
13

Deterministic and Energy-Optimal Wireless Synchronization

LEONID BARENBOIM and SHLOMI DOLEV, Department of Computer Science,
Ben-Gurion University of the Negev
RAFAIL OSTROVSKY, Department of Computer Science, UCLA

We consider the problem of clock synchronization in a wireless setting where processors must minimize the
number of times their radios are used to save energy. Energy efficiency is a central goal in wireless networks,
especially if energy resources are severely limited, as occurs in sensor and ad hoc networks, and in many
other settings. The problem of clock synchronization is fundamental and intensively studied in the field
of distributed algorithms. In the current setting, the problem is to synchronize clocks of m processors that
wake up in arbitrary time points, such that the maximum difference between wake-up times is bounded by a
positive integer n. (Time intervals are appropriately discretized to allow communication of all processors that
are awake in the same discrete time unit.) Currently, the best-known results for synchronization for single-
hop networks of mprocessors is a randomized algorithm due to Bradonjic et al. [2009] of O(

√
n/m·poly-log(n))

radio use times per processor, and a lower bound of �(
√

n/m). The main open question left in their work
is to close the poly-log gap between the upper and the lower bound, and to derandomize their probabilistic
construction and eliminate error probability. This is exactly what we do in this article. That is, we show
a deterministic algorithm with radio use of �(

√
n/m), which exactly matches the lower bound proven in

Bradonjic et al. [2009] to a small multiplicative constant. Therefore, our algorithm is optimal in terms
of energy efficiency and completely resolves a long sequence of works in this area [Bradonjic et al. 2009;
Moscribroda et al. 2006; McGlynn and Borbash 2001; Polastre et al. 2004]. Moreover, our algorithm is
optimal in terms of running time as well. To achieve these results, we devise a novel adaptive technique
that determines the times when devices power their radios on and off. This technique may be of independent
interest.

In addition, we prove several lower bounds on the energy efficiency of algorithms for multihop networks.
Specifically, we show that any algorithm for multihop networks must have radio use of �(

√
n) per processor.

Our lower bounds hold even for specific kinds of networks, such as networks modeled by unit disk graphs
and highly connected graphs. Our results imply that the simple deterministic algorithm devised for
two-processor networks in Bradonjic et al. [2009] with efficiency O(

√
n) can be used in multihop networks,

and it is the most efficient solution in terms of energy use.

A preliminary extended abstract of this article appeared in the DISC 2011 conference.
Leonid Barenboim is supported by the Adams Fellowship Program of the Israel Academy of Sciences and
Humanities.
Shlom Dolev is supported in part by the ICT Programme of the European Union under contract number FP7-
215270 (FRONTS), Microsoft, Deutsche Telekom, a VeriSign.com grant, Israeli Defense Secretary (MFAT),
U.S. Air Force, and Rita Altura Trust Chair in Computer Sciences.
Rafail Ostrovsky is supported in part by NSF grants 0830803, 09165174, and 1016540, U.S.-Israel BSF grant
2008411, and grants from the OKAWA Foundation, IBM, Lockheed-Martin Corporation, and the Defense
Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-11-
1-0392. The views expressed are those of the author and do not reflect the official policy or position of the
Department of Defense or the U.S. government.
Aurhors’ addresses: Leonid Barenboim and Shlomi Dolev, Department of Computer Science, Ben-Gurion
University of the Negev, P.O.B. 653 Beer-Sheva 8410501, Israel; emails: leonidba@ca.bgu.ac.il; Dolev:
dolev@cs.bgu.ac.il; Rafail Ostrovsky, Department of Computer Science, University of California, Los An-
geles, 3732D Boelter Hall, Los Angeles, CA 90095-1596; email: rafail@cs.ucla.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2014 ACM 1550-4859/2014/06-ART13 $15.00

DOI: http://dx.doi.org/10.1145/2629493

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

http://dx.doi.org/10.1145/2629493

13:2 L. Barenboim et al.

