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Abstract

Lossy encryption was originally studied as a means of achieving efficient and composable
oblivious transfer. Bellare, Hofheinz and Yilek showed that lossy encryption is also selective
opening secure. We present new and general constructions of lossy encryption schemes and of
cryptosystems secure against selective opening adversaries.

We show that every re-randomizable encryption scheme gives rise to efficient encryptions
secure against a selective opening adversary. We show that statistically-hiding 2-round Oblivious
Transfer implies Lossy Encryption and so do smooth hash proof systems. This shows that
private information retrieval and homomorphic encryption both imply Lossy Encryption, and
thus Selective Opening Secure Public Key Encryption.

Applying our constructions to well-known cryptosystems, we obtain selective opening se-
cure commitments and encryptions from the Decisional Diffie-Hellman, Decisional Composite
Residuosity and Quadratic Residuosity assumptions.

In an indistinguishability-based model of chosen-ciphertext selective opening security, we
obtain secure schemes featuring short ciphertexts under standard number theoretic assumptions.
In a simulation-based definition of chosen-ciphertext selective opening security, we also handle
non-adaptive adversaries by adapting the Naor-Yung paradigm and using the perfect zero-
knowledge proofs of Groth, Ostrovsky and Sahai.
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1 Introduction

In Byzantine agreement, and more generally in secure multiparty computation, it is often assumed
that all parties are connected to each other via private channels. In practice, these private channels
are implemented using a public-key cryptosystem. An adaptive adversary in a MPC setting, how-
ever, has very different powers than an adversary in an IND-CPA or IND-CCA game. In particular,
an adaptive MPC adversary may view all the encryptions sent in a given round, and then choose to
corrupt a certain fraction of the players, thus revealing the decryptions of those players’ messages
and the randomness used to encrypt them. A natural question is whether the messages sent from
the uncorrupted players remain secure. If the messages (and randomness) of all the players are
chosen independently, then security in this setting follows immediately from the IND-CPA security
of the underlying encryption. If, however, the messages are not chosen independently, the security
does not immediately follow from the IND-CPA (or even IND-CCA) security of the underlying
scheme. In fact, although this problem was first investigated over twenty years ago, it remains an
open question whether IND-CPA (or IND-CCA) security implies this selective opening security.

A similar question may be asked regarded in terms of commitments as well. Suppose an adver-
sary is allowed to see commitments to a number of related messages, the adversary may then choose
a subset of the commitments for the challenger to de-commit. Does this reveal any information
about the unopened commitments? This question has applications to concurrent zero-knowledge
proofs.

1.1 Previous Work

There have been many attempts to design encryption protocols that can be used to implement
secure multiparty computation against an adaptive adversary. The first protocols by Beaver and
Haber [BH92] required interaction between the sender and receiver, required erasure and were
fairly inefficient. The first non-interactive protocol was given by Canetti, Feige, Goldreich and
Naor in [CFGN96]. In [CFGN96] the authors defined a new primitive called Non-Committing
Encryption, and gave an example of such a scheme based on the RSA assumption. In [Bea97],
Beaver extended the work of [CFGN96], and created adaptively secure key exchange under the
Diffie-Hellman assumption. In subsequent work, Damg̊ard and Nielsen improved the efficiency of
the schemes of Canetti et al. and Beaver, they were also able to obtain Non-Committing Encryption
based on one-way trapdoor functions with invertible sampling. In [CHK05], Canetti, Halevi and
Katz presented a Non-Committing encryption protocols with evolving keys.

In [CDNO97], Canetti, Dwork, Naor and Ostrovsky extended the notion of Non-Committing
Encryption to a new protocol which they called Deniable Encryption. In Non-Committing En-
cryption schemes there is a simulator, which can generate non-committing ciphertexts, and later
open them to any desired message, while in Deniable Encryption, valid encryptions generated by
the sender and receiver can later be opened to any desired message. The power of this primitive
made it relatively difficult to realize, and Canetti et al. were only able to obtain modest examples
of Deniable Encryption and left it as an open question whether fully deniable schemes could be
created.

The notions of security against an adaptive adversary can also be applied to commitments. In
fact, according to [DNRS03] the necessity of adaptively-secure commitments was realized by 1985.
Despite its utility, until recently, relatively few papers directly addressed the question of commit-
ments secure against a selective opening adversary (SOA). The work of Dwork, Naor, Reingold
and Stockmeyer [DNRS03] was the first to explicitly address the problem. In [DNRS03], Dwork
et al. showed that non-interactive SOA-secure commitments can be used to create a 3-round zero-
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knowledge proof systems for NP with negligible soundness error, and they gave constructions of a
weak form of SOA-secure commitments, but leave open the question of whether general SOA-secure
commitments exist.

The question of SOA-secure commitments was put on firm foundations by Hofheinz [Hof11b]
and Bellare, Hofheinz and Yilek in [BHY09]. In [BHY09], Bellare et al. distinguished between
simulation-based and indistinguishability-based definitions of security, and gave a number of con-
structions and black-box separations. In particular, Hofheinz showed that, in the simulation-based
setting, non-interactive SOA-secure commitments cannot be realized in a black-box manner from
standard cryptographic assumptions, but if interaction is allowed, they can be created from one-way
permutations in a non-black-box manner. In the indistinguishability-based setting, they showed
that any statistically-hiding scheme achieves this level of security, but that there is a black-box
separation between perfectly-binding SOA-secure commitments and most standard cryptographic
assumptions. Our results in the selective opening setting build on the breakthrough results of
[BHY09].

The concurrent, independent work of Fehr, Hofheinz and Kiltz and Wee [FHKW10] also ex-
amines the case of CCA2 cryptosystems that are selective opening secure. In their work, they
show how to adapt the universal hash proof systems of [CS02], to provide CCA2 security in the
selective opening setting. Their constructions are general, and offer the first SEM-SO-CCA secure
cryptosystem whose parameters are completely independent of n, the number of messages. Their
work also considers selective opening security against chosen-plaintext attacks, and using tech-
niques from Non-Committing Encryption [CFGN96] they construct SEM-SO-CPA secure systems
from enhanced one-way trapdoor permutations.

The results of Bellare, Waters and Yilek [BWY11] show how to construct Identity-Based En-
cryption (IBE) schemes secure under selective-opening attacks based on the Decision Linear As-
sumption. Our work is orthogonal to theirs. Their work constructs IBE schemes secure under
selective-opening attacks, while our work starts with a tag-based encryption scheme, and uses it to
construct encryption schemes that are secure against a selective-opening chosen-ciphertext attack,
but are not identity-based.

1.2 Our Contributions

In this paper, we primarily consider encryptions secure against a selective opening adversary. In
particular, we formalize the notion of re-randomizable Public-Key Encryption and we show that
re-randomizable encryption implies Lossy Encryption, as defined in [PVW08] and expanded in
[BHY09]. Combining this with the recent result of Bellare, Hofheinz and Yilek [BHY09] showing
that Lossy Encryption is IND-SO-ENC secure, we have an efficient construction of IND-SO-ENC
secure encryption from any re-randomizable encryption (which generalizes and extends previous
results). Furthermore, these constructions retain the efficiency of the underlying re-randomizable
encryption protocol.

Applying our results to the Paillier cryptosystem [Pai99], we obtain an encryption scheme which
attains a strong, simulation-based form of semantic security under selective openings (SEM-SO-
ENC security). This is the first construction of this type from the Decisional Composite Residuosity
(DCR) assumption. As far as bandwidth goes, it is also the most efficient SEM-SO-ENC secure
encryption scheme to date. We note that the possible use of Paillier as a lossy encryption scheme
was implicitly mentioned in [YY05]. To the best of our knowledge, its SEM-SO-ENC security was
not reported earlier.

We go on to show that Lossy Encryption is also implied by (honest-receiver) statistically-hiding(
2
1

)
-Oblivious Transfer and by hash proof systems [CS02]. Combining this with the results of
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[PVW08], we recognize that Lossy Encryption is essentially just a different way to view the well
known statistically-hiding

(
2
1

)
-OT primitive. Applying the reductions in [BHY09] to this result,

yields constructions of SOA secure encryption from both PIR and homomorphic encryption.
These results show that the Lossy and Selective Opening Secure Encryption primitives (at

least according to the latter’s indistinguishability-based security definition), which have not been
extensively studied until recently, are actually implied by several well-known primitives: i.e., re-
randomizable encryption, PIR, homomorphic encryption, hash proof systems and statistically-
hiding

(
2
1

)
-OT. Prior to this work, the only known general1 constructions of lossy encryption were

from lossy trapdoor functions. Our results thus show that they can be obtained from many seem-
ingly weaker primitives (see figure 1).

Lossy

Encryption
IND-SO-CPA

Homomorphic

Encryption
PIR

Stat.
(
1
2
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-OT

UHP

LTDFs
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Figure 1: Constructing Lossy Encryption

Selective Opening Security Against Chosen-Ciphertext Attacks: Continuing the study of selective-
opening security, we present definitions chosen-ciphertext security (CCA2) in the selective opening
setting (in both the indistinguishability and simulation-based models) and describe encryption
schemes that provably satisfy these enhanced forms of security. Despite recent progress, relatively
few methods are known for constructing IND-CCA2 cryptosystems in the standard model. The
problem is even more complex with selective openings, where some known approaches for CCA2
security do not seem to apply. We note how the Naor-Yung paradigm, even when applied with
statistical zero knowledge proofs fails to prove CCA2 security in the selective opening setting. Es-
sentially, this is because the selective opening adversary learns the randomness used in the signature
scheme, which allows him to forge signatures, and thus create ciphertexts that cannot be handled
by the simulated decryption oracle.

The results of Fehr, Hofheinz, Kiltz and Wee [FHKW10] show how to modify universal hash
proof systems [CS02] to achieve security under selective openings.

We take a different approach and follow (a variant of) the Canetti-Halevi-Katz paradigm
[CHK04]. This too encounters many obstacles in the selective opening setting. Nevertheless, un-
der standard assumptions (such as DDH or the Composite Residuosity assumption), we construct

1i.e., not based on specific number-theoretic assumptions
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schemes featuring compact ciphertexts while resisting adaptive (i.e., CCA2) chosen-ciphertext at-
tacks according to our indistinguishability-based definition. When comparing our schemes to those
of [FHKW10], we note that our public key size depends on n, the number of senders that can be
possibly corrupted, while the systems of [FHKW10] are independent of n. On the other hand, to en-
crypt m-bit messages with security parameter λ, our ciphertexts are of length O(λ+m), while theirs
are of length O(λm). Our public-keys are longer than in [FHKW10] because our construction relies
on All-But-N Lossy Trapdoor Functions (defined below), which have long description. The recent
complementary work of Hofheinz [Hof11a] shows how to create All-But-Many Trapdoor Functions
with short keys. Using his results in our construction eliminates the dependence of the public-key
size on n. Regarding security definitions, our constructions satisfy an indistinguishability-based
definition (IND-SO-CCA), whereas theirs fit a simulation-based definition (SEM-SO-CCA) which
avoids the restriction on the efficient conditional re-sampleability of the message distribution.

The scheme of [FHKW10] is very different from ours and we found it interesting to investigate
the extent to which well-known paradigms like [CHK04] can be applied in the present context.
Moreover, by adapting the Naor-Yung paradigm [NY90], under more general assumptions, we give
a CCA1 construction that also satisfies a strong simulation-based notion of adaptive selective open-
ing security.

One advantage of our IND-SO-CCA scheme is the ability to natively encrypt multi-bit mes-
sages. It is natural to consider whether our approach applies to the scheme of Bellare, Waters
and Yilek [BWY11] to achieve multi-bit IND-SO-CCA encryption. The scheme of [BWY11], like
[FHKW10], encrypts multi-bit messages in a bitwise manner. Applying a Canetti-Halevi-Katz-like
transformation to the construction of [BWY11] does not immediately yield IND-SO-CCA encryp-
tion schemes for multi-bit messages: the reason is that it is not clear how to prevent the adversary
from reordering the bit encryptions without employing a one-time signature scheme.

2 Background

2.1 Notation

If f : X → Y is a function, for any Z ⊂ X, we let f(Z) = {f(x) : x ∈ Z}. If A is a PPT

machine, then we use a
$← A to denote running the machine A and obtaining an output, where a

is distributed according to the internal randomness of A. For a PPT machine A, we use coins(A)

to denote the distribution of the internal randomness of A. So the distributions {a $← A} and

{r $← coins(A) : a = A(r)} are identical. If R is a set, we use r
$← R to denote sampling uniformly

from R.
If X and Y are families of distributions indexed by a security parameter λ, we use X ≈s Y to

mean the distributions X and Y are statistically close, i.e., for all polynomials p and sufficiently
large λ, we have

∑
x |Pr[X = x]− Pr[Y = x]| < 1

p(λ) .
We use X ≈c Y to mean X and Y are computationally close, i.e., for all PPT adversaries A,

for all polynomials p, then for all sufficiently large λ, we have |Pr[AX = 1]−Pr[AY = 1]| < 1/p(λ).

2.2 Selective Opening Secure Encryption

We recall an indistinguishability-based definition of encryption secure against a selective opening
adversary that was originally formalized in [BHY09]. We define two games, a real and an ideal
game which should be indistinguishable to any efficient adversary. The key point to notice is that
the adversary receives both the messages and the randomness for his selection. This mirrors the
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fact that an adaptive MPC adversary learns the entire history of corrupted players (i.e., there are
no secure erasures). If the adversary receives only the messages this would reduce to standard CPA
security.

As in [BHY09], M denotes an n-message sampler outputting a n-vector m = (m1, . . . ,mn)
of messages whereas M|I,m[I] denotes an algorithm that conditionally resamples another random
n-vector m′ = (m′1, . . . ,m

′
n) such that m′i = mi for each i ∈ I ⊂ {1, . . . , n}. If such a resampling

can be done efficiently for all I,m, then M is said to support efficient conditional resampling.

Definition 1. (Indistinguishability under selective openings). A public key cryptosystem (G,E,D)
is indistinguishable under selective openings (IND-SO-ENC secure) if, for any message samplerM
supporting efficient conditional resampling and any PPT adversary A = (A1,A2), we have∣∣∣Pr

[
Aind-so-real = 1

]
− Pr

[
Aind-so-ideal = 1

]∣∣∣ < ν

for some negligible function ν, and where the games ind-so-real and ind-so-ideal are defined as
follows.

IND-SO-ENC (Real) IND-SO-ENC (Ideal)

m = (m1, . . . ,mn)
$←M m = (m1, . . . ,mn)

$←M
r1, . . . , rn

$← coins(E) r1, . . . , rn
$← coins(E)

(I, st)
$← A1

(
pk,E(m1, ri), . . . , E(mn, rn)

)
(I, st)

$← A1

(
pk,E(m1, ri), . . . , E(mn, rn)

)
b

$← A2

(
st, (mi, ri)i∈I ,m

)
m′ = (m′

1, . . . ,m
′
n)

$←M|I,m[I]

b
$← A2

(
st, (mi, ri)i∈I ,m

′)
Figure 2: IND-SO-ENC security

In the real game, the challenger samples m = (m1, . . . ,mn)
$←M from the joint message distri-

bution. Then, it generates randomness r1, . . . , rn
$← coins(E) and sends (E(m1, r1), . . . , E(mn, rn)

to A. The adversary A responds with a subset I ⊂ {1, . . . , n} of size #I = n/2. The challenger
reveals ri for each i ∈ I as well as the entire vector m = (m1, . . . ,mn) to A. Finally, the latter
outputs a bit b ∈ {0, 1}.

