads with a
particular property is f , it means that the probability (over the randomness of the entire experiment)
that E receives a completed main thread with that property is f . We choose three arbitrary constants
C1, C2, C3 such that 1

C1
+ 1

C2
+ 1

C3
≤ 3

4 . Note that though these constants could in fact be the same and
arbitrarily big, we will use three distinct constants to make the connections between the different parts
of proof more clear.

Lemma 4 The fraction of main threads for which p < r(k)
C1

is bounded by r(k)
C1

. We call these threads as

MT of type bad1.

Proof. Note that E never aborts and outputs Ext Fail if a main thread was not completed. Therefore,

Pr
[
MT is of type bad1

]
≤ Pr

[
MT has a prefix with p <

r(k)

C1

]
·Pr
[
MT is completed | p < r(k)

C1

]
≤ 1·r(k)

C1
.

Next, given a main thread, we define the dependent set of secrets S in the right interaction as follows.
Recall that the committer C will choose ` pairs of secrets {α0

i , α
1
i }i∈[`] which will later be used with Ext

to “encrypt” the value σ. Notice that these secret values were shared among k players implementing the
Share functionality of a VSS scheme (and hence, being committed in views {V 1

i }i∈[k]), and the challenge
ch[j] in fact induces a selection to recover ` of such secret values on the left. These ` values are in the
“recovered” set of secrets, since they were revealed by the committer in the main thread and hence known
by the extractor. Intuitively, the secrets in the set S are the secrets that were added by mauling one (or
more) of the “unrecovered” secrets that are hidden in committed views in the left interaction. Hence, to
correctly reveal the views which are consistent with the secrets in S in the right interaction, M has to
get the correct value from the committed views {V 1

i }i∈[k] in the left interaction and use the underlying

secrets to compute {Ṽ 1
i }i∈[k]. Throughout the paper, we say the secret is “revealed correctly” by M, if

there exist openings of the committed views which are consistent to this value.

Definition 15 (Dependent Set of Secrets) Let ch be the challenge from M in the left interaction in

the main thread. The probabilities below are taken over the randomness of the experiment after the prefix

completion. We say S is a dependent set of secrets of a main thread iff the following two conditions hold:

for every secret α̃bi in S,

1. The probability that the secret α̃bi is selected by R AND its value is revealed correctly by M on

the right is at least r(k)
3C1

(for this prefix).

2. The probability that the secret α̃bi is selected by R AND its value is revealed correctly by M on the

right is less than r(k)

2C2
˜̀(k)

conditioned on the event that the challenge by M in the left interaction is

ch.

Observe that the first probability in the above definition is dependent only on what the prefix in the
main thread is, while, the second one depends on the prefix as well as what the left challenge ch appearing
in the main thread is. Both these probabilities values are well defined for a given main thread.

Lemma 5 Let S be the dependent set of secrets of a main thread and |S| denote the number of secrets

in the set S. |S| > `+ log2 k for at most a r(k)
C2

+ negl(k) fraction of the main threads. Call these threads

as MT of type bad2.
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Intuition. Consider the following. Assume that the extractor had the power of sampling multiple
transcripts with the same prefix and having the same left challenge. Then all except for at most `+log2 k
secrets on the right have a good probability of being revealed correct byM (i.e., except in r(k)

C2
+ negl(k)

fraction of the main threads). Hence such an extractor will be successful except for r(k)
C2

+negl(k) fraction
of the main threads. At a high level, this is because there is an exponential number of right challenges
for each left challenge (on an average) and obtaining a correct response for any two such right challenges
enables extraction.

Proof. For a given prefix, consider a set S for a challenge ch such that |S| > `+ log2 k and a random
challenge c̃h given by R in the right interaction. We observe the following:

• The probability that the set of secrets selected by c̃h and the set S are disjoint is at most 1

2`+log2 k
.

More precisely, this probability is either 0 or 1
2|S|

; it is 0 when a pair of secrets (α̃0
i , α̃

1
i ) appear in S

and 1
2|S|

otherwise. This is because each secret in S is selected independently with probability one
half.

• Depending on the choice of the challenge ch ∈ {0, 1}`, there are at most 2` possibilities for such a
set S. Taking the union bound over all such sets, we get that the probability that the set of secrets
selected by c̃h is disjoint with any such set S (with |S| > `+ log2 k) is at most 2`

2`+log2 k
= negl(k).

• By the second condition of Definition 15, the probability that for some α̃bi ∈ S, M revealed the

correct value in the right interaction in the main thread is bounded by r(k)
C2

. This is by taking the

union bound over all α̃bi ∈ S, given that |S| cannot exceed 2˜̀(k).

Therefore, we have the following:

Pr
[
MT is of type bad2

]
≤ Pr

[
c̃h does not select any secret in S

]
+

Pr
[
MT is completed | c̃h selects a secret in S

]
≤ negl(k) +

Pr
[
∃ α̃bi ∈ S s.t. M revealed the correct value of α̃bi in MT

]
Hence, the fraction of main threads of type bad2 is bounded by r(k)

C2
+ negl(k).

This lemma shows that there are at most ` + log2 k secret values on the right which are “dependent”
on the left secrets whose value E did not recover in the main thread. However the total number of secrets
on the right is 2 · ˜̀> 2(`+ log2 k) (since ˜tag > tag). Hence, there should exists at least one pair of secrets
on the right such that M can correctly reveal both the values (without asking for values unrecovered in
the main thread). If that is the case, E is successful in extracting the value σ committed on the right
without any “additional queries” on the left.

Continuing the intuition from Lemma 5. The primary hurdle in completing the proof is the follow-
ing. Our ppt extractor will not have the power of sampling transcripts with “collision” (i.e., with the
same left challenge). The extractor gets a different challenge from M (compared to the main thread)
while rewinding M and provides a “simulated” response. We now need to analyze such an experiment.
Intuitively, suppose there is a secret on the right which is revealed correctly with good probability in
the “absence” of values from the unrecovered set of secrets (i.e., conditioned on the event when the left
challenge is the same as the main thread). Then this means that the right secrets were not formed by
“mauling” one of secrets in the unrecovered set. Hence even if a secret in the unrecovered set was given
incorrectly, M hopefully should still reveal that secret value correctly on the right. We first introduce
the following definition and formally analyze this case.
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Definition 16 (Strictly Dependent Set of Secrets) G is the strictly dependent set of secrets for a

main thread iff the following two conditions are satisfied. For every secret value α̃bi in G,

1. The probability that the secret α̃bi is selected by R AND its value is revealed correctly by M is at

least r(k)
3C1

(for this prefix). Notice that this condition is the same as in the definition of dependent

set of commitments and refers to the real honest experiment with the given prefix.

2. The probability that the secret α̃bi is selected by E in a rewinding AND its value is revealed correctly

by M on the right is less than r(k)3

50˜̀(k)2C1C2C3
(i.e., the probability in the experiment where M gets

random strings in places of left secret values unrecovered in the main thread).

Again, the first probability in the above definition is dependent only on what the prefix in the main
thread is, while, the second one depends on the prefix as well as the left challenge ch appearing in the
main thread. We now prove the following lemma.