Categories and Subject Descriptors: C.2.2 [Computer-Communication Networks]: Network Protocols

General Terms: Algorithms, Design, Performance

Additional Key Words and Phrases: Clock synchronization, energy efficiency, sensor networks

ACM Reference Format:
Leonid Barenboim, Shlomi Dolev, and Rafail Ostrovsky. 2014. Deterministic and energy-optimal wireless
synchronization. ACM Trans. Sensor Netw. 11, 1, Article 13 (June 2014), 25 pages.
DOI: http://dx.doi.org/10.1145/2629493

1. INTRODUCTION

Problem description and motivation. In wireless networks in general, and in sensor
and ad hoc networks in particular, minimizing energy consumption is a central goal.
It is often the case that energy resources are very limited for such networks. Consider,
for instance, a sensor network whose processors are fed by solar energy. In such cases,
devising energy-efficient algorithms becomes crucial. A significant energy use of a pro-
cessor takes place when its radio device is on. Then, it is able to communicate with
other processors in its transmission range whose radio devices are also turned on. How-
ever, it wastes significantly more energy than it would waste if its radio device were
turned off. For example, in typical sensor networks [Shnayder et al. 2004], listening
to messages consumes roughly as much energy as fully utilizing the CPU, and trans-
mitting consumes up to 2.5 times more energy. Moreover, if a processor runs in an idle
mode, and its radio device is off, it consumes up to 100 times less energy than it would
consume if its radio device were on. Therefore, the time that a processor can operate
using an allocated energy resource largely depends on how often its radio is turned on.

Processors in a wireless network may wake up at somewhat different time points.
For example, in the sensor network powered by solar energy, processors wake up in
the morning when there is enough light projected on their solar cells. If the processors
are spread over a broad area, then there is a difference in the wake-up times. The
processors’ clocks start counting from zero upon wake-up. Since there is a difference
in wake-up times, the clocks get out of synchronization. However, many network tasks
require that all processors agree on a common time counting. In such tasks, processors
are required to communicate only in certain time points and may be idle most of the
time. If the clocks are not synchronized, a certain procedure has to be invoked by each
processor to check the status of other processors. During this procedure, processors
may turn their radio on constantly. Therefore, clocks must be synchronized upon wake-
up to save energy and to allow the execution of timely mannered tasks. The clock
synchronization itself must be as efficient as possible in terms of energy use. It is
desirable that among all possible strategies, each processor selects the strategy that
minimizes its radio use. The energy efficiency of a processor is the number of time units
in which its radio device is turned on.

In this article, we devise energy-efficient clock synchronization algorithms. The goal
of a clock synchronization algorithm is setting the logical clocks of all processors such
that all processors show the same value at the same time. To achieve this goal, each
processor executes an adaptive algorithm, which determines the time points (with
respect to its local clock) in which the processor will turn its radio device on, for a
fixed period of time. Once a processor’s radio device is on, it is able to communicate
with other processors in its range whose radio devices are also on at the same time
interval.1 Based on the received information, a processor can adjust its logical clock

1In our model, more than one processor can transmit at a time without interference. This can be achieved
using standard multiple access schemes (CDMA, FDMA). Alternatively, one can use traditional radio broad-
cast over our scheme (e.g., see Bradonjic et al. [2009]. The problems of channel multiplexing, and of radio
broadcast, are different from the problem we address in this paper.

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

http://dx.doi.org/10.1145/2629493

Deterministic and Energy-Optimal Wireless Synchronization 13:3

and determine additional time intervals in which its radio device will be turned on.
This process is repeated until all processors are synchronized.

Our results. We consider single-hop networks of mprocessors, such that the maximum
difference between processors wake-up times is n. (Henceforth, the uncertainty param-
eter.) We devise several deterministic synchronization algorithms, the best of which
has radio efficiency O(

√
n/m) per processor. Our results improve the previous state-

of-the-art algorithms devised by Bradonjic et al. [2009]. Bradonjic et al. devised ran-
domized algorithms for synchronization single-hop networks, whose energy efficiency
is O(

√
n/m · polylog(n)) per processor. Therefore, our deterministic results improve the

best previous randomized results by a polylogarithmic factor. Moreover, Bradonjic et al.
proved lower bounds of �(

√
n/m) per processor for the energy efficiency of any determin-

istic clock synchronization algorithm for single-hop networks. Hence, our algorithms
are optimal in terms of radio use up to constant factors.