In the ideal game, the challenger also samples m = (m1, . . . ,mn)
$←M from the joint distribu-

tion. Then, it generates random coins r1, . . . , rn
$← coins(E) and sends (E(m1, r1), . . . , E(mn, rn))

to the adversary A. The latter chooses a subset I ⊂ {1, . . . , n} with #I = n/2 and the challenger
reveals ri for i ∈ I. The only difference w.r.t. the real game is that, instead of revealing m, the

challenger samples a new vector m′
$← M|I,m[I] and sends m′ to A. Eventually, the adversary

outputs a bit b ∈ {0, 1}.

We stress that the challenger reveals both the plaintexts mi and the randomness ri for indices
i ∈ I. If only the messages mi were revealed, this security would follow immediately from IND-CPA
security.

2.3 Lossy Encryption

In [PVW08], Peikert, Vaikuntanathan and Waters defined Dual-Mode Encryption, a type of cryp-
tosystem with two types public-keys, injective keys on which the cryptosystem behaves normally

7



and “lossy” or “messy” keys on which the system loses information about the plaintext. In partic-
ular they require that the encryptions of any two plaintexts under a lossy key yield distributions
that are statistically close, yet injective and lossy keys remain computationally indistinguishable.

In [BHY09] Bellare, Hofheinz and Yilek define Lossy Encryption, expanding on the definitions
of Dual-Mode Encryption in [PVW08], and Meaningful/Meaningless Encryption in [KN08]. At a
high level, a ‘lossy’ (or ‘messy’ in the terminology of [PVW08]) cryptosystem is one which has
two types of public keys which specify two different modes of operation. In the normal mode,
encryption is injective, while in the lossy (or ‘messy’) mode, the ciphertexts generated by the
encryption algorithm are independent of the plaintext. We also require that no efficient adversary
can distinguish normal keys from lossy keys. In [BHY09], they also require a property called
openability, which basically allows a possibly inefficient algorithm to open a ciphertext generated
under a lossy key to any plaintext.

Definition 2. A lossy public-key encryption scheme is a tuple (G,E,D) of efficient algorithms
such that

• G(1λ, inj) outputs keys (pk, sk), keys generated by G(1λ, inj) are called injective keys.

• G(1λ, lossy) outputs keys (pklossy, sklossy), keys generated by G(1λ, lossy) are called lossy keys.

Additionally, the algorithms must satisfy the following properties:

1. Correctness on injective keys. For all plaintexts x ∈ X,

Pr
[
(pk, sk)

$← G(1λ, inj); r
$← coins(E) : D(sk,E(pk, x, r)) = x

]
= 1.

2. Indistinguishability of keys. In lossy mode, public keys are computationally indistinguishable
from those in the injective mode. Specifically, if proj : (pk, sk) 7→ pk is the projection map,
then

{proj(G(1λ), inj)} ≈c {proj(G(1λ, lossy))}

3. Lossiness of lossy keys. If (pklossy, sklossy)
$← G(1λ, lossy), then for all x0, x1 ∈ X, the statistical

distance between the distributions E(pklossy, x0, R) and E(pklossy, x1, R) is negligible in λ.

4. Openability. If (pklossy, sklossy)
$← G(1λ, lossy), and r

$← coins(E), then for all x0, x1 ∈
X with overwhelming probability, there exists r′ ∈ coins(E) such that E(pklossy, x0, r) =
E(pklossy, x1, r

′). In other words, there is an (unbounded) algorithm opener that can open a
lossy ciphertext to any arbitrary plaintext with all but negligible probability.

Although openability is implied by property (3), it is convenient to state it explicitly in terms
of an algorithm. In [BHY09], it was shown that, if the algorithm opener is efficient, then the
encryption scheme is actually SEM-SO-ENC secure (instead of only IND-SO-ENC).

We do not explicitly require schemes to be IND-CPA secure since semantic security follows from
the indistinguishability of keys and lossiness of the lossy keys. Indeed, for any x0, x1 ∈ X,

E(proj(G(1λ, inj)), x0, R) ≈c E(proj(G(1λ, lossy)), x0, R))

≈s E(proj(G(1λ, lossy)), x1, R) ≈c E(proj(G(1λ, inj)), x1, R).

In [BHY09], it was shown that Lossy Encryption can notably be constructed in a straightforward
manner from lossy trapdoor functions. More precisely, they observed that the IND-CPA-secure
system given in [PW08] is a Lossy Encryption scheme. Next, they proved the following fact.
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Theorem 1. [BHY09] Any Lossy Encryption scheme where the plaintext space admits a n-message
sampler M that supports efficient resampling is IND-SO-ENC secure.

3 Constructing Lossy Encryption Schemes

3.1 Re-Randomizable Encryption Implies Lossy Encryption

In many cryptosystems, given a ciphertext c and a public-key, it is possible to re-randomize c to a
new ciphertext c′ such that c and c′ encrypt the same plaintext but are statistically independent.
We call a public key cryptosystem given by algorithms (G,E,D) statistically re-randomizable2 if

• (G,E,D) is semantically-secure in the standard sense (IND-CPA).

• There is an efficient function ReRand such that if r′ is chosen uniformly from coins(ReRand),
and r0 are chosen uniformly from coins(E), then the distributions

{r0
$← coins(E) : E(pk,m, r0)} ≈s {r′

$← coins(ReRand) : ReRand(E(pk,m, r1), r
′)}

for all public keys pk and messages m, and randomness r1.

There are many examples of re-randomizable encryption. For example, if (G,E,D) is homomor-
phic (i.e., for any two pairs (m0, r0) and (m1, r1), we have E(pk,m0, r0)·E(pk,m1, r1) = E(pk,m0+
m1, r

∗) for some r∗ ∈ coins(E)), it may be possible to take ReRand(pk, c, r′) = c ·E(pk, 0, r′). For all
known homomorphic cryptosystems (such as Elgamal, Paillier, Damg̊ard-Jurik, Goldwasser-Micali),
we obtain statistically re-randomizable encryption with this definition of ReRand.

We note that, since re-randomization does not require any kind of group structure on the
plaintext space or any method for combining ciphertexts, re-randomizable encryption appears to
be a weaker primitive than homomorphic encryption. Although it is not implied by homomorphic
encryption per se, all known homomorphic cryptosystems are re-randomizable. A more thorough
discussion of the relationship between these primitives is given in Appendix B.

Our first result gives a simple and efficient method for creating lossy encryption from re-
randomizable encryption. Let (G,E,D) be a statistically re-randomizable public-key cryptosystem,
and we create Lossy Encryption (Ḡinj, Ḡlossy, Ē, D̄) as follows:

• Key Generation:

Ḡ(1λ, inj) generates a pair (pk, sk) ← G(1λ). Then G(1λ, inj) picks r0, r1
$← coins(E), and

generates e0 = E(pk, 0, r0), e1 = E(pk, 1, r1). Ḡ(1λ, inj) returns (p̄k, s̄k) = ((pk, e0, e1), sk).

Ḡ(1λ, lossy) runs G(1λ), generating a pair (pk, sk). Then, it picks r0, r1
$← coins(E) and

generates e0 = E(pk, 0, r0), e1 = E(pk, 0, r1). Ḡ(1λ, lossy) returns (p̄k, s̄k) = ((pk, e0, e1), sk).

• Encryption: Ē(p̄k, b, r′) = ReRand(pk, eb, r
′) for b ∈ {0, 1}.

• Decryption D̄(s̄k, c), simply outputs D(sk, c).

2We note that this definition of re-randomizable encryption requires statistical re-randomization. It is possi-
ble to define re-randomizable encryption which satisfies perfect re-randomization (stronger) or computational re-
randomization (weaker). Such definitions already exist in the literature (see for example [PR07, Gro04, JJS04,
CKN03]). Our constructions require statistical re-randomization, and do not go through under a computational
re-randomization assumption.
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We first notice that, under an injective key, the encryption mapping is clearly injective and
the decryption algorithm D performs the inverse operation. In lossy mode, it will be statistically
lossy by the properties of the ReRand function. The proof that this is a Lossy Encryption system
is straightforward and we check the details here.

1. Correctness on injective keys. This follows immediately from the correctness of E.

2. Indistinguishability of keys. This follows immediately from the IND-CPA security of (G,E,D).

3. Lossiness of lossy keys. Notice that under a lossy public-key p̄k, e0 and e1 are both encryptions
of zero, so that Ē(p̄k, b, r) will also be an encryption of zero for b ∈ {0, 1}. By the properties
of ReRand, the distributions {Ē(p̄k, 0, r)} and {Ē(p̄k, 1, r)} will be statistically close, which
is exactly what is required for a key to be “lossy”.

4. Openability. Under a lossy public-key, we have Ē(p̄k, b, r′) = ReRand(E(pk, 0, rb), r
′). Since

r′ is chosen uniformly from coins(ReRand), the properties of ReRand guarantee that the dis-
tributions ReRand(E(pk, 0, rb), r

′) and ReRand(E(pk, 0, r1−b), r
′′) are statistically close. The

existence of r′′ such that ReRand(E(pk, 0, rb), r
′) = ReRand(E(pk, 0, r1−b), r

′′) then follows
from lemma 1.

Lemma 1. If R is a random variable, and f : R→ X, g : R→ Y and∑
z∈X∪Y

Pr [r ← R : f(r) = z]− Pr [r ← R : g(r) = z] = ν,

then Pr [r ← R : ∀r′ ∈ R, f(r) 6= g(r′)] < ν.

Proof. It suffices to notice that

ν =
∑

z∈X∪Y
Pr [r ← R : f(r) = z]− Pr [r ← R : g(r) = z]

≥
∑

z∈X\Y

Pr [r ← R : f(r) = z]− Pr [r ← R : g(r) = z]

= Pr
[
r ← R : ∀r′ ∈ R, f(r) 6= g(r′)

]
.

Although this scheme only allows encrypting single bits, it can be easily modified to encrypt
longer messages if the underlying cryptosystem is homomorphic and if the set of encryptions of
zero can be almost uniformly sampled (the details are available in Appendix B).

The above construction is easily seen to give a perfectly-binding SOA secure commitment scheme
(with trusted setup). If our goal is only to construct SOA secure commitments, we do not need re-
randomizable encryption, and a weaker primitive suffices. In Appendix A, we define re-randomizable
one-way functions and show that these imply SOA secure commitments. While these constructions
both require a trusted setup, in a sense, this is inevitable since it was shown in [Hof11b, BHY09]
that perfectly-binding SOA secure commitments without trusted setup cannot be created in a
black-box manner from any primitive with a game-based definition of security.

We also note that specific homomorphic cryptosystems such as Paillier [Pai99] or Damg̊ard-
Jurik [DJ01] provide more efficient constructions where multi-bit messages can be encrypted. In
addition, as shown in Appendix C.1, the factorization of the modulus N provides a means for
efficiently opening a lossy ciphertext to any plaintext. Thus this scheme is actually SEM-SO-
ENC secure when instantiated with these cryptosystems. This provides the most efficient known
examples of SEM-SO-ENC secure cryptosystems. See Appendix C.1 for further discussion.
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3.2 Statistically-Hiding
(
2
1

)
-OT Implies Lossy Encryption

We briefly recall the definition of honest-receiver two-round statistically-hiding
(
2
1

)
-OT. Oblivious

transfer is a protocol between a sender Sen and a receiver Rec = (Recq,Recr). The sender Sen has
two strings s0, s1, and the receiver has a bit b. The receiver Recq generates a query q along with
some state information sk and sends q to the sender. The sender evaluates q(s0, s1) and sends the
result rsp = Sen(q, s0, s1) to the receiver Recr who uses sk to obtain sb.

• Correctness: For all s0, s1 ∈ {0, 1}k, for all b ∈ {0, 1}, there is a negligible function ν such
that

Pr[(q, sk)
$← Recq(1

λ, b); rsp
$← Sen(q, s0, s1) : Recr(sk, rsp) = sb] ≥ 1− ν(λ).

• Receiver Privacy: b remains computationally hidden from Sen’s view. Specifically, we must
have

{(q, sk)
$← Recq(1

λ, 0) : q} ≈c {(q, sk)
$← Recq(1

λ, 1) : q},

where the distributions are taken over the internal randomness of Recq.

• Sender Privacy: for any b ∈ {0, 1}, for any strings s0, s1, s
′
0, s
′
1 such that sb = s′b and any

honest receiver’s query q = Recq(1
λ, b), it must hold that

{(q, sk)
$← Recq(1

λ, b); rsp
$← Sen(q, s0, s1) : rsp} ≈s {(q, sk)

$← Recq(1
λ, b); rsp

$← Sen(q, s′0, s
′
1) : rsp}

where the distributions are taken over the internal randomness of Recq and Sen.

Let (Sen,Rec) be a two-round honest-receiver statistically-hiding
(
2
1

)
-OT. We construct a lossy

encryption as follows:

• Key Generation: Define G(1λ, inj) = Recq(1
λ, 0). Set pk = q, and sk = sk.

Define G(1λ, lossy) = Recq(1
λ, 1). Set pk = q, and sk = ⊥.

• Encryption: Define E(pk,m, (r, r∗)) = Sen(q,m, r; r∗), where r∗ is the randomness used in

Sen(q,m, r) and r
$← {0, 1}|m| is a random string.

• Decryption: to decrypt c = rsp in injective mode, we define D(sk, rsp) = Recr(sk, rsp).

Lemma 2. The scheme (G,E,D) forms a lossy encryption scheme.

Proof. We need to show three things:

• Correctness on injective keys: This follows immediately from the correctness of OT.

• Indistinguishability of keys: This follows immediately from the receiver privacy of OT.

• Lossiness of lossy keys: This will follow from the statistical sender privacy OT. More
precisely, if the cryptosystem is in lossy mode, the sender privacy of OT says that for all
m0,m1

{Sen(q,m0, r)} ≈s {Sen(q,m1, r)},
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where the distribution is taken over the internal randomness of Sen. Now, if we view the
randomness of Sen as an explicit input to Sen (as we do in encryption), then we have that for
all m0,m1 and r,

∆(Sen(q,m0, r; ·), Sen(q,m1, r); ·) < ν,

where the distributions are taken over the internal randomness of Sen. Applying lemma 3,
we find

∆(Sen(q,m0, ·; ·), Sen(q,m1, ·; ·)) ≤ ν,

where the distributions range over the uniform choice of r and the internal randomness of
Sen. This is exactly what is required to guarantee the lossiness of lossy keys.

Lemma 3. Let X,Y, Z be random variables such that ∆(X,Y |Z = z) < ε for all z. Then,
∆(X,Y ) < ε.

Proof.

∆(X,Y ) =
∑
a

|Pr(X = a)− Pr(Y = a)|

=
∑
a

∑
z

|Pr(X = a, Z = z)− Pr(Y = a, Z = z)|

=
∑
a

∑
z

|Pr(X = a|Z = z)− Pr(Y = a|Z = z)|Pr(z = z)

=
∑
z

Pr(Z = z)
∑
a

|Pr(X = a|Z = z)− Pr(Y = a|Z = z)|

=
∑
z

Pr(Z = z)∆(X,Y |Z = z) < ε
∑
z

Pr(Z = z) = ε.

Applying the results of [CMO00] which show that single-server Private Information Retrieval
(PIR) implies statistically-hiding OT, we find the following corollary.

Corollary 1. One round (two message) Single-Server PIR implies Lossy-Encryption.

Since homomorphic encryption implies PIR [KO97, Man98, IKO05], the following result follows.

Corollary 2. Homomorphic encryption implies Lossy-Encryption.