Lemma 6 Let S and G respectively be the dependent set and strictly dependent set of secrets of a main

thread. Then G 6⊆ S for at most r(k)
C3

fraction of the main threads. Call these threads as MT of type bad3.

Proof. Assume, towards contradiction, that for at least a fraction r(k)
C3

of the main threads, there

exists a secret value α̃bi in G but not in S. This means the following three conditions hold for these
main threads (where the probabilities are taken over the randomness of the experiment after the prefix
completion).

1. Consider the condition of a secret not being in S. This means that the second condition of being
in S is not satisfied (since the first condition is the same as that in G). Conditioned on the event
thatM does not ask any of the values from the unrecovered set of secrets (i.e., its challenge on the
left is ch w.r.t. which S and G are defined), M reveals the correct value of α̃bi on the right with

“large” probability (i.e., at least r(k)

2C2
˜̀(k)

).

2. Consider the first condition of being in G. If the secret values in the unrecovered set are given
correctly on the left, M reveals the correct value of α̃bi on the right with “large” probability (i.e.,

at least r(k)
3C1

).
3. Consider the second condition of being in G. That is, if the secret values in the unrecovered set are

given randomly on the left (i.e., the response is simulated), M reveals the correct value of α̃bi on

the right with “small” probability (i.e., less than r(k)3

50˜̀(k)2C1C2C3
).

We now construct an adversaryA to show that the above conditions violate the (computational) hiding
property of the commitment scheme WExCS. Consider the following experiment between the adversary A
and an external challenger Chal.

1. A starts the execution of M and gives it honestly the messages in the right session. The messages
received from M in the left session are forwarded to Chal and its reply is forwarded to A until the
protocol is completed till Step 1.5 (on both left and right interactions).

2. Now Chal provides to A a total of M = 25˜̀(k)2C1C2C3

r(k)3
candidate tuples for the values in the unre-

covered set of secrets on the left. Exactly one of the candidate tuples has correct values for all the
secrets in the unrecovered set. All the values in the rest of the candidate tuples are generated by
Chal randomly. The goal of A would be to guess which of the M tuples is the correct one. A is not
allowed any further interaction with Chal (including running the protocol beyond step 1).

3. A now rewinds M exactly M times. In the i-th rewind, M gives a challenge ch[i] on the left (if it
aborts at any point, we move on the next rewinding). To construct the response, for the secrets in
the unrecovered set picked by ch[i], A uses the values in the i-th candidate tuple. Observe that for
exactly one rewind, the response given by A would be correct and in all other cases, it would be
the simulated response as given by the extractor E when it rewinds.
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4. A proceeds as follows. It selects a secret α̃bi from the right interaction as a guess for a secret in
G− S (if one exists).

5. Now we consider the case where the following happens. In the main thread, the secret α̃bi was
selected and received by A. There is exactly one rewind (say index ind), such that the secret α̃bi
was selected by A AND a value α̃bi [ind] = α̃bi was received (i.e., the values seen in the main thread
and this rewind match). If that is the case, A outputs the index ind to Chal as its guess for the
correct value tuple. In all other cases, A aborts and outputs ⊥.

We now analyze the success probability of A. Let E denote the event that main thread is of type
bad3, we define the following events:

• E1: (E ∧ α̃bi ∈ (G− S)).

• E2: (E1 ∧ correct value α̃bi appears in the main thread).

• E3: (E1 ∧ correct value α̃bi appears in the rewind with correct response).

• E4: (E1 ∧ correct value α̃bi does not appear in any rewind with simulated response).

Then we have Pr
[
A outputs the correct guess

]
≥ Pr

[
E
]
· Pr

[
E1|E

]
· Pr

[
E2|E1

]
· Pr

[
E3|E1

]
·

Pr
[
E4|E1

]
. Note that the last three probability terms are results of experiments run with indepen-

dent random coins and hence are independent.

Pr
[
A outputs the correct guess

]
≥ r(k)

C3
· 1

2˜̀(k)
· r(k)

2C2
˜̀(k)

· r(k)

3C1
· 1

2

Also note that the expected number of times correct value α̃bi appears in simulated responses is
r(k)3

50˜̀(k)2C1C2C3
· (25˜̀(k)2C1C2C3

r(k)3
− 1) < 1

2 , hence at least with probability 1
2 , there are 0 such appearances.)

Pr
[
A outputs the correct guess

]
≥ r(k)3

24˜̀(k)2C1C2C3

(1)

Claim 4 In the above experiment, assuming the commitment scheme com is computationally hiding, the

probability of any PPT A outputting the correct guess is bounded by r(k)3

25˜̀(k)2C1C2C3
+ negl(k).

Here we provide a sketch of the proof. This claim relies on a hybrid argument7. In the i-th hybrid
experiment, in the chosen tuple (out of M tuples) Chal keeps the values for the first i unrecovered secrets
to be random and the rest correct. In the `(k)-th hybrid, clearly the probability of A winning is exactly
1
M since the chosen tuple distribution is identical to the rest. Hence, there should exists a hybrid i in
which the probability of A winning changes by a noticeable amount from the last hybrid. Then it can be
shown that the hiding property of the commitment scheme WExCom can be broken with a noticeable
advantage.

The above claim is in contradiction to the equation (1). Thus concludes the proof of Lemma 6.

7Since Chal provides just the committed values and not any opening to the commitments, there are no issues related to

“selective opening attacks” (see [BHY09] and the reference therein).
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Concluding the Analysis. We now conclude the proof of Lemma 3. Very roughly, we have already
established that there are only a “small” number of secrets on the right (i.e., secrets in set G) which
go from being correct with “large” probability (given a correct response on the left) to being correct
only with “small” probability (given a simulated response on the left). Thus, there are sufficiently large
number of secrets on the right such that given a simulated response, they are revealed correctly by M
(thus implying success for the extractor E). In more detail, for the prefix of the given main thread, let
p denote the probability that M completes the main thread (i.e., the real experiment) without aborting
(i.e., the probability is taken over the random coins after step 1.(c)). For the given main thread, let q
denote the probability of E succeeding in extracting in a rewinding using a simulated response. Since E
rewinds M at most k ˜̀(k)

r(k)3
times,

Pr
[
E aborts

]
≤ p · (1− q)

k ˜̀(k)

r(k)3

We note that the exact equality may not be satisfied because M may abort even before prefix com-

pletion. Now this value is noticeable only if q = o( r(k)3

˜̀(k)
), or, in other words, q < r(k)3

50˜̀(k)
C1C2C3. On the

other hand,

Pr
[
E aborts

]
≤ Pr

[
MT is of type bad1 or bad2 or bad3

]
+ Pr

[
E aborts | MT is neither of these 3 types

]
To compute the second term, we first compute q for the main thread. Note that the main thread

being not of type bad2 or bad3 implies that |G| ≤ `+log2 k (since |S| ≤ `+log2 k and G ⊆ S). Also, since
the main thread is not of type bad1, there are at most O(log k) secrets in the right interaction for which
the probability of getting asked on the right (which happens with probability 1

2) AND revealed correctly

by M is less than r(k)
3C1

(otherwise, it is easy to show that p < r(k)
C1

). Or in other words, there are at least

2˜̀− log2 k secret values on the right with probability of getting asked and revealed correctly is at least
r(k)
3C1

. Out of these, at most `+ log2 k are in G. Hence, (for large enough k) there are at least ˜̀+ 1 secret
values (i.e., in other words at least one pair of secrets on the right) such that the probability that such

a secret is selected by E in a rewinding and M reveals the correct value is at least r(k)3

50˜̀(k)
C1C2C3. This

means for such a main thread, q ≥ r(k)3

50˜̀(k)
C1C2C3. Thus, we complete the proof by having

Pr[E aborts] ≤ r(k)

C1
+
r(k)

C2
+
r(k)

C3
+ negl(k)

≤ 3

4
r(k) + negl(k).