We close the gap between the performance of the currently best known randomized
and deterministic algorithms for this problem. This is particularly interesting, because
in many cases there exist (possibly inherent) significant gaps between randomized
and deterministic algorithms. Notable examples are consensus [Ben-Or 1983; Fischer
et al. 1985] where there is no deterministic solution, but there is a randomized one, or
Maximal Independent Set and O(�)-coloring for which the gaps between best-known
randomized and deterministic algorithms are exponential [Kothapalli et al. 2005; Luby
1986; Panconesi and Srinivasan 1995]. In addition, our algorithms do not employ heavy
machinery, as opposed to Bradonjic et al. [2009], where expanders and sophisticated
probabilistic analysis are employed. In contrast, we devise a combinatorial construc-
tion that quickly “spreads” processors’ radio use approximately equally in time, which
surprisingly allows them to synchronize more efficiently via chaining synchronization
messages with each other. As a result, our algorithm is also optimal in terms of running
time (up to a small constant factor). It runs in O(n) time and improves the running
time of Bradonjic et al. by a polylogarithmic factor.

We also prove lower bounds for multihop networks. We show that any determinis-
tic synchronization algorithm for an m-processor multihop network must have total
radio use �(m · √

n). In Bradonjic et al. [2009], a simple deterministic algorithm for a
two-processor network was devised with energy efficiency O(

√
n) per processor. It is

extendable to m-vertex networks, in the sense that each processor learns the differ-
ences between its clock and the clocks of its neighbors. The total radio efficiency of
the extended algorithm is O(m · √

n). As evident from our results, it is far from opti-
mal for single-hop networks. However, for multihop networks, its total radio efficiency
O(m · √

n) is the best possible up to constant factors. Our lower bounds hold even for
very specific network types such as unit disk graph and highly connected graphs.

High-level ideas. In the synchronization algorithm for m processors devised in
Bradonjic et al. [2009], each processor determines by itself the time points in which
it turns its radio on. The decision of a processor does not depend by any means on
the decisions of other processors. Such a nonadaptive strategy makes the algorithm
suboptimal unless the number of processors is constant. Moreover, the decisions are
made using randomization, and consequently, the algorithm may fail. (However, the
probability of failure is very low, since it is exponentially in n close to zero.) In contrast,
our algorithms are deterministic and adaptive. In our algorithms, periodically, each
processor deterministically decides for the time points in the future in which it will
turn its radio on. Each decision is made based on all information the processor has
learned from communicating with other processors before the time of decision. Such a
strategy decreases the number of redundant radio uses. In other words, the radio of a
processor is used only if this processor is essential for synchronization, and no other

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

13:4 L. Barenboim et al.

processor can be used instead. Since all processors use this strategy, the radio use of
each processor is as small as possible.

In the optimal case, a processor i, i = 1, 2, . . . , m, wakes up at global time
(i − 1) · �(n/m)�. Each processor considers an (almost) exclusive time interval of length
O(n/m). In other words, it may turn its radio on only within the O(n/m) first time
units from wake-up. The number of time units in which the radio is on is even smaller,
specifically, O(

√
n/m). The sum of lengths of all considered intervals is therefore O(n).

All of the considered intervals cover the entire time interval starting at the wake-up
of the earliest processor, and ending at the wake-up of the latest one. Each processor
has a time point in which it overlaps with the next processor—that is, in which both
processors turn the radio on. In the described case, all processors are synchronized in a
rely-race manner, where each processor is synchronized with the processor that wakes
up immediately after it. However, in general, the processors wake up at arbitrarily
global times in the range [0, n]. Therefore, there may be dense time intervals, in which
many processors wake up, and sparse time intervals, in which few processors wake
up, or even none at all. In this case, a difficulty arises due to the need of synchro-
nizing isolated intervals. We overcome this difficulty by devising a more sophisticated
synchronization algorithm.

Let V be an m-vertex set representing the processors of the network and E an
initially empty edge set. Each time a pair of processors u, v ∈ V communicate with
each other, add the edge (u, v) to E. Once the graph G = (V, E) becomes connected,
all m processors can be synchronized. Each time a processor turns its radio on, it
communicates with other processors that also turn their radio on in the same time.
Consequently, additional edges are added to E, and the graph G changes. In all time
points, the graph G consists of clusters. Initially, each vertex is a cluster, and clusters are
merged as time passes. Each time a new cluster is formed, the clocks of the processors
in the cluster are synchronized using our cluster synchronization procedures. Next,
each processor selects exclusive (with respect to other processors in the cluster) time
points in the future in which its radio will be turned on. For a sufficient number of
points, such a selection guarantees that one of the processors in the cluster will turn
the radio on in the same time with another processor from another cluster. This results
in merging of the clusters. Our algorithms cause all clusters to merge into a single
unified cluster that contains all m vertices very quickly.