It was shown in [Kal05, HK07] that, in the half simulation model, statistically hiding
(
2
1

)
-OT can

be based on smooth hash proof systems that fit a slight modification of the original definition [CS02]
with suitable verifiability properties. In the honest-but-curious receiver setting (which suffices here),
it was already noted in [HK07][Section 1.3] that ordinary hash proof systems, as defined in [CS02],
are sufficient to realize

(
2
1

)
-OT. In Appendix D, we describe a simplification of the construction of

lossy encryption from hash proof systems and obtain the next result.

Corollary 3. Smooth projective hash functions imply Lossy Encryption.
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Interestingly, the DDH-based lossy encryption scheme of [KN08, PVW08, BHY09] can be seen
as a particular instance of that construction using the Projective Hashing of [CS98]. It can also
be interpreted as being derived (after simplification) from the Naor-Pinkas OT protocol [NP01] via
our construction.

The relationship with hash proof systems also suggests other implementations of lossy encryp-
tion based on Composite or Quadratic Residuosity (which differ from the scheme in Appendix C.1
and from Goldwasser-Micali, respectively) and the Decision Linear assumption [BBS04].

To summarize this section, by applying Theorem 1, we obtain the following theorem.

Theorem 2. Statistically-hiding 2-round honest-player
(
2
1

)
-OT implies IND-SO-ENC secure en-

cryption. Moreover, single-server PIR and homomorphic encryption and smooth projective hash
proof systems also imply IND-SO-ENC secure encryption.

4 Chosen-Ciphertext Security

It has long been recognized that if an adversary is given access to a decryption oracle, many cryp-
tosystems may become insecure. The notion of chosen-ciphertext Security [NY90, RS91, DDN91]
was created to address this issue, and since then there have been many schemes that achieve this
level of security. The attacks of Bleichenbacher on RSA PKCS#1 [Ble98] emphasized the practical
importance of security against chosen-ciphertext attacks (CCA).

The need for selective opening security was first recognized in the context of Multi-Party Com-
putation (MPC), where an active MPC adversary can view all ciphertexts sent in a current round
and then choose a subset of senders to corrupt. It is natural to imagine an adversary who, in
addition to corrupting a subset of senders, can also mount a chosen-ciphertext attack against the
receiver. Schemes proposed so far (based on re-randomizable encryption or described in [BHY09])
are obviously insecure in this scenario.

In this section, we extend the notion of chosen-ciphertext security to the selective opening
setting. As in the standard selective-opening setting, we can define security either by indistin-
guishability, or by simulatability. We will give definitions of security as well as constructions for
both settings.

Currently known techniques to acquire chosen-ciphertext security are delicate to use here. For
instance, handling decryption queries using the Naor-Yung paradigm [NY90] and non-interactive
zero-knowledge techniques [Sah99] is not straightforward as, when the adversary makes her cor-
ruption query, she should also obtain the random coins that were used to produce NIZK proofs.
Hash proof systems (HPS) [CS98, CS02] seem problematic to use as well. They typically involve
security reductions where simulators know the private key corresponding to the public key given
to the adversary. This seems inherently at odds with the features of lossy encryption, where secu-
rity relies on the property that lossy public keys (for which private keys may not exist) look like
well-formed public keys. As we will see, leveraging other tools such as the Canetti-Halevi-Katz
paradigm [CHK04] raises its deal of technical issues.

4.1 Chosen-Ciphertext Security: Indistinguishability

We begin with the indistinguishability-based definition (the simulation-based one is provided in
Appendix E). We define two games, a real game (ind-cca2-real) and an ideal game (ind-cca2-ideal).
In both games, the challenger runs the key-generation algorithm to generate a key pair (sk, pk)←
G(1λ) and sends pk to A. The adversary is then allowed to adaptively make the following types of
queries.
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• Challenge Query: let M be a message sampler. The latter samples m = (m1, . . . ,mn)
$←

M and returns n “target” ciphertexts

C = (C[1], . . . ,C[n])← (E(pk,m1, r1), . . . , E(pk,mn, rn)).

• Corrupt Query: A chooses a subset I ⊂ {1, . . . , n} of cardinality #I = n/2. The challenger
then reveals {(mi, ri)}i∈I to A.

– In the real game, the challenger then sends {mj}j /∈I to the adversary.

– In the ideal game, the challenger re-samples m′ = (m′1, . . . ,m
′
n)

$←M|I,m[I] (i.e., in such
a way that m′j = mj for each j ∈ I) and sends {m′j}j /∈I to A.

• Decryption Queries: A chooses a ciphertext C that has never appeared as a target cipher-
text and sends C to the challenger which responds with D(sk, C).

After a polynomial number of queries, exactly one of which is a challenge query and precedes the
corrupt query (which is unique as well), the adversary outputs b ∈ {0, 1}.

Definition 3. A public key cryptosystem is IND-SO-CCA2 secure if, for any polynomial n and
any n-message sampler M supporting efficient conditional re-sampling, any PPT adversary A has
negligibly different outputs in the real game and in the ideal game: for some negligible function ν,
we must have ∣∣∣Pr[Aind-cca2-real = 1]− Pr[Aind-cca2-ideal = 1]

∣∣∣ < ν.

If the adversary is not allowed to make decryption queries, this reduces to IND-SO-ENC security.
Our construction of IND-SO-CCA2 secure encryption requires some basic tools outlined below.

4.2 Chameleon Hash Functions

A chameleon hash function [KR00] CMH = (CMKg,CMhash,CMswitch) consists of a key generation

algorithm CMKg that, given a security parameter λ, outputs a pair (hk, tk)
$← G(λ). The random-

ized hashing algorithm outputs y = CMhash(hk,m, r) given the public key hk, a message m and
random coins r ∈ Rhash. On input of m, r,m′ and the trapdoor key tk, the switching algorithm
r′ ← CMswitch(tk,m, r,m′) outputs r′ ∈ Rhash such that CMhash(hk,m, r) = CMhash(hk,m′, r′).
Collision-resistance mandates that it be infeasible to find collisions (i.e., pairs (m′, r′) 6= (m, r) such
that CMhash(hk,m, r) = CMhash(hk,m′, r′)) without knowing tk. Finally, uniformity guarantees
that the distribution of hashes is independent of the message m, in particular, for all hk, and
m,m′, the distributions {r ← Rhash : CMHash(hk,m, r)} and {r ← Rhash : CMHash(hk,m′, r)}
are identical. It is well-known that chameleon hashing can be based on standard number theoretic
assumptions such as factoring or the discrete logarithm.

4.3 A Special Use of the Canetti-Halevi-Katz Paradigm

The Canetti-Halevi-Katz technique [CHK04] is a method to build chosen-ciphertext secure en-
cryption schemes from weakly secure identity-based or tag-based encryption scheme. A tag-
based encryption scheme (TBE) [MRY04, Kil06] is a public key cryptosystem where the en-
cryption and decryption algorithms take an additional input, named the tag, which is a binary
string of appropriate length with no particular structure. A TBE scheme consists of a triple
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TBE = (TBEKg,TBEEnc,TBEDec) of efficient algorithms where, on input of a security parame-
ter λ, TBEKg outputs a private/public key pair (pk, sk); TBEEnc is a randomized algorithm that
outputs a ciphertext C on input of a public key pk, a string θ – called tag – and a message
m ∈ MsgSp(λ); TBEDec(sk, θ, C) is the decryption algorithm that takes as input a secret key sk, a
tag θ and a ciphertext C and returns a plaintext m or ⊥. Associated with TBE is a plaintext space
MsgSp. Correctness requires that for all λ ∈ N, all key pairs (pk, sk)← TBEKg(1λ), all tags θ and
any plaintext m ∈ MsgSp(λ), it holds that TBEDec(sk, θ,TBEEnc(pk, θ,M)) = m.

Selective Opening Security for TBE Schemes. In the selective opening setting, the weak
CCA2 security definition of [Kil06] can be extended as follows.

Definition 4. A TBE scheme TBE = (TBEKg,TBEEnc,TBEDec) is selective-tag weakly IND-SO-
CCA2 secure (or IND-SO-stag-wCCA2 secure) if, for any polynomial n and any n-message sampler
M supporting efficient conditional re-sampling, any PPT adversary A produces negligibly different
outputs in the real and ideal games, which are defined as follows.

1. The adversary A chooses n tags θ?1, . . . , θ
?
n and sends them to the challenger.

2. The challenger generates a key pair (sk, pk) ← TKEKg(1λ) and hands pk to A. The latter
then adaptively makes the following kinds of queries:

– Challenge Query: letM be a message sampler for MsgSp(λ). The challenger samples

m = (m1, . . . ,mn)
$←M and returns n target ciphertexts

C = (C[1], . . . ,C[n])← (TBEEnc(pk, θ?1,m1, r1), . . . ,TBEEnc(pk, θ?n,mn, rn)).

– Corrupt Query: A chooses a subset I ⊂ {1, . . . , n} of size #I = n/2. The challenger
then hands {(mi, ri)}i∈I to A.

- In the real game, the challenger then sends {mj}j /∈I to the adversary.

- In the ideal game, the challenger re-samples (m′1, . . . ,m
′
n)

$← M|I,m[I] and reveals
{m′j}j /∈I .

– Decryption Queries: A sends a pair (C, θ) such that θ 6∈ {θ?1, . . . , θ?n}. The challenger
replies with TBEDec(sk, θ, C) ∈ MsgSp(λ) ∪ {⊥}.

After polynomially-many queries, one of which being a challenge query, A outputs a bit b ∈
{0, 1}. Her advantage AdvIND-SO-stag-wCCA2

A (λ) is defined analogously to definition 3.

At first glance, one may hope to simply obtain IND-SO-CCA2 security by applying the CHK
method [CHK04] to any IBE/TBE scheme satisfying some weaker level of selective opening secu-
rity.

Let us assume a TBE scheme TBE = (TBEKg,TBEEnc,TBEDec) that is secure in the sense
of definition 4 and let Σ = (G,S,V) be a strongly unforgeable one-time signature. The black-box
CHK technique turns TBE into a public key cryptosystem PKE = (G,E,D) which is obtained by
letting G(1λ) output (sk′, (Σ, pk′)) where (sk′, pk′) ← TBEKg(1λ). To encrypt a message m, E
generates a one-time signature key pair (SK,VK) ← G(1λ), computes Ctbe = TBEEnc(pk,VK,m)
under the tag VK and sets the PKE ciphertext as (VK, Ctbe, σ), where σ = S(SK, Ctbe).

When we try to use this transformation in the selective opening setting, the problem is that,
when the adversary makes her corruption query in the reduction, she must also obtain the random
coins that were used to generate one-time signature key pairs appearing target ciphertexts. Then,
she is able to re-compute the corresponding one-time private keys and make decryption queries for
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ciphertexts involving the same verification keys as target ciphertexts, which causes the reduction
to fail. Although schemes using one-time signatures do not appear to become trivially insecure, the
reduction of [CHK04, Kil06] ceases to go through and the same hurdle arises with the Boneh-Katz
transformation [BK05].

It was showed in [Zha07] that chameleon hash functions [KR00] can be used to turn cer-
tain TBE schemes, termed separable, into full-fledged IND-CCA2 cryptosytems and supersede
one-time signatures in the CHK transform. A TBE scheme is said separable if, on input of
pk, m, θ, the encryption algorithm TBEEnc(pk, t,m) uses randomness r ∈ Rtbe and returns
Ctbe = (f1(pk,m, r), f2(pk, r), f3(pk, θ, r)), where functions f1, f2 and f3 are computed indepen-
dently of each other and are all deterministic (and give the same outputs when queried twice on
the same (m, r), r and (θ, r)).

The construction of [Zha07] uses chameleon hashing instead of one-time signatures. Key gen-
eration requires to create a TBE key pair (pk′, sk′) and a chameleon hashing public key hk. The
private key of PKE is the TBE private key sk′. Encryption and decryption procedures are depicted
on figure 3.

E(m, pk) D(sk, C)

Parse pk as (pk′, hk) Parse C as (u, v, w, r2) and sk as sk′

r1 ← Rtbe; r2 ← Rhash θ = CMhash(hk, u||v, r2)

u = f1(pk′,m, r1); v = f2(pk′, r1) Return m← TBEDec(sk′, θ, (u, v, w))

θ = CMhash(hk, u||v, r2)

w = f3(pk′, θ, r1)

Return C = (u, v, w, r2)

Figure 3: The Separable-TBE-to-PKE transform

Unlike the fully black-box transform where tags are generated independently of the TBE ci-
phertext, this construction computes the ciphertext without using any other secret random coins
than those of the underlying TBE ciphertext. The tag is derived from a ciphertext component u
and some independent randomness r2 that publicly appears in the ciphertext. For this reason, we
can hope to avoid the difficulty that appears with the original CHK transform. We prove that it
is indeed the case and that any separable TBE that satisfies definition 4 yields an IND-SO-CCA2
encryption scheme.

Theorem 3. If TBE = (TBEKg,TBEEnc,TBEDec) is a separable TBE scheme with IND-SO-stag-
wCCA2 security, the transformation of figure 3 gives an IND-SO-CCA2 PKE scheme. For any
IND-SO-CCA2 adversary A, there is a TBE adversary Atbe and a chameleon hash adversary Ahash
s.t.

AdvIND-SO-CCA2
A (λ) ≤ 2 ·

(
AdvIND-SO-stag-wCCA2

Atbe (λ) + qnδ + AdvCR-CMhash
Ahash (λ)

)
,

where q is the number of decryption queries and δ is the maximal probability, taken over the random
choice of r1 ∈ Rtbe, that f2 outputs a specific element of its range.

Proof. We first note that the definition of IND-SO-CCA2 security is equivalent to a definition where
the adversary A is faced with a simulator and has to decide whether the latter is playing the real
game, where the actual plaintexts are revealed after the corruption query, or the ideal game. The
game to be played is determined by a random bit b ∈ {0, 1} secretly chosen by the challenger and
which A has to guess.

Using this definition, the proof is similar to [Zha07] and considers two kinds of adversaries.
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- Type I attackers never invoke the decryption oracle on (u, v, w, r2) for which CMhash(hk, u||v, r2)
collides with a tags θ?i associated with target ciphertexts.

- Type II adversaries make at least one decryption query for a valid ciphertext (u, v, w, r2) such
that CMhash(hk, u||v, r2) hits the tag θ?i of some target ciphertext.

Type I adversaries are handled similarly to [Zha07]. We outline an adversary Atbe against the
TBE scheme using a type I IND-SO-CCA2 adversary A. The former begins by generating a key
pair (hk, tk) ← CMhash(λ) for the chameleon hash. It chooses dummy u′i, v

′
i, r
′
2,i in the appropri-

ate domains and uses them to generate tags θ?i = CMhash(hk, u′i||v′i, r′2,i) for i = 1, . . . , n. These

are transmitted to Atbe’s challenger C, which replies with a TBE public key pk′. The public key
pk = (pk′, hk) is given to A.

Any decryption query made by A is forwarded to Atbe’s challenger C and the latter’s re-
sponse is relayed to A. When A outputs a plaintext distribution M, Atbe sends M to her
own challenger. Upon receiving the vector of target ciphertexts C?

tbe = (Ctbe[1]?, . . . , Ctbe[n]?)
(where Ctbe[i]

? = (u?i , v
?
i , w

?
i ) is associated with the tag θ?i ), Atbe uses the trapdoor tk to com-

pute r?2,i = CMswitch(tk, u′i||v′i, r′2,i, u?i ||v?i ) (in such a way that θ?i = CMhash(hk, u?i ||v?i , r?2,i) =
CMhash(hk, u′i||v′i, r′2,i)) and sends the target vector C? = (C[1]?, . . . ,C[n]?), where C[i]? = (u?i , v

?
i , w

?
i , r

?
2,i)

for all i, to A.
Then, A makes new decryption queries, which Atbe handles by simply transmitting them to

C and relaying the latter’s responses back to A. When A decides to make her corruption query
I ⊂ {1, . . . , n}, Atbe sends I to C that replies with plaintexts and random coins {(m?

i , r
?
1,i)}i∈I for

ciphertexts {Ctbe[i]
?}i∈I as well as {mi}i 6∈I for which Atbe aims at deciding whether mi = m?

i for
all i or mi ∈R M. All these elements are passed to A (note that Atbe does not need to include
{r?2,i}i∈I as A already obtained them as part of C[i]?) who makes new decryption queries.