This concludes the proof of Theorem 6. �

3.2 Getting Full-Fledged Non-Malleable Commitments for Small Tags

We now extend the above construction to get constant round many-many non-malleable commitments
(for small tags). The basic construction in the previous section can be extended with only an additive
constant increase in the round complexity. Furthermore, the extended scheme is still based only on a
black-box use of one-way functions.

Getting non-malleable commitments for small tags: We construct a non-malleable commitment scheme
for small tags (i.e., tag ∈ [2n]) against a synchronizing adversary. This can be done very similar to the
construction by Goyal (which is based on ideas from Pass and Rosen [PR05a, PR08b]). Denote by `[a]
the value k · tag and by `[b] the value k · (2n − tag). The idea is to have two slots (each representing
a rewinding opportunity) such that for exactly one of these slots, the “tag being used on the right” is
larger than the one on the left. The extractor will now rewind this slot and extract the value ν. To
prove many-many security of the above scheme, we first prove one-many security by simply applying the
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extractor E one by one on all sessions on the right and then resort to a general result of Lin et al [LPV08]
(as in Goyal’s construction).

Security against Non-Synchronizing Adversaries: Similar to Goyal’s construction, briefly, the basic
idea to get security against non-synchronizing adversaries is to rely on the techniques of robust non-
malleability due to Lin and Pass [LP09]. We increase the number of rewinding opportunities such that
the primary and the secondary slot become robust w.r.t. the proof of consistency. We are able to achieve
this by only relying on one-way functions in a black-box way.

3.2.1 Non-Malleable Commitments for Small Tags

We first present a non-malleable commitment scheme for small tags against synchronizing adversaries,
therefore removing from the previous construction the “one-sided” limitation. This can be achieved in
a way very similar to Goyal [Goy11]. Let tag ∈ [2n], ` = k · tag , `′ = k · (2n − tag) and λ = bk/4c.
Intuitively, the new protocol will sequentially execute two slots such that for exactly one of them, the
“tag being used on the right” is larger than the one used on the left. Then the extractor will now rewind
the slot that has a larger tag on the right and extract the committed string σ. The extended scheme
NMCSS for the committer C and the receiver R is as follows.

Commitment Phase.

0. Initial setup. R picks λ distinct players at random (i.e., randomly selects λ distinct indices
Λ = {r1, . . . , rλ} where ri ∈ [k] for any i ∈ [λ]). For each ri, R sends an extractable commitment ci
of ri using ExCS.

1. Primary slots. Let ΠV SSshare be a protocol implementing the Share phase of a (k+1, λ)-perfectly
secure VSS scheme. We require the VSS protocol to have a deterministic reconstruction phase .

1.1. Given the string σ to commit, C generates a k-bit random string s, ` pairs of random strings
{α0

i , α
1
i }i∈[` and `′ pairs of random strings {α′0i , α′

1
i }i∈[`′] of length 4k each.

1.2. C sets the input of Pk+1 (i.e., the Dealer) to the concatenation of σ, s, {α0
i , α

1
i }i∈[`], and

{α′0i , α′
1
i }i∈[`′] while each other player has no input. Then C runs ΠV SSshare and each player

Pi obtains shares wi, for any i ∈ [k].
1.3. Let view1

1, . . . , view
1
k+1 be the views of the k+1 players describing the execution of ΠV SSshare.

C uses WExCS to send a commitment V 1
i of view1

i to R, in parallel for any i ∈ [k].
1.4. R sends a random `-bit challenge string ch = (ch1, . . . , ch`).
1.5. C sends {αchii }i∈[`] to R.
1.6. R sends a random `′-bit challenge string ch′ = (ch′1, . . . , ch

′
`′).

1.7. C sends {α′ch
′
i

i }i∈[`′] to R.

2. Verification message. Let H be a family of pairwise-independent hash functions with domain
{0, 1}4k and range {0, 1}k, and Ext : {0, 1}4k ×{0, 1}k → {0, 1}k be a strong randomness (3k, 2−k)-
extractor.

2.1. R picks a function h at random from H and sends it to C.
2.2. C sends to R s, {h(α0

i ), h(α1
i ), Bi = σ ⊕ Ext(α0

i , s)⊕ Ext(α1
i , s)}i∈[`], and {h(α′0i ), h(α′1i ), B

′
i =

σ ⊕ Ext(α′0i , s
′)⊕ Ext(α′1i , s

′)}i∈[`′].

3. Consistency proof.

3.1. Let Πchch′ be a (k, λ)-statistically secure MPC protocol such that given ch, ch′ as public input

and wi as private input of Pi for any i ∈ [k], at the end of the computation {αchii }i∈[`], {α′
ch′i
i }i∈[`′]

are received in output by Pi for any i ∈ [k]. C runs internally Πchch′ and sends a commitment
V 2
i of the view view2

i of Pi when executing Πchch′ using WExCS in parallel for any i ∈ [k] to R.
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3.2. Let Πh be a (k, λ)-statistically secure MPC protocol such that given h as public input and wi as
private input of Pi for any i ∈ [k], at the end of the computation (s, {h(α0

i ), h(α1
i )}i∈[`], {Bi =

σ⊕Ext(α0
i , s)⊕Ext(α1

i , s)}i∈[`]), {h(α′0i ), h(α′1i )}i∈[`′], {B′i = σ⊕Ext(α′0i , s)⊕Ext(α′1i , s)}i∈[`′])
is received in output by Pi for any i ∈ [k]. C runs internally Πh and sends to R a commitment
V 3
i of the view view3

i of Pi when executing Πh using WExCS in parallel for any i ∈ [k].
3.3. R decommits {ci}i∈[λ].
3.4. C decommits {V 1

ri , V
2
ri , V

3
ri}i∈[λ] (i.e., the subset of views {view1

ri , view
2
ri , view

3
ri}i∈[λ].)

3.5. For j = 1, 2, 3, R verifies that all pairs of views in {viewjri}i∈[λ] are consistent (according to
Definition 12) and that the dealer Pk+1 has not been disqualified by any player, otherwise R
aborts; moreover for j = 1, 2 and i = 1, . . . , λ, R checks that viewjri is a prefix of viewj+1

ri ,
otherwise R aborts.