Related work. Clock synchronization is one of the most intensively studied and
fundamentally important fields in distributed algorithms [Blum et al. 2004; Boulis
and Srivastava 2004; Boulis et al. 2003; Bush 2005; Chlebus et al. 2002; Elson
and Römer 2003; Fan et al. 2004; Herman et al. 2007; Honda and Nishitani 1981;
Kesselman and Kowalski 2005; Kothapalli et al. 2005; Kopetz and Ochsenreiter 1989;
Kowalski and Pelc 2003; Kowalski and Pelc 2003; Mills 1991; Moscribroda et al.
2006; McGlynn and Borbash 2001; Park and Corson 1997; Palchaudhuri and Johnson
2002; Polastre et al. 2004; Sichitiu and Veerarittiphan 2003; Schurgers et al. 2003;
Sivrikaya and Yener 2004]. The aspect of energy efficiency of clock synchronization
algorithms was concerned in most of these works. Polastre et al. [2004] devised an
algorithm with energy efficiency O(n) per processors. Each processor simply turns its
radio on for n+ 1 consecutive time units upon wake-up. Since the maximum difference
between wake-up points is n, this guarantees that all processors are synchronized.
More efficient solutions were devised by McGlynn and Borbash [2001], Palchaudhuri
and Johnson [2002], and Moscibroda et al. [2006]. In these solutions, each processor
turns its radio on for O(

√
n) time units that are randomly selected. Their correctness

is based on the birthday paradox, according to which there exists a time point that is
selected by two processors with high probability. In this time point, both processors
turn their radio on and are able to synchronize. Recently, Bradonjic et al. [2009]

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

Deterministic and Energy-Optimal Wireless Synchronization 13:5

devised a deterministic algorithm for synchronizing two processors with efficiency
O(

√
n). They also devised a randomized algorithm for synchronizing m processors

with efficiency O(
√

n/m · polylog(n)) per processor. The polylogarithmic factor in
the latter efficiency bound depends on the probability of correctness and grows as
the probability grows. The running time of this algorithm is O(n · polylog(m)). In
addition, Bradonjic et al. also prove that any deterministic algorithm for synchronizing
m processors has energy efficiency �(

√
n/m) per processor.

Energy-efficient clock synchronization has been also intensively studied in other set-
tings. In particular, Maroti et al. [2004] devised a clock synchronization protocol for
dynamic sensor networks with limited resources. An energy-efficient clock synchroniza-
tion protocol for environmental monitoring sensor networks was devised by Burri et al.
[2007]. A protocol for a closely related problem of neighbor discovery and rendezvousing
in mobile sensor networks was devised by Dutta and Culler [2008]. Additional synchro-
nization problems that do not deal with energy consumption were studied in various
threads of research. However, their description is beyond the scope of this article. For
more information, see, for example, the surveys of Lenzen et al. [2010], Sundararaman
et al. [2005], and Sivrikaya and Yener [2004].

Structure of the article. In Section 2, we describe the setting, building blocks, and
definitions used in our algorithms. Section 3 contains our synchronization algorithms.
Sections 4 contains lower bounds proofs. Section 5 discusses how to determine the
maximum difference of wake-up times in various scenarios.

2. PRELIMINARIES

2.1. The Setting

We use the following abstract model of a wireless network. We remark that although
this abstract model is quite strong, it is sufficiently expressive to capture a more
general case as explained in Barenboim et al. [2010] and Bradonjic [2009]. Global
time is expressed as a positive integer and is available for analysis purposes only. The
network is modeled by an undirected m vertex graph G = (V, E). The processors of
the network are represented by vertices in V and enumerated by 1, 2, . . . , m. These
numbers will be henceforth referred to as the Ids of the processors. For each pair of
processors u and v residing in the communication range of each other, there is an
edge (u, v) ∈ E. Communication is performed in discrete rounds. Specifically, time is
partitioned into units of equal size such that one time unit is sufficient for a transmitted
message to arrive at its destination and for a response to arrive back. (At the physical
level, this can be relaxed such that communication is possible if two processors turn
their radio on during intervals that overlap for at least one time unit.)