Since A is assumed to be a Type I adversary, no such decryption query (u, v, w, r2) ever re-
sults in a tag θ = CMhash(hk, u||v, r2) such that θ ∈ {θ?1, . . . , θ?n}, Atbe can always query C to
decrypt ((u, v, w), θ) and give the answer back to A. Eventually, Atbe outputs the same result
b′ ∈ {0, 1} as A and we easily see that, if A is successful, so is Atbe. Therefore, it comes that
AdvType-I(A) ≤ AdvIND-SO-stag-wCCA2(Atbe).
Type II adversaries. In the expectation of a Type II adversary, we construct a collision-finder
Ahash that sets up a public key (pk′, hk) by obtaining the chameleon hash key hk from a challenger
and generates (sk′, pk′) ← TBEKg(λ) on its own. It challenges the adversary A on the public
key pk = (pk′, hk) and uses the private key sk′ to perfectly handle all decryption queries. At the
challenge step, A outputs a distribution M and obtains a vector C? = (C[1]?, . . . ,C[n]?) of tar-
get ciphertexts, where, for each i ∈ {1, . . . , n}, C[i]? = (u?i , v

?
i , w

?
i , r

?
2,i) with u?i = f1(pk,m

?
i , r

?
1,i),

v?i = f2(pk, r
?
1,i), θ

?
i = CMhash(hk, u?i ||v?i , r?2,i) and w?i = f3(pk, θ

?
i , r

?
1,i) for plaintexts m?

i
$←M and

random values r?1,i
$← Rtbe, r?2,i

$← Rhash.

In the simulation, algorithm Ahash aborts and fails in the event that, for some index i ∈
{1, . . . , n}, the ciphertext C[i]? = (u?i , v

?
i , w

?
i , r

?
2,i) is such that v?i previously appeared in a decryp-

tion query. This only occurs with probability smaller than qnδ if δ denotes the maximal probability,

taken over the random choice of r?1,i
$← Rtbe, that a specific element of the image of f2 is reached.

If Ahash does not abort, A makes new decryption queries that Ahash still perfectly answers
using sk′. At some point, A makes a corruption query I and obtains {(m?

i , r
?
1,i, r

?
2,i)}i∈I . Plain-

texts {mi}i 6∈I are the actual plaintexts if the challenger Ahash’s random bit is b = 0 and random
plaintexts if b = 1.
A is assumed to query at some point the decryption of some ciphertext C = (u, v, w, r2) such
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that θ = CMhash(hk, u||v, r2) = CMhash(hk, u?i ||v?i , r?2,i) = θ?i for some i ∈ {1, . . . , n}. If that query

is made before the challenge phase, we must have v 6= v?i as Ahash would have aborted in the chal-
lenge phase otherwise. If the query is a post-challenge query, we also have (u, v, r2) 6= (u?i , v

?
i , r

?
2,i)

since, for any valid ciphertext, (u, v) = (u?i , v
?
i ) and θ = θ?i would imply w = w?i and C would be a

target ciphertext. In either case, we have a collision on the chameleon hash.
The above arguments give us the upper bound AdvType-II(A) ≤ qnδ + AdvCR-CMhash(Ahash).

The theorem is established by noting that Ahash can guess upfront (by flipping a coin inde-
pendently of A’s view) which kind of attack the adversary will mount and prepare the public key
accordingly.

4.4 Lossy and All-But-n Trapdoor Functions

Lossy trapdoor functions were first defined in [PW08]. A tuple (Sltdf, Fltdf , F
−1
ltdf) of PPT algorithms

is called a family of (d, k)-lossy trapdoor functions if the following properties hold:

• Sampling injective functions: Sltdf(1
λ, 1) outputs (s, t), where s is a function index and

t its trapdoor. It is required that Fltdf(s, ·) be injective on {0, 1}d and F−1ltdf(t, Fltdf(s, x)) = x
for all x.

• Sampling lossy functions: Sltdf(1
λ, 0) outputs (s,⊥) where s is a function index and

Fltdf(s, ·) is a function on {0, 1}d, where the image of Fltdf(s, ·) has size at most 2d−k.

• Indistinguishability: we have {(s, t) $← Sltdf(1
λ, 1) : s} ≈c {(s,⊥)

$← Sltdf(1
λ, 0) : s}.

Along with lossy trapdoor functions, Peikert and Waters [PW08] defined all-but-one (ABO)
functions. Essentially, these are lossy trapdoor functions, except instead of having two branches (a
lossy branch and an injective branch) they have many branches, all but one of which are injective.

The Peikert-Waters cryptosystem only requires such function families to have one lossy branch
because a single challenge ciphertext must be evaluated (on a lossy branch) in the CCA2 game.
Since the IND-SO-CCA security game involves n > 1 challenge ciphertexts, we need to generalize
ABO functions into all-but-n (ABN) functions that have multiple lossy branches and where all
branches except the specified ones are injective. In the case n = 1, ABN functions obviously boil
down to ABO functions.

• Sampling with a given lossy set: For any n-subset I ⊂ B, Sabn(1λ, I) outputs s, t where
s is a function index, and t its trapdoor. We require that for any b ∈ B \ I, Gabo(s, b, ·)
is an injective deterministic function on {0, 1}d, and G−1abn(t, b,Gabn(s, b, x)) = x for all x.
Additionally, for each b ∈ I, the image Gabn(s, b, ·) has size at most 2d−k.

• Hidden lossy sets: For any distinct n-subsets I?0 , I
?
1 ⊂ B, the first outputs of Sabn(1λ, I?0 )

and Sabn(1λ, I?1 ) are computationally indistinguishable.

Just as ABO functions can be obtained from lossy trapdoor functions [PW08], ABN functions
can also be constructed generically from LTDFs.The recent results of Hofheinz [Hof11a], show
how to create All-But-Many Lossy Functions, which are Lossy Trapdoor Functions with a super-
polynomial number of lossy branches. The advantage of his construction is that the description
of the function is independent of N . Hofheinz’s All-But-Many functions can be plugged into our
constructions to shrink the size of the public-key in our constructions (see [Hof11a] for details).
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4.5 All-But-n Functions from Lossy Trapdoor Functions

Given a set I ⊂ B, we create an unduplicatable set selector g : B → B̂. For each b̂ ∈ B̂, we will
associate a lossy trapdoor function. Let Î =

⋃
i∈I g(i). For each î ∈ Î, we will create a LTDF in

lossy mode, and for each b̂ ∈ B̂ \ Î, we will associate a LTDF in injective mode.

• Sampling with a given lossy set: Create an (n, dlog |B|e) unduplicatable set selector g.
Suppose B ⊂ {0, 1}v, then the construction outlined above produces g which maps {0, 1}v to
subsets of F`×F`, where ` = 2dlog2 2nve. For each element in F`×F`, we will associate a lossy
trapdoor function. Let Î =

⋃
i∈I g(i) ⊂ F` × F`. For each y ∈ Î let Fy be an LTDF in lossy

mode, and for each y ∈ F` × F` \ Î, let Fy be an LTDF in injective mode.

Now, define Gabn(b, x) = (Fy1(x), . . . , Fy`(x))yi∈g(b).

Notice that if any of the functions Fy are injective, then Gabn is also injective, and if the image
size of F in lossy mode is 2r, then the images size of Gabn on a lossy branch is 2r`. Finally, we
notice that the lossy set is hidden by the indistinguishability of modes of the LTDF.

This construction is generic but suffers from a lack of efficiency since the description of the
function and its output both have a size growing as a function of n, which is obviously not a
desirable property. Luckily for specific lossy trapdoor functions, the growth of the output size can
be avoided.

4.6 An IND-SO-stag-wCCA2 TBE Construction

We now give a method for constructing IND-SO-stag-wCCA2 tag-based cryptosystems from lossy
trapdoor functions. Using a chameleon hash function (CMKg,CMhash,CMswitch) where CMhash
ranges over the set of branches B of the ABN family, we eventually obtain an IND-SO-CCA2 public
key encryption scheme. The LTDF-based construction (and its proof) mimics the one [PW08] (in
its IND-CCA1 variant).

Let (Sltdf, Fltdf , F
−1
ltdf) be a family of (d, k)-lossy-trapdoor functions, and let (Sabn, Gabn, G

−1
abn) be

a family of (d, k′) all-but-n functions with branch set {0, 1}v where v is the length of a verification
key for our one-time signature scheme. We require that 2d− k− k′ ≤ t−κ, for κ = κ(t) = ω(log t).
Let H be a pairwise independent hash family from {0, 1}d → {0, 1}`, with 0 < ` < κ− 2 log(1/ν),
for some negligible ν = ν(λ). The message space will be MsgSp = {0, 1}`.

• TBEKg(1λ): choose a random member h ← H of the pairwise independent hash family and
generate

(s, t)← Sltdf(1
λ, inj), (s′, t′)← Sabn(1λ, {0, 1, . . . , n− 1}).

The public key will be pk = (s, s′, h) and the secret key will be sk = (t, t′).

• TBEEnc(m, pk, θ): to encrypt m ∈ {0, 1}` under the tag θ ∈ B, choose x
$← {0, 1}d. Compute

c0 = h(x)⊕m, c1 = Fltdf(s, x) and c2 = Gabn(s, θ, x) and set the TBE ciphertext as

C =
(
c0, c1, c2

)
=
(
h(x)⊕m, Fltdf(s, x), Gabn(s′, θ, x)

)
.

• TBEDec(C, sk, θ): given C =
(
c0, c1, c2

)
and sk = t, compute x = F−1ltdf(t, c1) and check

whether Gabn(s, θ, x) = c2. If not, output ⊥. Otherwise, output m = c0 ⊕ h(x).

The scheme is easily seen to be separable since C is obtained as c0 = f1(pk,m, x) = m⊕ h(x),
c1 = f2(pk, x) = Fltdf(s, x) and c2 = f3(pk, θ, x) = Gabn(s′, θ, x).
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Theorem 4. The algorithms described above form an IND-SO-stag-wCCA2 secure tag-based cryp-
tosystem assuming the security of the lossy and all-but-n families.

Proof. The correctness of the scheme is clear, so we focus on the security. We prove security through
a sequence of games which is close to the one of [PW08, Theorem 4.2].

Let Game0 be the real IND-SO-stag-wCCA2 game. In this game, the adversary A first chooses
a set of tags {θ?1, . . . , θ?n} under which target ciphertexts will be encrypted in the challenge phase.
Recall that A is not allowed to query the decryption oracle w.r.t. a tag θ ∈ {θ?1, . . . , θ?n} at any
time.

Let Game1 be identical to Game0 except that we set the lossy branches of the all-but-n function
Gabn to be those identified by {θ?1, . . . , θ?n}.

Let Game2 be identical to Game1 except that, in the decryption algorithm, we use G−1abn to
decrypt instead of F−1ltdf , i.e., we set x = G−1abn(t′, θ, c2) instead of x = F−1ltdf(t, c1).

Let Game3 be identical to Game2 except that we replace the injective function with a lossy one,
i.e., during key-generation we generate (s,⊥)← Sltdf(1

λ, lossy), instead of (s, t)← Sltdf(1
λ, inj).

• Game1 and Game0 are indistinguishable by the indistinguishability of lossy sets in ABN
functions.

• Game2 does not affect A’s view since she never makes a decryption query on a lossy-branch
of Gabn.

• The indistinguishability of Game3 and Game2 follows from the indistinguishability of lossy
and injective modes of lossy-trapdoor functions.

Now, if we can show that an adversary’s probability of success in Game3 is negligible, we will
be done. To this end, we follow the proof that Lossy Encryption is selective opening secure and
apply Theorem 6 in [BHY09]. The key observation is that in Game3, the challenge ciphertexts are
statistically independent of the underlying messages. We begin by showing that this is, in fact, the
case.

Now, Fltdf(s, ·) and Gabn(s′, θ?i , ·) are lossy functions with image sizes at most 2d−k and 2d−k
′

respectively for each i ∈ [n]. Thus the function x 7→ (Fltdf(s, x), Gabn(s′, θ?i , x)) takes on at most
22d−k−k

′ ≤ 2d−κ values. Now by Lemma 2.1 of [PW08], the average min-entropy is bounded below

H̃∞(x|c1, c2, s, s′) ≥ H∞(x|s, s′)− (d− κ) = t− (d− κ) = κ.

Since ` ≤ κ − 2 log(1/ν), by Lemma 2.2 of [PW08], for each target ciphertext C = (c0, c1, c2), we
have

∆((c1, c2, h, h(x)), (c1, c2, h, U`)) ≤ ν,

where U` stands for the uniform distribution on {0, 1}`. Now, we can incorporate the ideas of
Theorem 6. Since the target ciphertexts are statistically independent of the underlying plaintexts,
there is a (possibly inefficient)algorithm opener, which, given (c0, c1, c2,m) outputs x such that
Fltdf(s, x) = c1, Gabn(s, θ?i , x) = c2, and h(x)⊕m = c0. If no such x exists, opener outputs ⊥ (the
statistical closeness guarantees that this happens with probability at most ν).

Now, let us consider a new series of games. Let Game30 be identical to Game3, except that
target ciphertexts are opened using the output of opener instead of the actual randomness used by
the challenger.
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Now, for j ∈ [n], let Game3j be identical to Game30 except that for i ≤ j, the target ciphertexts
are

(E(pk, ξ, r1), . . . , E(pk, ξ, rj), E(pk,mj+1, rj+1), . . . , E(pk,mn, rn))

So, the only difference between Game3j and Game3j−1 lies in whether the jth target ciphertext is
an encryption of a dummy message ξ or mj . Since these two distributions are statistically close,
even an unbounded adversary has a negligible chance of distinguishing them. Thus by the triangle
inequality, an unbounded adversary has a negligible probability of distinguishing Game30 from
Game3n .

But Game3n is identical in both the real and ideal games, so an adversary has at most a
negligible probability of distinguishing the two worlds.

When the scheme is instantiated with the lossy TDF of [RS09, BFO08] and the ABN function
of section 4.7, the proof of the above theorem can be adapted as follows. We simply introduce
an intermediate game between Game1 and Game2 and consider a failure event which reveals a
non-trivial factor of the modulus N if it occurs. In this game, ciphertexts are still decrypted via
F−1ltdf and the trapdoor of the ABN function is not used. Suppose that the adversary A makes a
decryption query involving a tag θ such that gcd(P (θ), N) 6= 1, where P (θ) =

∏n
i=1(θ − θ?i ). Since

N > 2λ and θ?i ∈ {0, 1}λ for each tag θ?i , we cannot have θ = θ?i mod N for any i ∈ {1, . . . , n} since
it would imply θ = θ?i (which is forbidden by the IND-stag-wCCA2 rules). Hence, the failure event
would imply p|(θ− θ?i ) and q|(θ− θ?j ) for distinct i, j ∈ {1, . . . , n}, which would reveal a non-trivial
factor of N and a fortiori break the DCR assumption.