Decommitment Phase.
1. C decommits {V 1

i }i∈[k] as {view1
i }i∈[k].

2. R checks that all commitments are opened correctly in the previous step and sets a revealed valued
to 0k otherwise.

3. Let ΠV SSrecon be a protocol implementing the Recon phase corresponding to the (k+1, λ)-perfectly
secure VSS Share phase (which includes the string σ) used in the commitment phase. R runs
ΠV SSrecon using view1

1, . . . , view
1
k+1 as inputs to reconstruct and output the first substring of the

value that the majority of the players would output in the reconstruction. If there is no majority,
then output ⊥.

Theorem 7 The commitment scheme NMCSS is a constant-round non-malleable commitment scheme with

short tags secure against synchronized adversaries and with black-box use only of one-way functions.

Proof. The security proof of the protocol NMCSS is essentially identical to that of our basic protocol
NMCS.

Indeed Lemma 1 will still hold and thus the very same k-bit string is used twice by any ppt sender,
including M. Therefore during the proof of non-malleability it will be sufficient to extract that k-bit
string from any of the two slots (i.e., Steps 1.4-1.5 and Steps 1.6-1.7). Notice that M is a synchronizing
adversary, ` = k · tag and `′ = k · (2n− tag). Assuming ˜tag 6= tag , we only need to consider exactly one
of the following two cases:

• ` < ˜̀. The proof of this case is the same as the “one-side” protocol. The extractor E simply
performs its rewindings on Step 1.4 by giving simulated responses for the challenges of M on the
left in Step 1.5.

• `′ < ˜̀′. In this case E will rewind to Step 1.6 by giving simulated responses for the challenges ofM
on the left in Step 1.7.

In both cases, the proof of security (and in particular the proof of all of our 3 key lemmas bounding
the fraction of bad main threads) remains essentially identical (similar to Goyal [Goy11]).

Concurrent Non-Malleable Commitments for Small Tags. To prove that the above construction
is also a many-many (or concurrent) non-malleable commitment scheme for small tags, we first focus on
showing one-many security. That is, we consider only a left execution with tag tag and several right
executions with tags ˜tag1, . . . , ˜tagm. The interesting case is when ˜tag i 6= tag for all i ∈ [m]. The idea is
to simply apply the extractor E one by one for all m sessions (as in the construction of Goyal [Goy11]).
In more detail, for each session i ∈ [m], do the following.

• Let Mi be a machine that “emulates” all the right sessions on its own except session i.
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• Mi exposes the i-th session to an outside receiver Ri.

• Given the left view and the right view of the i-th session in the main thread as inputs, run the
extractor E on the machine Mi.

The probability that the extractor fails can be computed by a union bound over the m right sessions
(and can be made smaller than 1

poly(k) for any polynomial function poly(k) as in the previous section).

By using a result proved in [LPV08], that shows that any one-left many-right non-malleable commitment
is also a many-left many-right non-malleable commitment, we obtain the following lemma.

Lemma 7 There exists a many-many non-malleable commitment scheme for tags of length log(n) + 1

that is secure against synchronizing adversaries and only makes a black-box use of a one-way function.

3.2.2 Security Against Non-Synchronizing Adversaries

Based on the commitment scheme that is secure against synchronizing adversaries, some well known
techniques can be applied to extend the basic scheme to obtain one that is even secure against a non-
synchronizing adversary. For example, the constructions in [Wee10] and [Goy11] can be used to transform
any non-malleable commitment scheme that is secure against synchronizing adversaries into one that is
secure against arbitrary scheduling strategies. We now show how to apply a similar transformation to the
commitment scheme NMCSS to obtain a constant-round non-malleable commitment scheme with black-box
use of any one-way function and with security against non-synchronizing adversaries.

The intuition behind the transformation is similar to the one in Goyal’s construction [Goy11]. Consider
a non-synchronizing adversaryM. In this case, the proof already given for synchronizing adversaries does
not go through whenM asks for the execution of Step 2 in the left interaction before finishing the primary
slot in the right interaction. This is because if M asks for Step 2 during rewinding, our extractor will
not be able to answer queries consistently with the messages played in the primary slots. Therefore,
by applying the similar ideas from [LP09], we will add additional “secondary slots” to make our proof
of security go through. More specifically, each of these additional slots will provide an extra rewinding
opportunity. IfM asks for Step 2 on the left before finishing Step 1 on the right (in the main thread), it
will be possible to exploit these additional rewinding opportunities on the right (such that M does not
ask for messages in the left interaction while E is rewinding such slots).

Assuming that Step 4 (i.e., consistency proof) in the protocol below requires cv messages sent out by
the committer, the modified protocol NS-NMCSS proceeds as follows.

Commitment Phase.

0. Initial setup. Identical to protocol NMCSS.

1. Primary slots. Identical to protocol NMCSS.

2. Secondary slots.

For all j ∈ [cv + 1], C sequentially do as follows.

2.j. C uses WExCS to send a commitment W j
i of view1

i to R, in parallel for any i ∈ [k].

3. Verification message. Identical to protocol NMCSS.

4. Consistency proof.

4.1. Identical to Step 3.1 of NMCSS.
4.2. Identical to Step 3.2 of NMCSS.
4.3. Identical to Step 3.3 of NMCSS.
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4.4. Identical to Step 3.4 of NMCSS.
4.5. C decommits {W j

ri}i∈[λ],j∈[cv+1].

4.5. For j = 1, 2, 3, R verifies that all pairs of views in {viewjri}i∈[λ] are consistent (according to
Definition 12) and that the dealer Pk+1 has not been disqualified by any player, otherwise R
aborts; moreover for j = 1, 2 and i = 1, . . . , λ, R checks that viewjri is a prefix of viewj+1

ri ,
otherwise R aborts. Finally R verifies that decommitment of V 1

ri is equal to the decommitment

of W j
ri for i ∈ [λ] and j ∈ [cv + 1].

Decommitment Phase. Identical to protocol NMCSS. Also notice that R does not need to check
decommitment of views committed in Step 2. We first prove the following lemma.

Lemma 8 Except with negligible probability,M is successful in the commitment phase only if in all (i.e.,

both primary and secondary) slots the committed string (i.e., the one that would be reconstructed from

the committed views) is the same.

Proof. If different strings are committed in different slots, we have that at least 1/4 of the views
committed in one slot must be different with respect to the views committed in the other slot, otherwise
the reconstructions of the strings from the views would generate the same output. The fact that M
is successful, implies that all the indexes of those different views do not belong to Λ. The probability
that this happens is negligible if Λ is just a random challenge generated after the commitment of the
views. However, since Λ was previously committed, similarly to Lemma 1, here one can break the hiding
property of the commitment of Λ by relying on the weak extractability of the commitments of the views.

Now we claim the security of the new scheme.

Theorem 8 The above scheme NS-NMCSS is a constant-round non-malleable commitment scheme with

short tags secure against non-synchronized adversaries and with black-box use only of a one-way function.

Proof. We consider the following two different interleavings in the main thread.