A processor wakes up in the beginning of a time unit, and its physical and logical
clocks start counting from zero. The clocks of all processors tick with the same speed
and are incremented in the beginning of each new time unit. The wake-up time of the
processors and, consequently, the clock values in a certain moment may differ. However,
the maximum difference between the wake-up times of any two processors is bounded
by an integer n, which is known to all processors. (In other words, each processor wakes
up with an integer shift in the range {0, 1, . . . n} from global time 0.) In Section 5, we
discuss how n can be determined by the processors in various scenarios. See Section 7
in Bradonjic et al. [2009] and Appendix B in Barenboim et al. [2010] for a discussion
on more general cases. Specifically, the wake-up shifts may be nonintegers and the
clock speeds may somewhat differ, as long as the ratio of different speeds is bounded
by a constant. To this end, each processor has to increase its transmission time by an
appropriate constant. In this way, processors can communicate even if they overlap
for a (sufficiently large) fraction of a time unit. Consequently, the algorithms can be
implemented in asynchronous wireless systems.

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

13:6 L. Barenboim et al.

Each processor has a radio device that is either on or off during each time unit. If
the radio device is off, its energy consumption is negligible. The energy efficiency of an
algorithm is the number of time units during which the radio device of a processor is
on. A pair of processors (u, v) ∈ E are able to communicate in a certain time unit t (with
respect to global time) only if the radio devices of both u and v are turned on during this
time unit. If several processors have their radios on in a certain time unit, all of them
can communicate without interference. This can be achieved by using standard channel
multiplexing techniques. For example, one can use the CDMA scheme and assign each
processor a unique code based on its Id prior to the execution of an algorithm.

2.2. Algorithm Representation

The running time f (n, m) of an algorithm is the worst-case number of time units that
pass from wake-up until the algorithm terminates. The algorithm specifies initial fixed
time points for a processor to turn its radio on. In addition, it adaptively determines
new time points each time a processor turns its radio on. The time points are deter-
mined by assigning strings to processors as follows. The strings of the m processors
are represented using a two-dimensional array A. The array A contains m rows. For
i = 1, 2, . . . , m, the ith row belongs to the ith processor. The number of columns of
A is n + f (n, m). All cells of A are set to 0, except the cells that are explicitly set to
1. (Initially, all cells are set to 0.) The algorithm specifies an initial fixed string Si
for each processor i. For i = 1, 2, . . . , m, suppose that processor i wakes up at time ti,
0 ≤ ti ≤ n, with respect to global time. Then, the ith row of A is initialized as follows.
For j = 0, 1, . . . , |Si| − 1, set A[i][ti + j] = Si[j] (Figure 1(a)).

For j = 0, 1, 2 . . . , at local time j, a processor i accesses the cell A[i][ti+ j]. A processor
i turns its radio device on at local time k ≥ 0 if and only if A[i][ti + k] = 1. If at global
time t the radio device of a processor i is on, then it can communicate with all processors
j in its communication range for which A[j][t] = 1. Based on the received information,
processor i deterministically decides whether to update cells in the row A[i]. However,
it can update only cells that represent time points in the future—that is, cells A[i][t′],
for t′ > t. Observe, however, that processor i is unaware both of global time and the
shift ti. (In particular, it is unaware of the index of the cell it is accessing in the row
A[i].) The algorithm terminates once all processors detect a column of ones—that is,
a column � such that for all 1 ≤ j ≤ m, it holds that A[j][�] = 1. (Once all processors
detect a column of ones, they all turn their radio on in the same time and synchronize
their clocks.) Note that the strings of the processors do not have to be exchanged.
Instead, a processor whose radio is on in a certain time unit can identify the other
processors whose radio is also on by communicating with them. This information is
sufficient for the processor to construct the column that represent that time unit. A
clock synchronization algorithm A is correct if for all i = 1, 2, . . . , m, for all shifts ti,
ti ∈ {0, 1, 2, . . . , n}, once A is executed by all processors there exists a column � such
that for all j = 1, 2, . . . , m, A[j][�] = 1 (see Figure 1(b)).

2.3. Building Blocks and Definitions

A radio use policy is a protocol for a processor i ∈ {1, 2, . . . , m} that determines the
local time points in which the processor i turns its radio on. For r = 0, 1, 2, . . ., in the
beginning of time unit r from wake-up, the processor i decides whether to turn its radio
device on as explained previously.2

For a fixed string s over the alphabet {0, 1} and a positive integer t, an (s, t)-radio
use policy of a processor i determines the local time units in which i turns its radio on.
For a processor i that wakes up at global time ti, we say that processor i performs an

2The decision process can also be performed using a decision tree.