4.7 An All-but-n Function with Short Outputs

While generic, the all-but-n function of Section 4.5 has the disadvantage of long outputs, the
size of which is proportional to nk. Efficient lossy and all-but-one functions can be based on the
Composite Residuosity assumption [RS09, BFO08] and the Damg̊ard-Jurik cryptosystem [DJ01].
We show that the all-but-one function of [RS09, BFO08] extends into an all-but-n function that
retains short (i.e., independent of n or k) outputs. Multiple lossy branches can be obtained using a
technique that traces back to the work of Chatterjee and Sarkar [CS06] who used it in the context
of identity-based encryption.

• Sampling with a given lossy set: given a security parameter λ ∈ N and the desired lossy
set I = {θ?1, . . . , θ?n}, where θ?i ∈ {0, 1}λ for each i ∈ {1, . . . , n}, let γ ≥ 4 be a polynomial in
λ.

1. Choose random primes p, q s.t. N = pq > 2λ.

2. Generate a vector ~U ∈ (Z∗Nγ+1)n+1 as follows. Let αn−1, . . . , α0 ∈ ZNγ be coefficients
obtained by expanding P [T ] = (T − θ?1) · · · (T − θ?n) = Tn + αn−1T

n−1 + · · ·+ α1T + α0

in ZNγ [T ] (note that P [T ] is expanded in ZNγ but its roots are all in Z∗N ). Then, for

each i ∈ {0, . . . , n}, set Ui = (1 + N)αiaN
γ

i mod Nγ+1, where (a0, . . . , an)
$← (Z∗N )n+1

and with αn = 1.

3. Set the evaluation key as s′ = {N, ~U}, where ~U is the vector ~U = (U0, . . . , Un), and
the domain of the function as {0, . . . , 2γλ/2 − 1}. The trapdoor is defined to be t′ =
lcm(p− 1, q − 1).

• Evaluation: to evaluate Gabn(s′, θ, x), where x ∈ {0, . . . , 2γλ/2−1} and θ ∈ {0, 1}λ, compute

c =
(∏n

j=0 U
(θi mod Nγ)
i

)x
mod Nγ+1.
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• Inversion: for a branch θ, c = Gabn(s′, θ, x) is a Damg̊ard-Jurik encryption of y = P (θ)x mod
Nγ . Using the trapdoor t′ = lcm(p − 1, q − 1), the inversion procedure first applies the
decryption algorithm of [DJ01] to obtain y ∈ ZNγ and returns x = yP (θ)−1 mod Nγ .

As in [RS09, BFO08], Gabn(s′, θ, ·) has image size smaller than N in lossy mode. Hence, the average
min-entropy of x can be shown to be at least H̃∞

(
x|(Gabn(s′, θ, x), N, ~U)

)
≥ γλ/2− log(N) when

θ ∈ I.
We also note that the ABN function Gabn(s′, θ, ·) is not strictly injective for each branch θ 6∈ I,

but only for those such that gcd(P (θ), Nγ) = 1. However, the fraction of branches θ ∈ {0, 1}λ such
that gcd(P (θ), Nγ) 6= 1 is bounded by 2/min(p, q), which is negligible.

Moreover, the proof of theorem 4 is not affected if the TBE scheme is instantiated with this
particular ABN function and the LTDF of [RS09, BFO08]. As long as factoring is hard (which is
implied by the Composite Residuosity assumption), the adversary has negligible chance of making
decryption queries w.r.t. to such a problematic tag θ.

Lemma 4. The above ABN function satisfies the hidden lossy set property under the Decisional
Composite Residuosity assumption.

Proof. Consider an adversaryA that distinguishes two ABN functions with lossy sets IA = {θ?A,1, . . . , θ?A,n}
and IB = {θ?B,1, . . . , θ?B,n} of its choice. Let PA[T ] and PB[T ] be the nth degree polynomials having
their roots in IA and IB, respectively. We consider a sequence of games starting with GameA, where
the adversary is given an ABN with lossy set IA, and ending with GameB where the ABN has lossy
set IB. Then, we consider a sequence of hybrid games where, for j = 0, . . . , n − 1, GameH,j is
defined to be a game where U0, . . . , Uj are Damg̊ard-Jurik encryptions of the coefficients of PA[T ]
until degree j whereas Uj+1, . . . , Un−1 encrypt the coefficients of PB[T ]. Obviously, any adversary
distinguishing GameA from GameH,0 implies a semantic security adversary against Damg̊ard-Jurik
and the same argument applies to subsequent game transitions. The result follows by noting that
GameB is identical to GameH,n−1.

The above ABN function yields an IND-SO-CCA2 secure encryption scheme with ciphertexts
of constant (i.e., independent of n) size but a public key of size O(n). Encryption and decryption
require O(n) exponentiations as they entail an ABN evaluation. On the other hand, the private key
has O(1) size as well, which keeps the private storage very cheap. At the expense of sacrificing the
short private key size, the decryption algorithm can be optimized by computing x = G−1abn(t′, θ, c2)
(instead of x = F−1ltdf(t, c1)) so as to avoid computing Gabn(s′, θ, x) in the forward direction to check
the validity of ciphertexts. In this case, the receiver has to store the coefficients α0, . . . , αn−1 to
evaluate P (θ) when inverting Gabn.

It is also possible to extend the DDH-based ABO function described in [PW08] into an ABN
function. However, the next section describes a more efficient lossy TBE scheme based on the DDH
assumption.

4.8 An IND-SO-stag-wCCA2 TBE Scheme from the DDH Assumption

The DDH problem informally consists in, given (g, gx, gy, gz), to decide whether z = xy or not (a
rigorous definition is recalled in appendix

Rigorously,

Definition 5. The Decisional Diffie-Hellman (DDH) problem in a group G, is to distinguish

the distributions D1 = {x, y $← Zp : (g, gx, gy, gxy)} and D2 = {x, y $← Zp; z
$← Zp \ {xy} :
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(g, gx, gy, gz)}. The DDH assumption posits that, for any PPT distinguisher D, the following
function is negligible

AdvDDH
G,D (λ) = |Pr[D({(g,X, Y, Z)

$← D1 : g,X, Y, Z}) = 1]− Pr[D({(g,X, Y, Z)
$← D2 : g,X, Y, Z}) = 1]|.

The system builds on the DDH-based lossy encryption scheme of [NP01, PVW08, BHY09] and
could be seen as a variant of the encryption scheme described in [CKS08, Section 6.2], which is itself
situated half-way between the Cramer-Shoup [CS98, CS02] and CHK methodologies [CHK04].

Again, attention must be paid to the fact that the adversary sees n > 1 challenge ciphertexts
with different tags. To apply the technique of [CKS08] (which uses ideas that were initially proposed
for identity-based encryption [BB04]) in the security proof, we need some function of the tag to
cancel in the exponent for each target ciphertext. This issue can be addressed using the technique
of [CS06].

TBEKg(1λ): choose a group G of prime order p > 2λ with a generators g, h
$← G. Pick ai, bi

$← Zp,
for i = 0, . . . , n, and compute Ui = gai , Vi = hai , Wi = gbi , Zi = hbi and Y1 = gy, Y2 = hy

for a random y
$← Zp. Set the public key as pk = {G, g, h, ~U, ~V , ~W, ~Z,X1, X2} and define

the private key to be sk = (~a,~b, y), for (n + 1)-vectors ~U = (U0, . . . , Un), ~V = (V0, . . . , Vn),
~W = (W0, . . . ,Wn), ~Z = (Z0, . . . , Zn), ~a = (a0, . . . , an) and ~b = (b0, . . . , bn).

TBEEnc(pk, θ,m): to encrypt m under the tag θ ∈ Zp given pk,

1. Choose r, s
$← Zp and compute C0 = m · Y r

1 · Y s
2 , C1 = gr · hs.

2. Set C2 =
(∏n

j=0 U
θj
j

)r · (∏n
j=0 V

θj
j

)s
and C3 =

(∏n
j=0W

θj
j

)r · (∏n
j=0 Z

θj
j

)s
.

Set the ciphertext as C =
(
C0, C1, C2, C3

)
.

TBEDec(sk, θ, C): given sk = (~a,~b, y), θ and C =
(
C0, C1, C2, C3

)
, return ⊥ if C2 6= C

∑n
j=0 ajθ

j

1 or

C3 6= C
∑n
j=0 bjθ

j

1 . Otherwise, return m = C0/C
y
1 .

This scheme is separable since functions f1, f2 and f3 can be defined so that C0 = f1
(
pk,m, (r, s)

)
,

C1 = f2
(
pk, (r, s)

)
and (C2, C3) = f3

(
pk, θ, (r, s)

)
. The chameleon-hash-based transformation thus

applies and we only have to prove that the TBE system satisfies IND-SO-stag-wCCA2 security.

Theorem 5. For any adversaryAmaking q decryption queries, we have AdvIND-SO-stag-wCCA2
A (λ) ≤

AdvDDH
G (λ) + q/2λ.

Proof. The proof consists of a sequence of games, the first one of which is the real game. In all
games, we call Si the event that the adversary A outputs 1 in Gamei.

Game0: the adversary chooses n tags θ?1, . . . , θ
?
n and is supplied with a public key for which ~U , ~V ,

~W , ~Z, Y1, Y2 are generated such that Y1 = gy, Y2 = hy, for some y
$← Zp, and Ui = gai , Vi = hai ,

Wi = gbi and Zi = hbi for i ∈ {0, . . . , n} where (a0, . . . , an)
$← (Zp)n+1 and (b0, . . . , bn)

$← (Zp)n+1.

The adversary A makes decryption queries which the simulator D handles using sk = (~a,~b, y),
where ~a = (a0, . . . , an), ~b = (b0, . . . , bn). After polynomially-many decryption queries, A makes a
unique challenge query for a message distribution M of her choice. Then, D uniformly samples n

plaintexts (m?
1, . . . ,m

?
n)

$←Mn and generates a vector of ciphertexts C? = (C[1]?, . . . ,C[n]?).
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For i ∈ {1, . . . , n}, let us call r?i , s
?
i ∈ Zp the random exponents that are used to generate C[i]?

such that C[i]? = (C?i,0, C
?
i,1, C

?
i,2, C

?
i,3) is equal to

(
m?
i · Y

r?i
1 · Y

s?i
2 , gr

?
i · hs?i ,

( n∏
j=0

U t
j

j

)r?i · ( n∏
j=0

V tj

j

)s?i , ( n∏
j=0

W tj

j

)r?i · ( n∏
j=0

Zt
j

j

)s?i ).
After having obtained the vector C?, A makes further decryption queries (C, θ) such that θ 6∈
{θ?1, . . . , θ?n}. At some point, she makes a corruption query and chooses a subset I ⊂ {1, . . . , n}
such that #I = n/2. At this stage, D returns {(m?

i , (r
?
i , s

?
i ))}i∈I . As for indices i ∈ {1, . . . , n} \ I

corresponding to unopened plaintexts, D only returns the actual plaintexts {m?
i }i 6∈I . The adversary

A makes further decryption queries (C, θ) subject to the rule that θ 6∈ {θ?1, . . . , θ?n}. We call S0 the
event that A eventually outputs 1.

Game1: is the same as Game0 but we modify the generation of the public key. Namely, to generate
pk = {G, g, h, f, ~U, ~V , ~W, ~Z, Y1, Y2}, the simulator D first computes X1 = gx and X2 = hx, for a

random x
$← Zp, and calculates Y1, Y2 and vectors (~U, ~V , ~W, ~Z) in the following way. The simulator

D uniformly picks αn, β0, . . . , βn, γ0, . . . , γn
$← Zp. It obtains coefficients αn−1, . . . , α0 by expanding

the polynomial P [T ] = αn(T − θ?1) . . . (T − θ?n) = αnT
n + αn−1T

n−1 + · · · + α1T + α0. Then, it

defines Y1 = gω1Xω2
1 and Y2 = hω1Xω2

2 for randomly drawn ω1, ω2
$← Zp. For each i ∈ {0, . . . , n},

it sets
Ui = Xαi

1 gβi , Vi = Xαi
2 hβi , Wi = Y αi

1 gγi , Zi = Y αi
2 hγi .

This implicitly defines private keys elements ~a,~b and y to be ai = αix + βi, bi = αiy + γi, for
i ∈ {0, . . . , n}, and y = ω1+xω2. The distribution of pk is not modified and we have Pr[S1] = Pr[S0].

Game2: we modify the decryption oracle. For a decryption query (C, θ) where C =
(
C0, C1, C2, C3

)
with θ /∈ {θ?1, . . . , θ?n}, D evaluates the polynomials Q2[T ] =

∑n
j=0 βiT

j and Q3[T ] =
∑n

j=0 γjT
j

for T = θ and computes Ai = (Ci/C
Qi(θ)
1 )1/P (θ) for i ∈ {2, 3}. The consistency of the ciphertext is

verified by checking whether Cω1
1 Aω2

2 = A3 and returning ⊥ if this is not the case.
This consistency check stems from the “Twin Diffie-Hellman trapdoor test” [CKS08, Theorem

2], the idea of which is the following. If C is well-formed, for any pair (r, s) such that C1 = grhs,
we must have A2 = Xr

1X
s
2 and A3 = Y r

1 Y
s
2 (so that A3 = Cω1

1 Aω2
2 and the test is successful).

Let us assume that there exists no r, s such that C1 = grhs, C2 = (gQ2(θ)X
P (θ)
1 )r(hQ2(θ)X

P (θ)
2 )s

and C3 = (gQ3(θ)Y
P (θ)
1 )r(hQ3(θ)Y

P (θ)
2 )s. The trapdoor test amounts to check whether there exists

τ = r + logg(h)s such that C1 = gτ , C2 = (gQ2(θ)+xP (θ))τ and C3 = (gQ3(θ)+yP (θ))τ . If this is not
the case, D obtains A2 = gxτ1 and A3 = gyτ2 such that either τ1 6= τ or τ2 6= τ . It is easy to see
that the trapdoor test cannot be satisfied if τ = τ1 and τ 6= τ2 and we thus assume that τ1 6= τ . In
this case, we can write A2 = gx(τ+τ

′
1), for some τ ′1 6= 0, and the value Cω1

1 Aω2
2 can in turn be written

gτ(ω1+xω2) ·gxτ ′1ω2 = gτy ·gxτ ′1ω2 , which is uniformly random from A’s view (since the product xω2 is
perfectly hidden). Moreover, conditionally on a fixed y = logg(Y1), the distribution of A3 does not

depend on xω2 since A3 = (C3/C
Q3(θ)
1 )1/P (θ) can be expressed as A3 = Cy1 · (h

Q3(θ)
P (θ) · Y2)s

′−s where

(s, s′) are such that s′ = s if C3 = C
Q3(θ)+yP (θ)
1 . It comes that the condition A3 = Cω1

1 Aω2
2 cannot

be satisfied with better probability than 1/q and C is thus rejected with probability 1− 1/q.
If the check succeeds, D returns m = C0/A3. We have |Pr[S2]− Pr[S1]| ≤ q/p ≤ q/2λ as Game

2 and Game 1 are identical until D accepts a ciphertext that would have been rejected in Game 1.