• Case 1: The verification message (i.e., Step 3) in the left interaction is completed
before the end of the primary slots (i.e., Step 1) in the right interaction. This is the
case where the original proof fails, and secondary slots will be useful. Observe that when this case
happens:

– Since in each session, the verification message is played in the protocol after the secondary
slots, all the secondary slots in the left interaction are executed (along with the verification
message) before the primary slot finishes on the right.

– Now consider the point where the primary slot in the right interaction finishes. There are at
most cv messages remaining in the left interaction (i.e., message in the consistency proof step)
and cv + 1 secondary slots remaining in the right interaction.

– Hence, by pigeon-hole principle, there exists at least one secondary slot in the right interaction
such that during its execution, there are no message in the left interaction. Call this the
secondary slot j.

Now the extractor E can rewind the secondary slot j in the right interaction and extract the value
σ in the following way. First, it runs the extractor of WExCS. We have that E obtains a large portion
of the views8 that allows to run the reconstruction of the VSS scheme to output a value in {0, 1}n

8Because of weak extractability there will be at most log2 k non-extracted views.
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or ⊥. By Lemma 8, we have that the reconstructed value from views committed in secondary slot
j corresponds to the value committed in the primary slot, i.e., the committed value that will be
considered in the opening.

If during rewinding,M changes the scheduling to ask for a message in the consistency proof step (as
opposed to its strategy in the main thread), E simply rewinds and runs again the extractor of ExCS
with a different randomness. Since cv + 1 is a constant, these additional rewindings do not harm
the polynomial time of E , so that given any r(k) = 1

poly(k) , one can construct an extractor which

performs a strict polynomial number of rewinds and succeeds with probability at least (1− r(k)).

• Case 2: The verification message in the left interaction appears after the end of pri-
mary slots in the right interaction. The proof for this case is similar to the one for synchronizing
adversaries. The only difference is that the secondary slots in the left interaction might now appear
before the primary slots in the right interaction finish. However during the rewinds, E does not
have to provide the verification message or the consistency proof (if upon rewinding, M changes
its scheduling to ask for such messages, E simply rewinds again). Hence during the rewinds, E
can run the required secondary slots without any problem by simply committing to random views.
Summing up, the hiding property of WExCS guarantees that the extraction goes through.

Similarly to before, to prove many-many security of the above scheme, we first prove one-many security
by simply applying the extractor E one by one on all sessions on the right and then resort to a general
result of Lin et al. [LPV08]. Therefore we obtain the following theorem.

Theorem 9 There exists a constant-round many-many non-malleable commitment scheme for tags of

length log(n) + 1 which is secure against non-synchronizing adversaries and uses a one-way function in

a black-box manner.

3.3 Black-Box Amplification with Non-Synchronizing Adversaries

Given a one-many non-malleable commitment scheme sNM = (sCom, sRec) for tags of length log(n)+1,
we presents a general and black-box transformation to obtain a one-many non-malleable commitment
scheme for tags of length n. Furthermore, our construction preserves the security property against non-
synchronizing adversaries. If the commitment scheme sNM given as input to the transformation is
secure against non-synchronizing adversaries, the resulting protocol for tags of length n is secure against
non-synchronizing adversaries as well. This transformation can be sees as a generalization of a previous
transformation of [Wee10].

The idea of our construction is similar in spirit to the technique used in [DDN91] to obtain logarithmic
round complexity. Each execution of the commitment scheme is associated to an n-bit tag Tag. The
committer C runs a (k + 1, bk/4c)-perfectly secure VSS scheme with deterministic reconstruction. That
is, C shares the committed value σ and the randomness to the i-th player Pi for i ∈ [k]. Then C commits
to the views of n VSS shareholders using n times the scheme sCom and n different short tags that are
derived by Tag.

The key idea is that by applying again the cut and choose techniques on the VSS computation,
the adversary is essentially forced in committing to correct views almost in all commitments computed
with sCom. Then, by noticing that in each commitment of the adversary there are always views of the
VSS players that are committed with a tag that has not been used in the commitment received by the
adversary, it holds that such views are independent (this comes from non-malleability). Therefore we
will be able in the hybrid experiments to change the message committed in the left session while the
adversary will still commit to the same message on the right sessions.

Another crucial idea is the fact that the above commitments of the views of the VSS computation
must be repeated 3 times. The reason we need this extra technique is that during the hybrid games,
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we will need to compute commitments of inconsistent views that however will not be detected by the
adversary since we will extract first the indexes of the views that the adversary wants to see later. This
extraction will require to rewind the adversary, and thus the need of 3 repetitions of the sub-commitment
protocol comes from the need of having the guarantee that at least one of such sub-commitments is not
disturbed by the above rewind.

Let k be the security parameter and let λ = bk/4c. Each execution of the commitment scheme is
associated to an n-bit tag Tag. The committer C runs a (k + 1, λ)-perfectly secure VSS scheme with
deterministic reconstruction. That is, C shares the committed value σ and the randomness to the i-th
player Pi for i ∈ [k]. Then C commits each of these shares n times using sCom (with shorter tags).
Also, using the same idea in previous section, such a commitment is sequentially repeated 3 The modified
protocol NS-NMCS = (C,R) between a committer C and a receiver R proceeds as follows to commit to a
string σ.

Commitment Phase (tag Tag is an n-bit string, and C’s input is a k-bit string σ).
0. Initial setup.

1. R picks at random λ distinct indices Λ = {r1, . . . , rλ} where ri ∈ [k] for any i ∈ [λ]. For all ri
in parallel, R sends an extractable commitment ci (of ri) using ExCS.

2. Let ΠV SSshare be a protocol implementing the Share phase of a (k+1, λ)-perfectly secure VSS
scheme. We require the VSS protocol to have a deterministic reconstruction phase. Given the
string σ to commit, C first sets the input of Pk+1 (i.e., the Dealer) to σ, while each other player
has no input. Then C runs ΠV SSshare. Let viewi be the view of player Pi for all i ∈ [k].

1. Primary slots. Let Tagj be the j-th bit of Tag, and tagj be the (log n+ 1)-bit string (j, Tagj) for
j ∈ [n]. For ` = 1, 2, 3 (sequentially) C commits to n copies of viewi using as tag tagj respectively.
That is, C invokes sCom kn times in parallel and sends S`i,j = sCom(viewi, tagj) for all i ∈ [k] and

for all j ∈ [n]. Therefore the commitments sent are S1
i,j , S

2
i,j , S

3
i,j for all i ∈ [k] and for all j ∈ [n].

3. Consistency proof.
1. R decommits {ci}i∈[λ].
2. C decommits {S1

i,j , . . . , S
3
i,j} for all i ∈ [λ] and for all j ∈ [n].

3. R verifies that for all i ∈ [λ], the 3n commitments {S1
i,j , . . . , S

3
i,j} correspond to the same

string for all j ∈ [n]. Moreover it verifies that all the opened views are consistent (according
to Definition 12) and outputs ⊥ otherwise.

Decommitment Phase.
1. C decommits {S1

i,j , . . . , S
1
i,j} for all i ∈ [k] and for all j ∈ [n].