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

Deterministic and Energy-Optimal Wireless Synchronization 13:7

Fig. 1. Example of the array A of three processors executing an algorithm with shifts t1 = 2, t2 = 1, t3 = 8.
(a) The array A is initialized with the strings S1 = S2 = S3 =′ 110101′. (b) The array A after the termination
of the execution.

(s, t)-radio use policy if it sets A[i][ti + t + j] = s[j], for j = 0, 1, . . . , |s| − 1, and turns its
radio device on accordingly. (Recall that processor i turns its radio device on at local tick
k if and only if A[i][ti +k] = 1.) The processor starts performing the policy at global time
ti + t. It completes the policy at global time ti + t+|s|−1. During this period, a processor
may select new time points in the future in which additional policies will be performed.

Next, we define the notion of length, covering weight, and covering density of a policy.
These definitions are used in the correctness analysis of the algorithms.

The length of an (s, t)-radio use policy p, denoted len(p), is the difference between the
positions of the first and last “1” in s plus one. (In other words, if j is the smallest index
such that s[j] = 1, and k is the largest index such that s[k] = 1, then len(p) = k− j +1.)
Intuitively, the length of a policy is the time duration required for performing the policy.
For the (s, t)-radio use policy p, the string s is a concatenation of two substring s′ ◦ s′′,
defined by p. The substring s′ is called the initial part of s, and the substring s′′ is
called the main part of s. We say that i performs the initial part of p in global time t′ if
it performs the policy p, and the global time t′ satisfies t + ti ≤ t′ ≤ t + ti + |s′| − 1. If i
performs the policy p, and the global time t′ satisfies t + ti + |s′| − 1 < t′, we say that i
performs the main part of p.

We say that two processors i and j overlap if there is a global time point t′ in
which both processors turn their radio on. Two processors u and v can communicate
(either directly or indirectly) if they overlap, or if there exist a series of processors
w1, w2, . . . , wk, w1 = u, wk = v such that wi overlaps with wi+1, for i = 1, 2, . . . , k − 1.
If such a series does not exist, we say that there is a point of discontinuity between
u and w. A point of discontinuity is a global time point t′ in which either (1) there is
no processor that performs a radio use policy or (2) each processor that does perform
a radio use policy completes it in time t′. A global time interval (s′, t′) is continuous if
there are no points of discontinuity in it. For a continuous interval (s′, t′) such that s′
and t′ are discontinuity points, all processors performing a radio use policy during the
interval (s′, t′) form a cluster c. In this case, we say that c covers the interval (s′, t′). The
length of a cluster c that covers an interval (s′, t′), denoted len(c), is t′ − s′ + 1.

Each processor in a cluster adds weight to the cluster. Consequently, clusters contain-
ing many processors are heavier than clusters containing few processors. The covering
weight of a cluster c, denoted cwet(c), is the sum of lengths of policies of processors con-
tained in c. Consider two clusters c and c′ with the same covering-weight, but such that
the length of c is much shorter then the length of c′. Therefore, c′ covers a much longer
time interval. We show later in this article that clusters covering longer intervals are
“better” in a certain way. Consequently, c′ is better than c, although they have the same

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

13:8 L. Barenboim et al.

covering weight. On the other hand, a short and light cluster may be better than a long
and heavy one. Therefore, neither the length nor the covering weight of a cluster are
expressive enough to determine how “good” a cluster is. Hence, we add the notion of
covering density, which is the ratio between covering weight and length of a cluster.
The covering density of a cluster c, denoted cden(c), is cwet(c)

len(c) . Clusters of lower covering
density are considered as better clusters. (Observe that these definitions are different
from the usual definitions of string weight and density in which only the number of
ones in the string are counted.)

Next, we give similar definitions for intervals. The length of an interval q = (s′, t′),
denoted len(q), is t′ − s′ + 1. Suppose that during interval q there are � policies that
are performed. (Possibly, some have started before time s′, and some have ended after
time t′.) Let q1, q2, . . . , q� be the intervals contained in q in which the main parts of
the policies are performed. The covering weight of an interval q, denoted cwet(q), is
��

i=1len(qi). The covering density of the interval, denoted cden(q), is cwet(q)
len(q) .