Game3: we modify again the generation of pk. Now, D computes X1 = gx and X2 = hx
′
, where

x
$← Zp, x′

$← Zp \ {x} (instead of X2 = hx). All other calculations (including the generation
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of C? and the decryption oracle) remain unchanged. In particular, D still knows the encryption
exponents r?i , s

?
i ∈ Zp that are used to encrypt C[i]?, for i ∈ {1, . . . , n}, and the exponents ~α, ~β,~γ

used in the previous game.
The decryption oracle still consistently handles decryption queries as they involve tags θ 6∈

{θ?1, . . . , θ?n}. For any queried ciphertext C = (C0, C1, C2, C3), given that logg(X1) 6= logh(X2),

there always exist (r, s) such that C1 = grhs and C2 = (gQ2(θ)X
P (θ)
1 )r(hQ2(θ)X

P (θ)
2 )s. For these

values (r, s), the decryption oracle obtains A2 = Xr
1X

s
2 . Likewise, there always exists a pair

of integers (r′, s′) satisfying C1 = gr
′
hs
′

and C3 = (gQ3(θ)Y
P (θ)
1 )r

′
(hQ3(θ)Y

P (θ)
2 )s

′
and D obtains

A3 = Y r′
1 Y

s′
2 . If C is well-formed, we have (r, s) = (r′, s′) and the oracle returns m = C0/A3 as

in previous games. If (r, s) 6= (r′, s′), A3 can be written A3 = Y r
1 Y

s1
2 , for some s1 6= s, so that

A3/(C
ω1
1 Aω2

2 ) = Y s1−s
2 6= 1G and the test rejects C.

Any notable difference between Game3 and Game2 would give a DDH-adversary. To construct
a distinguisher that bridges between these games, we consider a DDH instance (g, h,X1 = gx, X2)
and generate the public key as in Game1. It comes that key generation proceeds as in Game2 if
X2 = hx and mirrors Game3 otherwise. Hence, |Pr[S3]− Pr[S2]| ≤ AdvDDH

G (λ).
In Game3, ciphertexts C[i]? are statistically independent of plaintexts. Indeed, they are of the

form

(C?i,0, C
?
i,1, C

?
i,2, C

?
i,3) =

(
m?
i · Y

r?i
1 Y

s?i
2 , gr

?
i hs

?
i , (gr

?
i hs

?
i )Q2(t?i ), (gr

?
i hs

?
i )Q3(t?i )

)
,

so that, since A knows Q2(θ
?
i ) and Q3(θ

?
i ) in the information-theoretic sense, the information

revealed by C?i,1, C
?
i,2, C

?
i,3 is redundant and leaves p equally-likely candidates for the pair (r?i , s

?
i ).

The value Y
r?i
1 Y

s?i
2 is then easily seen to statistically hide m?

i since logg(Y1) 6= logh(Y2). Even
an all-powerful adversary would be unable to tell whether she obtains the real plaintext m?

i or a
resampled one. The proof is completed using a sequence of n hybrid games exactly as in the end
of the proof of theorem 4.

As in the Paillier-based scheme, the number n of target ciphertexts must be known at key
generation since public keys have size O(n). As long as n is not too large, the encryption cost
remains acceptable: if n is a linear polynomial in λ for instance, the encryption algorithm has
complexity O(λ4). Avoiding this dependency seems rather challenging (at least in the standard
model) with the current state of knowledge.

On the other hand, ciphertexts consist of a constant number of group elements and decryption
entails a constant number of exponentiations.

5 Conclusion

We showed that lossy encryption, which is known to provide IND-SO-CPA secure encryption
schemes, is implied by the re-randomizable encryption primitive as well as by

(
2
1

)
-Oblivious Trans-

fer (and thus also by PIR, homomorphic encryption and smooth hash proof systems).
Our constructions explain an existing scheme and give rise to new IND-SO-CPA secure cryp-

tosystems based on the Decisional Composite Residuosity (DCR) and Quadratic Residuosity (QR)
assumptions. These new schemes retain the efficiency of underlying protocols and immediately
yield simple and efficient IND-SO-COM secure commitments. From Paillier’s cryptosystem, we ad-
ditionally obtained the most bandwidth-efficient SEM-SO-CPA secure encryption scheme to date
and the first one based on the DCR assumption.
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In the chosen-ciphertext selective opening scenario, we described new schemes fitting indistin-
guishability and simulation-based definitions. As for the former, we showed how to reach security
in its sense using schemes with short ciphertexts. The recent results of Hofheinz [Hof11a] show
how create All-But-Many Lossy Functions, which can be used to eliminate the O(n) complexity in
terms of public key size in our constructions while retaining short ciphertexts. This significantly
increases the utility of our constructions.
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Appendix

A Selective Opening Secure Commitments

A.1 Re-Randomizable One-Way Functions

A family of functions F , indexed by a security parameter λ is called a re-randomizable one-way
function family if the following conditions are satisfied

• Efficiently Computable: For all f ∈ F , the function f : M × R → Y is efficiently
computable.

• One-Way: For all PPT adversaries A = (A1,A2),

Pr
[
f ← F ; (m0,m1, st)← A1(f); b← {0, 1}; r ← R; b′ ← A2(f(mb, r), st) : b = b′

]
<

1

2
+ ν

for some negligible function ν (of λ).

• Injective on the first input: For all m 6= m′ ∈M , and r, r′ ∈ R, f(m, r) 6= f(m′, r′). This
is equivalent to the statement f(m,R) ∩ f(m′, R) = ∅ for all m 6= m′ ∈M .

• Re-randomizable: For each f , there exists and efficient function ReRand such that, for all
m ∈M and r0 ∈ R, we have {r ← R; f(m, r)} ≈s {r ← coins(ReRand); ReRand(f(m, r0), r)}.

It is easy to see that the encryption algorithm from a re-randomizable encryption scheme is
immediately a re-randomizable one-way function. We note, however, that re-randomizable one-
way functions are a significantly weaker primitive since we do not require any kind of trapdoor.

A.2 Commitments from Re-Randomizable One-Way Functions

We begin by describing a construction of a simple bit commitment scheme that arises from any
re-randomizable one-way function. Let F be a re-randomizable one-way function family. The bit
commitment system is depicted on figure 4.

Parameter Generation: Commitment:

(f,ReRand)← F(1λ) r′ ← coins(ReRand)

r0, r1 ← R Com(b, r′) = ReRand(cb, r
′)

c0 = f(b0, r0) De-commitment:

c1 = f(b1, r1) To de-commit, simply reveal the randomness r′.

Figure 4: Commitments from re-randomizable one-way functions

This scheme has a number of useful properties. If b0 = b1, the scheme is statistically hiding by
the properties of ReRand. Alternatively, if b0 6= b1, the scheme is perfectly binding by the injectivity
of f on its first input. Now, the two modes are indistinguishable by the one-wayness of f . Combining
this with the preceding observations, we also obtain that the scheme is computationally binding if
b0 = b1 and computationally hiding if b0 6= b1.

The security analysis is very straightforward but, as this will be the foundation of all our
constructions, we include it hereafter.
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Lemma 5. If b0 = b1, the commitment scheme of figure 4 is statistically hiding. If b0 6= b1, then
it is perfectly binding.

Proof. If b0 = b1, we have

{r′ ← coins(Com) : Com(0, r′)} ≈s {s′ ← coins(Com) : Com(1, s′)},

by the definition of ReRand. On the other hand, if b0 6= b1, Com(0, r) ∈ f(b0, R) and Com(1, s) ∈
f(b1, R), but by the injectivity on the first input, these sets are necessarily disjoint .

Lemma 6. Instantiations of the scheme with b0 = b1 and b0 6= b1 are computationally indistin-
guishable.

Proof. This is exactly the one-way property of f .

Corollary 4. If b0 = b1, the scheme is computationally binding. If b0 6= b1, it is computationally
hiding.

Proof. Since the scheme is perfectly binding when b0 6= b1, breaking the binding property amounts
to a proof that b0 = b1. Since the two modes are computationally indistinguishable, no compu-
tationally bounded adversary can create such a “proof.” Similarly, since the scheme is perfectly
hiding when b0 = b1, breaking the hiding property amounts to showing that b0 6= b1, since the
two modes are computationally indistinguishable, no probabilistic polynomial-time adversary can
break the hiding property.

The ability to choose whether the commitment scheme will be statistically hiding or perfectly
binding is a valuable property, but it is the fact that this choice can be hidden from the committer
that makes this construction truly useful.

A.3 Definitions of Selective Opening Secure Commitments

Definition 6. (Indistinguishability of commitments under selective openings). A non-interactive
commitment scheme (Com,Dec) is indistinguishable under selective openings (or IND-SO-COM
secure) if, for any polynomial n, any n-message distribution M supporting efficient conditional
resampling and any PPT adversary A = (A1,A2), we have∣∣∣Pr

[
Aind-so-real = 1

]
− Pr

[
Aind-so-ideal = 1

]∣∣∣ < ν

for some negligible function ν, and where the games ind-so-real and ind-so-ideal are defined as follows

IND-SO-COM (Real): IND-SO-COM (Ideal):

m = (m1, . . . ,mn)←M m = (m1, . . . ,mn)←M
r1, . . . , rn ← coins(Com) r1, . . . , rn ← coins(Com)

(I, st)← A1

(
par,Com(m1, r1), . . . ,Com(mn, rn)

)
(I, st)← A1

(
par,Com(m1, r1), . . . ,Com(mn, rn)

)
b← A2

(
st,Dec(Com(mi, r1))i∈I ,m

)
m′ = (m′1, . . . ,m

′
n)←M|I,m[I]

b← A2

(
st,Dec(Com(mi, ri))i∈I ,m

′)

Figure 5: IND-SO-COM Security

More explicitly, in the real game, the challenger samples messages m = (m1, . . . ,mn) ← M
from the joint message distribution and picks random coins r1, . . . , rn ← coins(Com) to compute n
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commitments Com(m1, r1), . . . ,Com(mn, rn) which are sent to A along with a description of public
parameters par. The adversary A responds by choosing a subset I ⊂ {1, . . . , n} of size n/2. Then,
the challenger de-commits {Com(mi, ri)}i∈I and hands the result {(mi, ri)}i∈I to A. Finally, the
challenger sends m to the adversary A who eventually outputs a bit b ∈ {0, 1}.

The ideal game proceeds identically to the real game until the opening query. At this stage, the
challenger still de-commits {Com(mi, ri)}i∈I by revealing {(mi, ri)}i∈I to A. Instead of revealing
m however, it samples a new vector m′ ←M|I,m[I] from M conditioned on the fact that mi = m′i
for i ∈ I and sends it to A who eventually outputs a bit b ∈ {0, 1}.

A.4 IND-SO-COM Constructions from Re-Randomizable One-Way Functions

To construct an IND-SO-COM secure commitment scheme, it suffices to create a statistically hiding
commitment scheme as was demonstrated by Bellare, Hofheinz and Yilek [BHY09].

Theorem 6. [BHY09] Statistically-hiding commitment schemes are IND-SO-COM secure.

Since the commitment scheme constructed in Appendix A.2 is statistically hiding when b0 = b1,
we obtain the following corollary

Corollary 5. Re-randomizable one-way functions imply non-interactive IND-SO-COM commit-
ments.

Since re-randomizable encryptions imply re-randomizable one-way functions, we have

Corollary 6. Re-randomizable encryption implies non-interactive IND-SO-COM secure commit-
ments.

Perhaps more interesting is the case when b0 6= b1. The commitment scheme constructed in
Appendix A.2 is no longer perfectly hiding, so that Theorem 6 doesn’t apply. In this case, we can
still achieve IND-SO-COM security by using the indistinguishability of the two modes. Roughly,
this follows because an IND-SO-COM adversary must have similar probabilities of success against
both modes, otherwise it could be used to distinguish the modes. We then obtain the following
Corollary.

Corollary 7. Re-randomizable one-way functions imply perfectly-binding IND-SO-COM commit-
ments.

Since re-randomizable encryptions imply re-randomizable one-way functions, we have

Corollary 8. Re-randomizable encryption implies perfectly binding non-interactive IND-SO-COM
secure commitments.

Proof. The proof uses an equivalent definition of IND-SO-COM security where the adversary A is
presented with a challenger that either plays the real game or the ideal one depending on the value
of a secret bit, which A aims to guess.

Towards a contradiction, suppose there exists an IND-SO-COM adversary A that succeeds
against the protocol with probability 1

2 +ε when b0 = b1. We will use A to construct a distinguisher
D for the one-way game against the underlying re-randomizable one-way function f . In the one-
wayness game against f , the challenger samples a function f and sends it to D. D will respond by
sending {0, 1} to the one-wayness challenger and the latter samples r ← R and sends e = f(b, r)
to D. Now, D samples r′ ← R and generates e′ = f(0, r′). Then, D instantiates the commitment
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protocol by setting c0 = e, c1 = e′ and plays the IND-SO-COM game with the adversary A. If A
wins, D guesses b = 1 whereas, if A loses, D bets that b = 0. From Theorem 6, we know that, if
b = 0, then A succeeds with advantage ν for some negligible function ν. On the other hand, by
hypothesis, if b = 1, A wins the IND-SO-COM game with advantage ε. Now, it comes that

Pr[D wins ] = Pr[b = 1 ∩ A wins ] + Pr[b = 0 ∩ A loses ]

= Pr[A wins|b = 1] Pr[b = 1] + Pr[A loses|b = 0] Pr[b = 0]

=
1

2

(
1

2
+ ε+

1

2
− ν
)

=
1

2
+
ε− ν

2
.

Since ε is non-negligible and ν is negligible, D breaks the one-way property of f .

We note that these constructions require trusted setup, which is necessary given the results of
[BHY09], which showed a black-box separation between any primitive with a game-based definition
of security and perfectly binding IND-SO-COM secure commitments without trusted setup.

B Homomorphic Encryption

A public key cryptosystem given by algorithms (G,E,D) is called homomorphic if

• The plaintext space forms a group X, with group operation +.

• The ciphertexts are members of a group Y .

• For all x0, x1 ∈ X, and for all r0, r1 ∈ coins(E), there exists an r∗ ∈ coins(E) such that

E(pk, x0 + x1, r
∗) = E(pk, x0, r0)E(pk, x1, r1).

Notice that we do not assume that the encryption is also homomorphic over the randomness, as
is the case of most homomorphic encryption schemes, e.g. Elgamal, Paillier, and Goldwasser-
Micali. We also do not assume that the image E(pk,X,R) is the whole group Y , only that
E(pk,X,R) ⊂ Y . Since the homomorphic property implies closure, we have that E(pk,X,R) is a
semi-group. Notice also, that while it is common to use the word “homomorphic” to describe the
cryptosystem, encryption is not a homomorphism in the mathematical sense (although decryption
is).

We now show some basic properties from all homomorphic encryption schemes. These facts are
commonly used but, since our definition is weaker than the (implicit) definitions of homomorphic
encryption that appear in the literature, it is important to note that they hold under this definition
as well.

• E(pk,X,R) is a group.

• E(pk, 0, R) is a subgroup of E(pk,X,R).

• For all x ∈ X, E(pk, x,R) is the coset E(pk, x, r)E(pk, 0, R).

• For all x0, x1 ∈ X, |E(pk, x0, R)| = |E(pk, x1, R)|.

• If y is chosen uniformly from E(pk, 0, R), then yE(pk, x, r) is uniform in E(pk, x,R).
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• E(pk,X,R) is such that E(pk,X,R) ' X×E(pk, 0, R) and decryption is the homomorphism

E(pk,X,R)→ E(pk,X,R)/E(pk, 0, R) ' X.

We call a public key cryptosystem a homomorphic public key encryption scheme, if it is IND-
CPA secure and homomorphic.

If we make the additional assumption that we can sample in a manner statistically close to
uniform in the subgroup E(pk, 0, R), then the homomorphic cryptosystem (G,E,D) will be re-
randomizable.

Definition 7. A homomorphic encryption scheme is said uniformly sampleable if there is a PPT
algorithm sample such that the output of sample(pk) is statistically close to uniform on the group
E(pk, 0, R).

We note that, for all known homomorphic cryptosystems, we may define

sample(pk) = {r ← coins(E) : E(pk, 0, r)}.

It is not hard to see that this property does not automatically follow from the definition of
homomorphic encryption. Since all known homomorphic schemes satisfy it however, they are re-
randomizable.