2. R checks that for all i ∈ [k] and all j ∈ [n] all commitments {S1
i,j , . . . , S

1
i,j} have been decommitted

correctly and sets a revealed view to 0k otherwise.
3. Let ΠV SSrecon be a protocol implementing the Recon phase corresponding to the (k+1, λ)-perfectly

secure VSS Share phase. R runs ΠV SSrecon using the shares included in view1, . . . , viewk (i.e., the
openings of S1

1,1, . . . , S
1
k,1) as inputs, and computes and outputs the value σ′ = {0, 1}n that the

majority of the players obtains in output during the computation. If there is no majority, then it
considers the committer to have aborted and outputs ⊥.

Lemma 9 Except with negligible probability, M is successful in the commitment phase only if in all 3n

sub-commitments, the committed string (i.e., the one that would be reconstructed from the committed

views) is the same.

Proof. The proof is very similar to the one of Lemma 8. If different strings are committed in different
sub-commitments, we have that at least 1/4 of the views committed in one sub-commitment must be
different with respect to the views committed in the other sub-commitment, otherwise the reconstructions
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of the strings from the views would generate the same output. The fact thatM is successful, implies that
all the indexes of those different views do not belong to Λ. The probability that this happens is negligible
if Λ is just a random challenge generated after the commitment of the views. However, since Λ was
previously committed, similarly to Lemma 1 here one can break the hiding property of the commitment
of Λ by relying on the weak extractability of the commitments of the views.

Theorem 10 Given a one-many non-malleable commitment scheme sNM for tags of length log(n) + 1

secure against non-synchronizing adversaries that only needs a black-box use of a one-way function, there

exist a one-many (and hence many-many) non-malleable commitment scheme NS-NMCS for tags of length

n that is secure against non-synchronizing adversaries, that only needs a black-box use of a one-way

function and with only an additive constant increase in the round complexity.

Proof. We can prove the above theorem by considering the following sequence of experiments. In
the following, let distM(m) denote the random variable describing the output of the adversary in NS-NMCS
when C commits m, and let disti(m) (resp. dist(j)i (m)) denote the random variable describing the output
of the adversary of NS-NMCS when S commits m in experiment Hi (resp. H(j)

i ). Then, we consider the
following sequence of hybrid experiments.

Experiment H0. In this experiment, S honestly runs C and interacts with M. That is, in the left
interaction, S honestly commits to the string m0 toM, while in the right interactions it simply forwards
the messages being sent out by M to R and vice versa. Clearly, distM(m0) ≡ dist0(m0).

Experiment H1. In this experiment, S executes the protocol identically to H0 except that it also runs
the extractor of ExCS to retrieve all the indices ri selected by M, and it aborts if the extraction fails.
After getting ri for all i ∈ [λ], S executes the rest of the protocol as in H0. Since the only difference in
the view of H0 and H1 consists in the aborts performed when the extraction fails, by the extractability
of ExCS we have that dist0(m0) ≈ dist1(m0). (Notice that if M completes the commitment phase in the
left interaction with non-negligible probability, then the extractor of ExCS fails with negligible probability
only.)

Experiment H2. In this experiment, S executes the protocol identically to H1 except that it changes
the commitments that will not be opened (on the left) to commitments to random strings. For each
of the 3 blocks of commitments (i.e., {S`i,j}i∈[k],j∈[n] with ` = 1, 2, 3) on the right, consider the set of
commitments to the views with a tag different from all the tags used on the left (call it special tag). We
now distinguish 3 cases.

Case 1: The block in question finishes before the initial commitment to Λ finishes on the left. Until this
point in the experiment, H1 and H2 are identical. Hence, the views committed to in that block
on the right will have identical distribution as before. Hence, the set of commitments to the views
with the different tag will have indistinguishable distribution.

Case 2: The block in question starts after the initial commitment to Λ finishes on the left. Hence, this
block of commitments is not rewound at all when the indices ri are retrieved (and in particular M
could be committing to an external receiver). Further, at least one set of commitments to the views
is done with a tag different from all the tags on the left. Then, by the many-many non-malleability
of sCom, this set of commitments to the views is unchanged: i.e., the set of views committed to is
computationally indistinguishable from the one in the previous experiment.

Case 3: None of the above. This case can happen with only one of the 3 blocks.

Thus, note that in at least 2 out of 3 blocks, distribution of views (for special tag) is indistinguishable
from H1.
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Experiment H3. In this experiment, the simulator S proceeds identically to H2 with the following
exception. Run the Share phase of the underlying (k + 1, λ)-perfectly secure VSS scheme (in the head)
assuming that the string to be shared is m1. Then for every player i ∈ Λ, our simulator S will commit
the views being so generated (as opposed to being generated using the string m0). The main idea is that
since λ is below the threshold for the perfect security VSS protocol, these views are such that they are
perfectly indistinguishable to the views in H2.

Experiment H4. In this experiment, we proceed identically to H3, except that for all commitments
that will not be opened toM, S will now change back the committed values from the random strings to
the views that are consistent with committed value m1.

Similarly to H2, at least in 2 blocks the distribution of the views for the special tag is indistinguishable
form H3. Therefore there is at least one block such that the distribution of the views is indistinguishable
with respect to H0.

Note that this hybrid corresponds to the honest execution with value m1. By Lemma 9 we know that
the distribution of the views in all blocks are the same, which means that they are all indistinguishable
with respect to the original ones. Therefore, by applying the sequences of hybrid experiments shown
above, we have distM(m0) ≈ distM(m1).

4 Applications

We also show how to use our concurrent non-malleable commitment scheme combined with our new use
of the computation in the head paradigm in order to achieve two additional new results. The first result
is the first multi-party constant-round coin tossing protocol (with a broadcast channel) with the sole use
of a one-way function in a black-box fashion. The second result is the first non-malleable (with respect to
opening) statistically hiding commitment scheme with the sole use of any statistically hiding commitment
scheme in a black-box fashion.

4.1 Multi-Party Constant-Round Parallel Coin-Tossing Protocol

Informally, a coin-tossing protocol allows parties to generate a common unbiased random output. We
show here a constant-round protocol based on the black-box use of any one-way function. In our protocol
the adversary can control up to n − 1 players and computations are performed through a broadcast
channel. We will show a simulator that is able to bias the outcome of the joint computation to a specific
string that it receives as the input.

Notice that the many-many non-malleable commitment scheme based on the black-box use of any one-
way function that we have presented in this work also enjoys a (stand-alone) extractability property. The
extractor works by running the extractor associated to WExCS, therefore obtaining a large number of views
from which the reconstruction of the committed value can be easily computed. Given a constant-round
many-many non-malleable extractable commitment scheme NMExCS, we now present a fully black-box
multi-party constant-round coin-tossing protocol.

Let k be the security parameter. Each party Pi as sender to send its contribution to the coin-tossing
protocol, by running a perfectly secure (k + 1, λ)-party VSS scheme with deterministic reconstruction
where λ = bk/4c. To share a random k-bit string σi. Pi will use NMExCS to commit to the views of the
above VSS players, moreover the above process is repeated twice. Then, a (k, λ)-perfectly secure MPC
protocol is invoked to ensure that the same string σi has been shared in the two above VSS executions.