3. SYNCHRONIZATION ALGORITHMS FOR SINGLE-HOP NETWORKS

3.1. Procedure Synchronize

In this section, we present a deterministic synchronization algorithm for complete
graphs on m vertices with energy efficiency O((

√
n/m) log n) per processor. In the next

section, we devise an algorithm with energy efficiency O(
√

n/m) per processor. This
result is optimal up to constant factors, as evident from the matching lower bound
�(

√
n/m) [Bradonjic et al. 2009]. As a first step, we define the following basic radio

use policy for a processor, consisting of two parts. Starting from local time t, for a
given integer k > 0, turn the radio device on for k consecutive time units. (Henceforth,
initial part.) Then, for the following k2 time units, turn the radio on only once in each
k consecutive time units. (Henceforth, main part.) In other words, starting from the
beginning of the main part, the radio is turned on during time units k, 2k, 3k, . . . , k2.
This completes the description of the policy. It henceforth will be referred as k-basic
policy. Its pseudocode is given next. The string s of the policy is defined by s[i] =
1, s[(i + 2) · k − 1] = 1 for 0 ≤ i < k. The length of a k-basic policy is k + k2, but the
number of time units in which the radio is used is only 2k. We remark that the k-basic
policy is defined for any positive integer k, but our algorithms employ policies in which
k = �(

√
n/m).

ALGORITHM 1: Procedure Basic-Policy(k,Tv)
A k-basic policy for a processor v starting from local time point Tv.
1: for i := 0, 1, 2, . . . , k2 + k − 1 do
2: s[i] := 0
3: end for
4: for i := 0, 1, 2, . . . , k − 1 do
5: s[i] := 1
6: s[(i + 2) · k − 1] := 1
7: end for
8: for each local time unit T := Tv, Tv + 1, . . . , Tv + k2 + k − 1 do
9: turn radio on in time unit T if and only if s[T − Tv] = 1
10: end for

Consider a pair of processors u and v that wake up at the beginning of global time
units tu and tv, respectively, such that tu < tv. Suppose that both processors use the
k-basic policy p upon wake-up and that tv − tu < len(p). Then, there is a global time
unit t in which both processors turn their radio devices on. In this case, we say that
the processors overlap (Figure 2). We summarize this fact in the next lemma.

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

Deterministic and Energy-Optimal Wireless Synchronization 13:9

Fig. 2. Two processors perform the 5-basic policy and overlap.

LEMMA 3.1. Suppose that processors u and v wake up at global time points tu < tv,
such that tv − tu < len(p), and execute the k-basic policy p upon wake up, for an integer
k > 0. Then, u and v overlap.

PROOF. We prove that the overlap occurs during the initial part of the policy
performed by v. If tv − tu < k, then at global time tv, less than k time units have
passed from the wake-up times of both processors. Hence, the overlap occurs at time
tv, since both processors turn their radio on for k consecutive time units upon wake-up.
Otherwise, k ≤ tv − tu < len(p). Since u turns its radio on in global time tu + len(p) − 1,
there exists a global time point t ≥ tv in which u turns its radio on. Let t′ be the
smallest integer such that t′ ≥ tv, and u turns its radio on in global time t′. Observe
that according to the k-basic policy, it holds that tv ≤ t′ < tv + k, since during the policy
execution there are no k consecutive time points in which u does not turn the radio
on. Since the processor v turns its radio on at global times tv, tv + 1, . . . , tv + k− 1, the
processors u and v overlap at time t′.

We say that processors synchronize their clocks if after the time point of synchroniza-
tion the logical clocks of the processors show the same value at the same time. Any two
overlapping processors synchronize their clocks as follows. Each processor executes the
following procedure called Procedure Early-Synch. During its execution, the processor
that began performing its radio policy later among the two is synchronized with the
other processor. In other words, the later processor updates its logical clock to be equal
to the logical clock of the earlier processor. (Observe that the clock value of the later
processor is not greater than that of the earlier processor, therefore clocks do not go
backward.) To this end, each processor maintains the local variables Id, τ, J, where Id
is the unique identity number of the processor, τ is the local clock value, and J is the
number of time units passed since the processor began performing the current radio
policy. The variable τ is updated in each time unit by reading the logical clock value and
assigning it to τ . The variable J is set to 0 each time the processor starts a radio use
policy and is incremented in each time unit. Each time a processor turns its radio on,
it transmits the message (Id, τ, J). Once a processor u receives a message (Idv, τv, Jv)
from a processor v, processor u determines whether it began its radio policy after v did.
If so, u updates its local clock to τv. If both processors begin their policy at the same
time, then the clocks are synchronized to the clock of the processor with the greater
Id. This completes the description of the procedure. The pseudocode is given next. The
following lemma states its correctness.