B.1 Efficient Re-Randomizable Encryption from Uniformly Sampleable Homo-
morphic Encryption

Parameter Generation: Encryption:

(pk, sk)← G(1λ) r′ ← coins(sample)

r ← coins(E) c′ ← sample(pk, r′)

c = E(pk, b, r) return ca · c′
The public parameters are (pk, c) Decryption:

To decrypt a ciphertext c,

simply return D(c).

Figure 6: Lossy Encryption from uniformly sampleable homomorphic encryption

The scheme of section 3.1 only allows encrypting single bits. If the underlying cryptosystem
(G,E,D) can encrypt more than one bit at a time, we can increase the efficiency of this system,
by simply putting c0, c1, . . . , cn into the public key, and an encryption of i will be ReRand(pk, ci, r).
In most cases, however, we can increase the size of encrypted messages without lengthening the
public-key.

In particular, if (G,E,D, sample) is a uniformly sampleable homomorphic encryption scheme
and ZN ↪→ X. Then, we can encrypt elements of {0, 1, . . . , N − 1} instead of {0, 1} as showed by
figure 6.

If c = E(pk, 0, r), the scheme is lossy since all encryptions will be uniformly distributed in the
subgroup E(pk, 0, R). In contrast, if c = E(pk, 1, r), the scheme is injective by the correctness
of the decryption algorithm. This is the natural construction when working with the Paillier or
Damg̊ard-Jurik cryptosystems. We must use caution when applying this construction to Elgamal
since the inverse map ZN ↪→ X is not efficiently computable (it is the discrete log). In the context
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of commitments, it will not be a problem. On the other hand, when we want to view this as an
encryption scheme for multi-bit messages, the lack of efficient inversion is an issue. Fortunately, a
simple variant of Elgamal [NP01, PVW08, BHY09] is known to provide lossy encryptions from the
DDH assumption. It is noteworthy that the “plain” Elgamal is itself re-randomizable although it
is slightly less efficient than this modification.

C Simulation-Based Security

While we have mostly focused on an indistinguishability-based notion of security so far, Bellare et
al. [BHY09] also formalized a simulation-based notion of security under selective openings. Their
simulation-based definition of security intuitively seems stronger than the indistinguishability-based
definition even though it still remains unknown whether SEM-SO-ENC implies IND-SO-ENC.

Definition 8. (Semantic Security under selective openings). A public key cryptosystem (G,E,D)
is simulatable under selective openings (SEM-SO-ENC secure) if, for any PPT n-message sampler
M, any PPT adversary A = (A1,A2) and any poly-time computable relation R, there is an efficient
simulator S = (S1, S2) s.t.∣∣∣Pr

[
Asem-so-real = 1

]
− Pr

[
Asem-so-ideal = 1

]∣∣∣ < ν

for some negligible function ν, and where the games sem-so-real and sem-so-ideal are defined as
follows

SEM-SO-ENC (Real): SEM-SO-ENC (Ideal):

m = (m1, . . . ,mn)←M m = (m1, . . . ,mn)←M
r1, . . . , rn ← coins(E) (I, st)← S1(1λ)

(I, st)← A1

(
pk,E(m1, ri), . . . , E(mn, rn)

)
w ← S2

(
st, {mi}i∈I

)
w ← A2

(
st, (mi, ri)i∈I

)
Output R(m, w)

Output R(m, w)

Figure 7: SEM-SO-ENC Security

In the real game, the challenger samples m = (m1, . . . ,mn)←M from the joint message distri-
bution and picks random coins r1, . . . , rn ← coins(E) to compute E(m1, r1), . . . , E(mn, rn) which
are given to the adversary A. The latter responds by choosing a n/2-subset I ⊂ {1, . . . , n} and
gets back {(mi, ri)}i∈I . The game ends with A outputting a string w and the value of the game is
defined to be R(m, w).

In the ideal game, the challenger samples messages m = (m1, . . . ,mn) ← M from the joint
message distribution. Without seeing any encryptions, the simulator chooses a subset I and some
state information st. After having seen the messages {mi}i∈I and the state information but without
seeing any randomness, the simulator outputs a string w. The result of the game is R(m, w).

In essence, simulation-based security demands that an efficient simulator be able to perform
about as well as the adversary without having seen the challenge ciphertexts, the random coins or
the public key.

In [BHY09], Bellare, Hofheinz and Yilek proved that any lossy encryption scheme endowed with
an efficient opener procedure on lossy keys is SEM-SO-ENC secure.
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Definition 9. A lossy public-key encryption scheme with efficient opening is a tuple (Ginj, Glossy, E,D)
satisfying Definition 2, with the additional property that the algorithm opener is efficient, i.e.

• Openability. There is an efficient algorithm opener such that, if (pklossy, sklossy)← Glossy, for
all plaintexts x0, x1 ∈ X and all r ∈ coins(E), with all but negligible probability, it holds that
E(pklossy, x0, r) = E(pklossy, x1, r

′), where r′ ← opener(pklossy, x1, E(pklossy, x0, r)).

Theorem 7. [BHY09] Lossy Encryption with efficient opening is SEM-SO-ENC secure.

Proof. This is Theorem 2 in [BHY09].
The proof is straightforward, and we only sketch it here.

We proceed in a series of games.

• Game0 is the real SEM-SO-ENC experiment.

• Game1 is the same as Game0 but the adversary is given a lossy public key instead of a real
one.

• Game2 instead of giving the adversary the real randomness {ri}i∈I , the challenger uses the
efficient opener procedure to generate valid randomness.

• Game3 instead of giving the adversary encryptions of mi, the adversary is given encryptions
of a dummy message ξ, but the adversary is still given openings to actual messages {mi}i∈I
obtained from the opener procedure.

Now, the simulator can simulate Game3 with the adversary. The simulator generates a lossy
key pair, and encrypts a sequence of dummy messages and forwards the encryptions to A. The
adversary, A, replies with a set I, which S forwards to the challenger. Then S uses the efficient
opener procedure to open the selected messages for A. At which point A outputs a string w, and S
outputs the same string. Since the outputs of A in Game0 and Game3 are computationally close,
the outputs of S, and A in the real and ideal experiments will also be computationally close.

C.1 Selective Opening Security from the Composite Residuosity Assumption

Here, we discuss the application of construction of section B.1 to Paillier’s cryptosystem (a review
of the details of the Paillier cryptosystem can be found in Appendix F).

By defining ReRand(c, r) = c ·E(pk, 0, r) mod N2, we easily obtain a bandwidth-efficient IND-
SO-ENC secure encryption scheme via our general construction in section B.1. It was already
known how to obtain IND-SO-ENC security from the DCR assumption since Rosen and Segev
[RS09] and Boldyreva, Fehr and O’Neill [BFO08] showed how to build lossy-trapdoor functions using
Composite Residuosity and lossy TDFs imply IND-SO secure encryption [BHY09]. By applying
our construction to Paillier, we obtain a simpler and significantly more efficient construction than
those following from [BFO08, RS09] under the same assumption.

While the results of [BHY09] imply that IND-SO-ENC secure encryptions follow from DCR,
the question of SEM-SO-ENC secure encryptions was left open. The only previous construction of
SEM-SO-ENC secure encryption was given in [BHY09] under the Quadratic Residuosity assumption
(QR). From the Paillier and Damg̊ard-Jurik cryptosystems, we readily obtain a lossy encryption
scheme where the function opener is efficient. The results of [BY09, BHY09] then imply that the
resulting encryption scheme achieves SEM-SO-ENC security.
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To see that Paillier allows for efficient opening, recall that E(pk,m, r) = gmrN mod N2, where,
in lossy mode, g is an N th power (in which case, all ciphertexts are encryptions of 0) whereas its or-
der is a multiple of N in injective mode. Then, any lossy ciphertext c = E(pk,m, r) can be expressed
as c = rN1 mod N2 for some r1 ∈ ZN , which the opener can compute as r1 = (c mod N)1/N mod N
(recall that gcd(N,φ(N)) = 1) using the factorization of N and d = N−1 mod φ(N). Since g is
itself a N th residue in ZN2 , it can compute g0 ∈ ZN such that g = gN0 mod N2 in the same way. To

open c to m ∈ ZN , it has to find r′ ∈ Z∗N such that rN1 = gmN0 r′N mod N2, which is easily obtained
as r′ = r1g

−m
0 mod N .

So, the efficiency of opener reduces to the efficiency of taking N th roots modulo N , which is
efficiently feasible

if the factorization of N is known. Hence, we immediately obtain a simple and efficient SEM-
SO-ENC secure encryption system from the DCR assumption. We note that the possible use of
Paillier as a lossy encryption scheme was implicitly mentioned in [YY05] but, to the best of our
knowledge, its efficient openability property was never reported so far.

Corollary 9. Under the DCR assumption, Paillier’s cryptosystem is SEM-SO-ENC secure.

Since Paillier’s cryptosystem (in the same way as the Damg̊ard-Jurik extension) has smaller
ciphertext expansion than the Goldwasser-Micali cryptosystem, we end up with a more efficient
system than the only currently known SEM-SO-ENC secure cryptosystem.

D Lossy Encryption from Smooth Universal Hash Proof Systems

We recall the notion of a smooth projective hash family [CS02]. Let H be a hash family with keys
in the set K, i.e. for each k ∈ K, Hk : X → Π. Let L ⊂ X and α : K → S. We require efficient
evaluation algorithms such that, for any x ∈ X, Hk(x) is efficiently computable using k ∈ K.
Additionally, if x ∈ L and a witness w for x ∈ L is known, then Hk(x) is efficiently computable
given x,w, α(k).

Definition 10. The set (H,K,X,L,Π, S, α) is a projective hash family if, for all k ∈ K, the action
of Hk on the subset L is completely determined by α(k).

While α(k) determines the output of Hk on L, we need to ensure that it does not encode “too
much” information on k. This is captured by the following definition of smooth projective hash
family.

Definition 11. Let (H,K,X,L,Π, S, α) be a projective hash family, and define two distributions

Z1, Z2 taking values on the set X \ L × S × Π. For Z1, we sample k
$← K, x

$← X \ L, and set

s = α(k), π = Hk(x), for Z2 we sample k
$← K, x

$← X \ L, and π
$← Π, and set s = α(k). The

projective hash family is called ν-smooth if ∆(Z1, Z2) < ν.

The above basically says that, given α(k) and x ∈ X \L, Hk(x) is statistically close to uniform
on Π.

Let (H,K,X,L,Π, S, α) be an ν-smooth projective hash family for some negligible function ν.
We show a natural construction of Lossy Encryption. While smooth hash proof systems have a
natural lossiness property, the constructions of IND-CPA secure encryption from [CS02] are not
lossy encryption systems. The schemes described by Cramer and Shoup have two indistinguishable
types of ciphertexts: “good” ciphertexts are generated in L while “bad” ciphertexts are sampled

37



from X \L. By turning their construction around, we can use their ciphertexts (in the IND-CCA1
version of their schemes) as public keys and their public keys as our ciphertexts to get a construction
of Lossy Encryption.

• Injective key generation: Sample an element x ∈ L, along with the corresponding witness
w.
Set PK = x, SK = w.

• Lossy key generation: Sample an x ∈ X \ L. Set PK = x, SK = ⊥.

• Encryption: To encrypt a message m ∈ Π, pick k
$← K, and output c = (α(k), Hk(x) +m),

where Hk(x) is efficiently computable without the witness w because k is known.

• Decryption: Given a ciphertext c = (α(k), π), use the witness w and α(k) to compute
Hk(x). Output m = π −Hk(x).

The correctness of decryption follows immediately from the definitions and the indistinguisha-
bility of modes follows immediately from the hardness of the subset decision problem L ⊂ X. It
only remains to see that, in lossy mode, the ciphertext is statistically independent of the plaintext
m. But this follows immediately from the ν-smoothness of the hash proof system. Thus we arrive
at

Lemma 7. The scheme outlined above is a Lossy Encryption scheme.

The DDH-based lossy cryptosystem of [KN08, BY09, BHY09] is easily seen to be a particular
case of this construction. Given public parameters (g, h) ∈ G for a group G of prime order p, we
define X = G2 and L as the language L = {(Y1, Y2) = (gy, hy) : y ∈ Zp}, so that w = y serves
as a witness for the membership in L. We also define k to be a random pair (r, s) ∈ (Zp)2 and
α(k) = gr · hs in such a way that Hk((Y1, Y2)) = Y r

1 · Y s
2 is easily computable using (r, s) and

independent of α(k) when (Y1, Y2) 6∈ L.
Other known projective hash functions (e.g., [CS02]) immediately suggest new lossy encryption

systems based on the Composite and Quadratic Residuosity assumptions that differ from currently
known schemes. Yet another realization can be readily obtained from the Decision Linear assump-
tion [BBS04], which is believed to be weaker than DDH.

E Chosen-Ciphertext Security: Simulatability

The simulation-based definition of [BY09, BHY09] also extends to the chosen-ciphertext scenario
and involves an efficiently computable relation R.

• Selective opening query: let M be a message distribution. The challenger samples a
n-vector m = (m1, . . . ,mn)←M and generates

(c1, . . . , cn) = (E(pk,m1, r1), . . . , E(pk,mn, rn)),

which are sent the adversary. We call c1, . . . , cn the target ciphertexts.

• Corruption query: the adversary chooses a subset I ⊂ [n] of cardinality #I = n/2 and
sends I to the challenger. The challenger then sends {(mi, ri)}i∈I to the Adversary.

The challenger then sends {mj}j 6∈I to the adversary.
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• Decryption queries: the adversary A chooses a ciphertext c that has never appeared as a
target ciphertext, and sends c to the challenger. If c is a valid ciphertext (i.e., D(c) 6= ⊥)
then the challenger responds with m = D(c).

After adaptively making polynomially many queries, with at most one of them being a selective
opening query, the adversary outputs w, and the value of the game is R(m, w).

In the ideal game, the challenger samples m = (m1, . . . ,mn)←M.

• The simulator chooses a subset, I ← S1.

• The simulator views the chosen messages and outputs a w, w ← S2({mi}i∈I).

The value of the game is R(m, w).

Definition 12. (SEM-SO-CCA2) A public key cryptosystem (G,E,D) is SEM-SO-CCA2 secure
if, for any PPT message distribution M, any PPT relations R any PPT adversary A, there is a
simulator S = (S1, S2) s.t. the outcome of real and ideal games are identical with all but negligible
probability, i.e.,

Pr[sem-cca2-real 6= sem-cca2-ideal] ≤ ν.

For some negligible function ν.
The notion of SEM-SO-CCA1 security is defined by means of similar experiments, but no

decryption query is allowed after the selective opening query in the real game.

Similarly to the indistinguishability case, we remark that, if the adversary is not allowed to
make decryption queries at all, this notion reduces to SEM-SO-ENC security.

E.1 Unduplicatable Set Selection

Unduplicatable set selection was used implicitly in [NY90] and [CIO98], and formalized in [Sah99].
The description below is essentially that of [Sah99].

The goal of unduplicatable set selection is to create a mapping from g : {0, 1}k → B such that,
for all distinct a1, . . . , an, an+1 ∈ {0, 1}k,

g(an+1) 6⊂
n⋃
i=1

g(ai).

In [Sah99], Sahai gives a simple construction based on polynomials which we recall here. Let
` = 2dlog2 2nke, so ` > 2nk, and let Y = F` × F`, and B ⊂ P(Y ). To each a ∈ {0, 1}k, we may
associate a polynomial

fa(x) = a0 + a1x+ · · · ak−1xk−1 ∈ F`[x].