Formally, Pi behaves as sender S to commit to his contribution σ and as receiver R with each other
party. An execution of S and R goes as follows.
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The 〈S(σ), R〉 sub-protocol.
0. Initial setup.

1. R picks at random λ distinct indices Λ = {r1, . . . , rλ} where ri ∈ [k] for any i ∈ [λ]. For each
ri, R sends extractable commitments ci (of ri) using ExCS.

2. Let ΠV SSshare be a protocol implementing the Share phase of a (k+1, λ)-perfectly secure VSS
scheme. We require the VSS protocol to have a deterministic reconstruction phase. S picks a
random string σ and sets the input of Pk+1 (i.e., the Dealer) to σ, while each other player has
no input. Then S runs ΠV SSshare. Let view0

i be the view of player Pi for all i ∈ [k]. The same
VSS computation is repeated to share again σ but players are allowed to use fresh randomness.
Let view1

i be the view of player Pi for all i ∈ [k] in this second execution.
1. 1st Slot. S commits to the views of P1, . . . , Pk during the first VSS execution using NMExCS. That

is, S sends non-malleable extractable commitments α0,i (of view0
i ) for all i ∈ [k] in parallel.

2. 2nd Slot. S commits to the views of P1, . . . , Pk during the second VSS execution using NMExCS.
That is, S sends non-malleable extractable commitments α1,i (of view1

i ) for all i ∈ [k] in parallel.
3. Consistency proof.

1. Let α0 be the value reconstructed from all views view0
i , and α1 be the value reconstructed

from all views view1
i for all i ∈ [k].

2. Let Πeq be a (k, λ)-statistically secure MPC protocol such that given view0
i and view1

i as input
for any i ∈ [k], at the end of the computation, 1 is given in output by any honest party Pi for
any i ∈ [k] if α0 = α1, otherwise, all honest parties output 0.

3. S runs internally Πeq and sends to R non-malleable extractable commitments βi (of view2
i ) of

Pi during the execution of Πeq using NMExCS for all i ∈ [k].
4. Output.

1. R decommits {ci}i∈[λ].
2. S sends σ and decommits {α0,i, α1,i, βi}i∈[λ] (i.e., the subset of views {view0

ri , view
1
ri , view

2
ri}i∈[λ]).

For j = 0, 1, 2, R verifies that all pairs of views in {viewjri}i∈[λ] are consistent (according to
Definition 12) and that the dealer Pk+1 has not been disqualified by any player, otherwise R
aborts; moreover for j = 0, 1 and i = 1, . . . , λ, R checks that viewjri is a prefix of viewj+1

ri ,
otherwise R aborts. If the output in {view2

ri}i∈[λ] is not 1, R aborts.
3. S decommits α1,i for all i ∈ [k], R verifies that each decommitment is correct otherwise it sets

to 0k a revealed view.
4. Let ΠV SSrecon be a protocol implementing the Recon phase corresponding to the (k + 1, λ)-

perfectly secure VSS Share phase used above. R runs ΠV SSrecon using view1
1, . . . , view

1
k, and

computes and outputs the value σ′ that the majority of the players obtains in output during
the computation. If σ′ 6= σ or there is no majority, then output ⊥, otherwise output σ.

The fully black-box multi-party constant-round coin-tossing protocol. Each party Pi selects
a random k-bit string σi and runs in parallel the above sub-protocol 〈S(σi), R〉 with every other party.
Next, Pi checks that each player played the same string with each other player, otherwise it aborts. If
there is no abort, the final outcome of the protocol is σ = σ1 ⊕ · · · ⊕ σn.

The use of the broadcast channel guarantees that an adversary is forced in using the same string in all
parallel executions, since otherwise if two different strings are noticed in the broadcast channel, honest
players would abort.

Proof Sketch. The security proof of the protocol relies on the extractability and the non-malleability
of the underlying commitment scheme and we provide the high level idea as follows. Assume wlog that the
adversary controls n− 1 players. The simulator, on input a target random string σ first runs Step 0 and
then extracts the set of challenge indices (i.e., Λ) when playing as receiver against each party controlled
by the adversary. Then it runs honestly during the 1st slot (Step 1), by using a random string σ∗. Next,
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the simulator extracts the shares committed by parties controlled by the adversary (using the extractor
of NMExCS), and can therefore use in the 2nd slot (Step 2) an adjusted string σ′ so that the XOR of the
extracted strings and σ′ produces the target string σ. Next, the simulator can exploit knowledge of Λ to
cheat in Step 3 on the views of the player Pri for all i ∈ [λ], so that the combination of both non-opened
views and opened views will be indistinguishable from a honest player execution, even though in this case
σ′ is different from σ∗.

More formally, a sequence of hybrid experiments can show the correctness of the above simulator.
First of all, consider an experiment H1 where the simulator plays honestly but extracts Λ when playing
as sender, and σi when playing as receiver with player Pi. By the extractability of ExCS and NMExCS, the
shares revealed by Pi correspond to σi and are distributed identically to the shares revealed in the real
game.

Then, consider an experiment H2 where in contrast to H1, the simulator uses knowledge of Λ when
running Step 3, by committing to random strings in the positions out of Λ and to simulated views in the
positions in Λ. Here the perfect security of the VSS scheme, the fact that only a small portion of the
views are opened, and the fact that the employed commitment scheme is non-malleable, guarantee that
the views revealed in H2 by the adversary are computationally indistinguishable from the ones revealed
in H1.

Next consider an experiment H3 where in Step 2 the simulator actually uses the above discussed
adjusted string σ′. Again, the non-malleability of NMExCS guarantees that the distribution of views
committed by the adversary in Step 2 does not change, and thus the distribution of the shares opened
by the adversary does not change too.

This final experiment corresponds to the actual simulation that is therefore successful.

4.2 Non-Malleable Statistically Hiding Commitments

We now show that our techniques and our non-malleable commitment scheme can also be used to con-
struct the first non-malleable statistically hiding commitment scheme NM-SHCS with black-box use of any
statistically hiding commitment scheme. The notion of non-malleability that we use for the statistically
hiding commitment is that of non-malleability with respect to opening.

We will actually need as ingredient an extractable statistically hiding commitment scheme ExSHCS =
(ExSHCom,ExSHRec), that however can be easily constructed using as a black-box any statistically
hiding commitment scheme, similarly to the statistically binding case.

Let k be the security parameter and λ = bk/4c. Similarly to previous sections, to commit a string σ
to a receiver R, the committer C will run a perfectly secure (k + 1, λ)-party VSS protocol (in his head)
with deterministic reconstruction.

Commitment Phase.

0. Initial setup. R picks λ distinct players at random (i.e., randomly selects λ distinct indices
Λ = {r1, . . . , rλ} where ri ∈ [k] for any i ∈ [λ]). For each ri, R sends an extractable commitment ci
of ri using ExCS.