Then, if we set
g(a) = {(t, fa(t)) : t ∈ F`} ⊂ Y,

we have |g(a)| = ` and, if a 6= a′, it holds that |g(a) ∩ g(a′)| ≤ k − 1. Thus,∣∣∣∣∣g(an+1) \
n⋃
i=1

g(ai)

∣∣∣∣∣ =

∣∣∣∣∣g(an+1) \
n⋃
i=1

g(an+1) ∩ g(ai)

∣∣∣∣∣
≥
∣∣g(an+1)

∣∣− n∑
i=1

∣∣g(an+1) ∩ g(ai)
∣∣ ≥ `− n(k − 1) ≥ `

2
.

We call g an (n, k)-unduplicatable set selector.
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E.2 Non-Interactive Zero-Knowledge

One of the most successful techniques for securing cryptosystems against chosen-ciphertext attacks
has been the Naor-Yung paradigm [NY90]. Roughly said, the idea is to encrypt the message twice
and include a non-interactive zero-knowledge (NIZK) proof that both encryptions encrypt the same
plaintext. The proof of security then uses the NIZK simulator to simulate the proof for the challenge
ciphertext. This method has since been refined in [DDN91, Sah99, SCO+01, Lin06] (among others).

Our construction of SEM-SO-CCA1 encryption follows the general Naor-Yung paradigm [NY90].
However, the selective opening of the encryption query poses new challenges. In particular, if we
naively try to apply the Naor-Yung technique, we immediately encounter difficulties because our
challenger must reveal the messages and randomness for half of the ciphertexts in the challenge.
This will immediately reveal to the adversary that the proofs were simulated. It requires new ideas
to overcome this difficulty.

We now give a brief definition of the properties of a non-interactive zero-knowledge proof of
knowledge with honest-prover state reconstruction (originally defined and constructed in [GOS06]).

Let R be an efficiently computable binary relation and let L = {x : ∃w such that (x,w) ∈ R}.
We refer to L as a language, x as a statement, and w as a witness. A non-interactive proof system
for L is a triple of PPT algorithms (CRSgen,Prover,Verifier) such that

• σ ← CRSgen(1λ): generates a common reference string σ.

• π ← Prover(σ, x, w): given x and a witness w for x s.t. R(x,w) = 1, the Prover outputs a
proof π.

• b← Verifier(σ, x, π): on inputs x and a purported proof π, Verifier outputs a bit b ∈ {0, 1}.

Definition 13. A triple (CRSgen,Prover,Verifier) is called a non-interactive zero-knowledge (NIZK)
proof of knowledge with honest-prover state reconstruction if it satisfies the following properties

• Completeness: For all adversaries A, there exists a negligible function ν such that

Pr
[
σ ← CRSgen(1λ); (x,w)← A(σ);π ← Prover(σ, x, w) : Verifier(σ, x, π) = 1 if (x,w) ∈ R

]
> 1−ν.

• Soundness: For all adversaries A, there is a negligible function ν such that

Pr
[
σ ← CRSgen(1λ); (x, π)← A(σ) : Verifier(σ, x, π) = 0 if x 6∈ L

]
> 1− ν.

• Knowledge Extraction: There is an extractor Ext = (Ext1,Ext2) such that, for all adver-
saries A,∣∣∣Pr

[
σ ← CRSgen(1λ) : A(σ) = 1

]
− Pr

[
(σ, τ)← Ext1(1

λ) : A(σ) = 1
]∣∣∣ < ν,

and

Pr
[
(σ, τ)← Ext1(1

λ); (x, π)← A(σ);w ← Ext2(σ, τ, x, π) : Verifier(σ, x, π) = 0 or (x,w) ∈ R
]
> 1−ν

For some negligible function ν.
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• Zero-Knowledge: There exists a simulator S = (S1, S2), such that for all adversaries A,∣∣∣Pr
[
σ ← CRSgen(1λ) : AProver(σ,·,·)(σ) = 1

]
− Pr

[
(σ, τ)← S1(1

λ) : AS′(σ,τ,·,·)(σ) = 1
]∣∣∣ < ν,

where S′ is defined

S′ =

{
S2(σ, τ, x) if (x,w) ∈ R,

⊥ otherwise.

• Honest-Prover State Reconstruction: There exists a simulator HSR = (HSR1,HSR2,HSR3)
such that for all adversaries A∣∣∣Pr
[
σ ← CRSgen(1λ);AProver(σ,·,·)(σ) = 1

]
− Pr

[
(σ, τ)← HSR1(1

λ) : AHSR(σ,τ,·,·)(σ) = 1
]∣∣∣ < ν,

where Prover(σ, x, w) samples r ← coins(Prover), sets π = Prover(σ, x, w, r) and returns (π, r)
whereas HSR samples r∗ ← coins(HSR2), sets π′ = HSR2(σ, τ, x, r

∗) and finally HSR sets
r′ ← HSR3(σ, τ, x, w, r

∗) and returns (π′, r′). Both oracles output ⊥ if (x,w) 6∈ R.

E.3 A SEM-SO-CCA1 Construction Based on the Naor-Yung Paradigm

Along with NIZK proofs with honest-prover state reconstruction, our construction relies on a num-
ber of common cryptographic tools. We will also require a strongly unforgeable one-time signature
scheme. In the SEM-SO-CCA1 game, a single encryption query is actually n separate encryptions
and we will require an unduplicatable set selector g for sets of size n (see Appendix E.1 for a
description of unduplicatable set selectors). Finally, we will require a lossy encryption scheme with
efficient opening.

While the construction outlined below uses a one-time signature scheme (as in [DDN91]), the
signature scheme can be removed and replaced by a strictly combinatorial construction as in [NY90].
We note that, although our construction is similar to the IND-CCA2 construction of [DDN91], the
proof of SEM-SO-CCA1 security does not extend to SEM-SO-CCA2 security because the adversary
learns the signing keys used for half of the ciphertexts in the challenge query, which allows her to
create arbitrary signatures corresponding to those verification keys. This appears to be a significant
problem when trying to adapt many of the known IND-CCA2 constructions to the IND-SO-CCA2
or SEM-SO-CCA2 settings.

Let Πso = (Gso, E,D) be an efficiently openable (and thus SEM-SO-ENC secure) lossy cryp-
tosystem. Let (G, Sign,Ver) be a strongly unforgeable one-time signature scheme where the public
key space in contained in {0, 1}λ. Let g be an (n, λ)-unduplicatable set selector and let ` = |g(0λ)|
and L = g({0, 1}λ).

Let (CRSgen,Prover,Verifier) be a NIZK proof of knowledge with honest-prover state recon-
struction for the language given by the relation ((e0, e1), (m, r0, r1)) ∈ R if e0 = E(m, r0) and
e1 = E(m, r1).

Our SEM-SO-CCA1 scheme works as follows.

• KeyGen: Generate two key pairs for Πso and reference strings for the NIZK proof system

(pk0, sk0)← Gso(1
λ), (pk1, sk1)← Gso(1

λ), and σi ← CRSgen(1λ) for i ∈ L.

Set pk = (pk0, pk1, {σi}i∈L) and sk = (sk0, sk1).
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• Encryption: Pick random coins

rsig ← coins(Sign), r0 ← coins(E), r1 ← coins(E), rnizki ← coins(Prover) for i = 1, . . . , `.

Generate keys (vk, sk) = G(rsig) for a one-time signature using randomness rsig.

To encrypt a message m, calculate

e0 = E(pk0,m, r0), e1 = E(pk1,m, r1).

Using the witness w = (m, r0, r1), generate NIZK proofs

π = (π1, . . . , π`) = (Prover(σi, (e0, e1), w))i∈g(vk)

using rnizki in the ith iteration of Prover. Generate a signature sig = Sign(e0, e1, π) and output

c = (vk, e0, e1, π, sig).

• Decryption: Given a ciphertext c = (vk, e0, e1, π, sig), check that Ver(vk, (e0, e1, π)) = 1,
and return ⊥ otherwise. For each i ∈ g(vk), check that Verifier(σi, (e0, e1), πi) = 1 and return
⊥ otherwise. If all checks are successful, return m = D(sk0, e0).

Theorem 8. This scheme is SEM-SO-CCA1 secure.

Proof. We will show how to use an adversary A in the sem-cca1-real game to construct a simulator
for the sem-cca1-ideal game. To do this, we begin by considering a series of games.

• Game0: is the actual sem-cca1-real game.

• Game1: is as Game0 but the verification keys (vkchal,1, skchal,1), . . . , (vkchal,n, skchal,n) to be
used in the challenge ciphertexts are chosen during the parameter generation phase. In addi-
tion, we raise a failure event F1, which is the occurrence of a decryption query (vk, e0, e1, π, sig)
such that vk = vkchal,j for some j ∈ {1, . . . , n}.

• Game2: is identical to Game1 but the common reference strings are now generated as

σi =

{
σ ← CRSgen(1λ) if i ∈ g(vkchal,j) for some j ∈ [n]

the first output of (σ, τ)← Ext1(1
λ) otherwise.

In addition, to handle decryption queries (vk, e0, e1, π, sig), we now use any index i 6∈ g(vk) ∈
{1, . . . , `} to recover (m, r0, r1) from the proof πi using the trapdoor τi of the extractable
reference string σi. Such an index i ∈ {1, . . . , `} must exist since g(vk) 6⊂

⋃n
j=1 g(vkchal,j).

• Game3 in this game, we switch both pk0 and pk1 to the lossy mode and proceed as in Game2.

• Game4: we now use the honest-prover state reconstruction simulator HSR = (HSR1,HSR2,HSR3).
We first bring a new change to the generation of reference strings at the beginning of the game.
Namely, for each i ∈ L such that i ∈ g(vchal,j), for some j ∈ [n], we set (σi, τi) ← HSR1(1

λ).
Also, in the generation of target ciphertexts, we ignore the witnesses and simulate the “proofs”

π = {πi}i∈g(vkchal,j) = {HSR2(σi, τi, (e0, e1), r
∗
i )}i∈g(vkchal,j),
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for each i ∈ {1, . . . , `}, j ∈ {1, . . . , n}. Also, when the adversary asks for the opening of a
subset of the target ciphertexts, we use the honest-prover state reconstructor to generate

ri ← HSR3(σi, τi, (e0, e1), (m, r0, r1, r
∗
i )),

and return these ri (instead of the coins r∗i that were actually used to simulate proofs).

• Game5: in this game, the challenger generates all target ciphertexts as encryptions of a

dummy message ξ. In addition, the choice of m
$←M is postponed until the moment of the

opening query. When A asks for the opening of a subset of the target ciphertexts, we use
the efficient openability of (Gso, E,D) to generate {ri}i∈I that explain m[I]. Otherwise, the
simulator proceeds as in Game4.

Let Wi be the distribution of the adversary’s output in game i. Clearly, W0 is almost identi-
cal to W1 since, given that vkchal,1, . . . , vkchal,n are independent of the adversary’s view until the
challenge phase, the failure event F1 occurs with probability smaller than qnδ if q is the number
of decryption queries and δ is the maximal probability for a given verification key to be generated
by G. In other words, we only need the property that vk is unpredictable and we could use a
simple combinatoric argument as in [NY90]. However, a one-time signature scheme clearly has this
property as well.

To show that W1 and W2 are only negligibly different, notice that, by the unduplicatability
of g, there will always be at least one valid proof generated with an extractable CRS. Hence, we
will always be able to answer decryption queries. It comes that any significant difference between
Game2 and Game1 would imply the ability of the adversary to break either the soundness or the
knowledge extraction property of the proof system. By virtue of the latter’s security, W2 must be
negligibly close to W1.

Since the challenger never uses the decryption keys corresponding to pk0 and pk1 in Game2
(instead the challenger decrypts with the knowledge extractor), the distributions W2 and W3 must
be computationally indistinguishable. Otherwise, the challenger could distinguish injective keys
from lossy keys in the underlying lossy encryption scheme (Gso, E,D).

Now, it is easy to see that any PPT adversary that can distinguish between Game3 and Game4
can be used to distinguish honestly generated proofs for the real CRS of Game3 and the outputs
of the honest-prover reconstruction simulator (HSR1,HSR2,HSR3) (really n` such simulators) in
Game4. Such an adversary indeed breaks the indistinguishability of the honest-prover state recon-
struction simulator, losing a factor of n` (because we are making n` comparisons).

Finally, we also note that, for each challenge ciphertext, HSR2 generates proofs without using
witnesses and, since pk0 and pk1 are both lossy keys, each challenge ciphertext is statistically in-
dependent of the plaintext. Moreover, since Πso allows for efficient opening under lossy keys, the
challenger can open any such ciphertext to any desired plaintext without affecting A’s view. It
comes that the statistical distance between W5 and W4 is negligible.

Thus, we have shown that, for any efficient adversary A, the value of Game0 will be compu-
tationally indistinguishable from the value of Game5. Now, we show how to use the adversary of
Game5 to build a simulator for the sem-cca1-ideal game.

Specifically, the simulator runs A internally exactly as Game5 does. In particular, it generates
lossy keys pk0, pk1 and reference strings on its own and answers decryption queries as in Game2-
Game5. When A asks for a subset I, the simulator asks for openings of the same subset I. Using
{mi}i∈I , the simulator runs the efficient opening procedure of (Gso, E,D) to generate {ri}i∈I . As
in Game5, the simulator then uses the state reconstructor HSR3 to generate randomness that look
like an honest prover’s random coins for the witnesses {(mi, ri)}i∈I . Finally, when A outputs w,
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the simulator outputs the same w. Since A’s output in Game5 is indistinguishable from her output
in the sem-cca1-real game, the output of the simulator will be indistinguishable from A’s output in
the sem-cca1-real game.

A similar argument shows that this construction will be IND-SO-CCA1 if the underlying en-
cryption scheme is IND-SO-ENC instead of SEM-SO-ENC secure.

Notice, however, that if we consider the SEM-SO-CCA2 game, then Game1 and Game2 are
distinguishable. This is because when an adversary gets an opening of one of the challenge cipher-
texts, she also receives the secret key of the one-time signature used on that message. She can thus
sign any message using that verification key. This is the primary stumbling block when trying to
build SEM-SO-CCA2 (or IND-SO-CCA2) encryptions using one-time signature schemes.

F The Paillier Cryptosystem

We briefly review the Paillier cryptosystem [Pai99] that was extended by Damg̊ard and Jurik [DJ01].
The cryptosystem works over Z∗N2 . From the Binomial Theorem, we have

(1 +N)a = 1 + aN mod N2,

so (1+N) generates a cyclic subgroup of order N . In this group, we can compute “partial” discrete
logarithms efficiently by L(x) = x−1

N , since L((1 + N)a) = L(1 + aN) = a. Now, if g generates
〈1 +N〉 and c = ga mod N2, we have a = L(c)L(g)−1 mod N .

• Parameter Generation:

– Generate primes p, q of length λ/2 and sets N = pq.

– Generate g ∈ Z∗N2 such that N divides the order of g.
This condition is easy to verify if you have the factorization of N .

The public parameters are pk = (N, g). The secret key is sk = lcm(p− 1, q − 1).

• Encryption: to encrypt m ∈ ZN , chooose r
$← Z∗N (r is actually drawn in ZN , but the

distributions are statistically close) and compute c = E(pk,m, r) = gmrN mod N2.

• Decryption: given a ciphertext c ∈ Z∗N2 ,

m =
L(csk mod N2)

L(gsk mod N2)
mod N.

This cryptosystem is IND-CPA secure under the Decisional Composite Residuosity assumption
(DCR), which (informally) says the following.

Assumption 1. Decisional Composite Residuosity (DCR): If N = pq is an λ-bit RSA
modulus,

{g ← Z∗N2 : g} ≈c {g ← Z∗N2 : gN}.
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