1. Commitment. Let ΠV SSshare be a protocol implementing the Share phase of a (k+1, λ)-perfectly
secure VSS scheme. We require the VSS protocol to have a deterministic reconstruction phase.
Given the string σ to commit, C first sets the input of Pk+1 (i.e., the Dealer) to σ, while each other
player has no input. Then C runs ΠV SSshare. Let view1

i be the view of player Pi for all i ∈ [k].

1.1. C commits to view1
i using an extractable statistically hiding commitment scheme ExSHCS. That

is, C runs ExSHCS k times in parallel, and let V 1
i be the transcript of the commitment of view1

i

computed through ExSHCS for all i ∈ [k].
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Decommitment Phase.

1. Let ΠV SSrecon be a protocol implementing the Recon phase corresponding to the (k+1, λ)-perfectly
secure VSS Share phase used in the commitment phase. C runs ΠV SSrecon using view1

1, . . . , view
1
k

so that the k players reconstruct the shared secret. Let view2
i be the resulting view of player Pi for

all i ∈ [k].

1.1. C sends the original string σ to R.
1.2. C commits to view2

i using a many-many non-malleable commitment scheme NS-NMCS. That is,
C invokes NS-NMCS k times in parallel. Let V 2

i be the transcript of the commitment of view2
i

computed through NS-NMCS for all i ∈ [k].

2. R decommits {ci}i∈[λ].

3. C decommits {V 1
ri}i∈[λ] (i.e., the subset of views {view1

ri}i∈[λ]) and views {V 2
i }i∈[λ] (i.e., the subset

of views {view2
i }i∈[k].)

4. R verifies that views {view1
ri}i∈[λ] are consistent according to Definition 12, {view2

i }i∈[λ] are con-
sistent according to Definition 12, that view1

ri corresponds to the first part of view2
ri for all i ∈ [λ],

and that the output in all views view2
i for all i ∈ [λ] is σ, and outputs σ, otherwise it outputs ⊥.

Theorem 11 The commitment scheme NM-SHCS is a non-malleable (with respect to opening) statistically

hiding commitment scheme with black-box use only of a statistically hiding commitment scheme.

We now give a sketch of the proof that NM-SHCS satisfies the following three properties: statistically
hiding, computationally binding and non-malleability with respect to opening.

Lemma 10 The commitment scheme NM-SHCS is statistically hiding.
Proof. Since the sender in the commitment phase only commits using statistically hiding commit-

ments (and sends no other information), we have that the claim holds.

Lemma 11 The commitment scheme NM-SHCS is computationally binding.
Proof.
Assume by contradiction that the binding of NM-SHCS does not hold. Therefore there is an efficient

adversary that provides two accepting openings of the same commitment. Since the output σ of the
receiver is the value in views {view2

i }i∈[λ], we have that the adversary succeeds in committing (and de-
committing) during the decommitment phase to different views {view2

i }i∈[λ] and {view′2i }i∈[λ] depending
on the message to be opened.

Notice that if different strings are committed in {view1
ri}i∈[λ] and {view2

i }i∈[λ] (resp., {view′2i }i∈[λ]),
we have that at least 1/4 of the views committed in one slot must be different with respect to the views
committed in the other slot, otherwise the reconstructions of the strings from the views would generate
the same output. The fact that M is successful, implies that all the indexes of those different views do
not belong to Λ. The probability that this happens is negligible if Λ is just a random challenge generated
after the commitment of the views. However, since Λ was previously committed, similarly to Lemma 1,
here one can break the hiding property of the commitment of Λ by relying on the weak extractability of
the commitments of the views.

Lemma 12 The commitment scheme NM-SHCS is non-malleable with respect to opening.
Proof.
The security proof of the non-malleability relies on hybrid arguments such that when changing the

opened value on the left execution, the value opened in the right execution remains the same. In the
following, let distM(m) denote the random variable describing the opening of the adversary in NM-SHCS
when C opens to m, and let disti(m) (resp. dist(j)i (m)) denote the random variable describing the opening
of the adversary of NM-SHCS when S opens to m in experiment Hi (resp. H(j)

i ). Then, we consider the
following sequence of hybrid experiments.
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Experiment H0. In this experiment, the simulator S honestly runs C and interacts with M. That is,
in the left interaction, S honestly commits to the string m toM, while in the right interactions it simply
forwards the messages being sent out by M to R and vice versa. Clearly, distM(m) ≡ dist0(m).

Experiment H1. In this experiment, S executes the protocol identically to H0 except that it also runs
the extractor of ExCS to retrieve all the indices ri selected by M, and it aborts if the extraction fails.
After getting ri for all i ∈ [λ], S executes the rest of the protocol as in H0. Since the only difference in
the view of H0 and H1 consists in the aborts performed when the extraction fails, by the extractability
of ExCS we have that dist0(m) ≈ dist1(m). (Notice that if M completes the commitment phase in the
left interaction with non-negligible probability, then the extractor of ExCS fails with negligible probability
only.)

Experiment H(1)

2 to H(n(k−λ)+1)

2 . These experiments deviate from H1 as follows. For all commitments
of the views that will not be opened to M the simulator S will gradually change the committed val-
ues to commitments of random strings. Notice these changed commitments are never opened in the
decommitment phase. The statistical hiding of ExSHCS guarantees that the distribution of the opened
message by M does not change in this considered sequence of experiments. Therefore we have that
dist1(m) ≈ dist(1)2 (m) ≈ · · · ≈ dist(n(k−λ)+1)

2 (m).

Experiment H3. In this experiment, the simulator S proceeds identically to H(n(k−λ)+1)

2 with the fol-
lowing exception. Let SV SS be the simulator of the Share phase of the underlying (k + 1, λ)-perfectly
secure VSS scheme, where SV SS will simulate the VSS computations with malicious players in the posi-
tions of Λ and forcing the output to be m. Then for every player i ∈ Λ, S will commit the shares being
generated by SV SS . The main idea is that since λ is below the threshold for the perfect security VSS
protocol, the outputs of SV SS generate these shares so that they are perfectly indistinguishable from the
shares of dist(n(k−λ)+1)

2 (m).

Experiment H(1)

4 to H(n(k−λ)+1)

4 . These steps are analogous to experiment H(1)

2 to H(n(k−λ)+1)

2 . In these
experiments we proceed identically to H3, except that for all commitments that will not be opened to
M, S will gradually changes back the committed values from the random strings to shares that are
consistent with committed value m1. By the same arguments in experiments H(m)

2 , relying on the binding
of the statistically hiding commitment scheme and on the non-malleability of NS-NMCS, we have that
dist3(m) ≈ dist(1)4 (m1) ≈ · · · ≈ dist(n(k−λ)+1)

4 (m1).

Experiment H5. In this experiment, the simulator honestly executes the protocol by committing to m1

and giving in output the corresponding views. The only difference between H5 and H(n(k−λ)+1)

4 is that now
the opened shares are not simulated anymore. However, notice that these opened shares were previously
perfectly indistinguishable with respect to simulated shares. Thus, H(n(k−λ)+1)

4 ≡ dist5(m1) ≡ distM(m1).

Therefore, by applying the sequences of hybrid experiments shown above, we have distM(m) ≈ distM(m1).
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