LEMMA 3.2. Procedure Early-Synch executed by two overlapping processors synchro-
nize their clocks.

PROOF. Recall that tv and tu are the global time points in which u and v begin
performing their radio use policies, respectively, and that 0 < tv − tu < len(p). The
correctness of the procedure follows from the fact that both processors u and v overlap.
If tv − tu < k, then the overlap occurs at global time tv. Otherwise, observe that any time
interval containing the initial part of the policy of v is of length k. It overlaps with u,
since in the radio policy of u, each sequence of zeroes is of length k − 1 followed by an
occurrence of 1. Hence, there is a global time unit t in which the radio devices of both

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

13:10 L. Barenboim et al.

ALGORITHM 2: Procedure Early-Sync()
A protocol for vertex u that performs a policy for any local round r.
Initially, Ju = 0.
1: τu := local clock value of u
2: if radio device is on then
3: send the message (idu, τu, Ju)
4: end if
5: if received a message (idv, τv, Jv) then
6: if (Ju < Jv) or (Ju = Jv and idu < idv) then
7: set local clock to τv

8: Ju := Jv

9: end if
10: end if
11: Ju := Ju + 1
Return Ju once the policy is completed.

processors are turned on. In this time unit, each processor receives a message from the
other one. Suppose that in time t the processor v receives the message (Idu, τu, Ju) from u
and the processor u receives the message (Idv, τv, Jv) from v. Then, exactly one processor
updates its clock to the clock value of the other processor. Specifically, if (Ju < Jv) or
(Ju = Jv and Idu < Idv), then u updates its clock to τv and the clock value of v remains
τv. Otherwise, v updates its clock value to τu and the clock value of u remains τu.

Procedure Early-Synch can be generalized for synchronizing a cluster containing
an arbitrary number of processors. Recall that all processors in the cluster perform
their policies in a time interval (s′, t′) containing no discontinuity points. Hence, a
message from a processor u can be delivered to all processors that begin performing
their policy after u does so. The message is received directly by all processors that
overlap with u and is propagated in a rely-race manner to other processors. In this way,
all processors in the cluster can be synchronized with the processor that was the first
to start performing its policy.

The generalized procedure is called Procedure Cluster-Synch. During its execution,
all processors u ∈ V perform the k-basic policy. A vertex u starts performing its policy
at local time point Tu that is passed to the procedure as an argument. (The argument is
passed by another procedure that invokes Procedure Cluster-Synch, which is described
later in this section.) Each processor u initializes a counter Ju that is set to 0 once the
policy starts and is incremented by 1 in each time unit. Recall that the local clock of
u is represented by the variable τu. Each time a radio device of a processor u is on, it
transmits the message (Idu, τu, Ju). For each received message (Idv, τv, Jv) from a vertex
v, if (Ju < Jv) or (Ju = Jv and Idu < Idv), then u updates its clock to τv and its counter
Ju to Jv. This completes the description of Procedure Cluster-Synch. Its pseudocode is
provided next. Its correctness is proven in Lemma 3.3. It follows from the observation
that all processors eventually synchronize their counters J with the counter of the
earliest processor in the cluster.

ALGORITHM 3: Procedure Cluster-Synch(Tu,k)
An algorithm for processor u.
1: Perform the k-basic policy starting from local time Tu
2: J := Early-Synch()
3: return J

LEMMA 3.3. For a fixed k > 0, suppose that processors v1, v2, . . . , v� perform Proce-
dure Cluster-Synch(Tvi , k), with the parameters Tv1 , Tv2 , . . . , Tv�

, respectively. If in the

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

Deterministic and Energy-Optimal Wireless Synchronization 13:11

resulting execution the processors v1, v2, . . . , v� form a cluster, then v1, v2, . . . , v� synchro-
nize their clocks to the clock of the earliest processor v1.

PROOF. Let t1, t2, . . . , t� be the global times in which the processors v1, v2, . . . , v�

begin performing their policy, respectively. Assume without loss of generality that
t1 ≤ t2 ≤ · · · ≤ t�. Assume also that v1 is the processor with the greatest Id among the
processors v j with tj = t1. We prove by induction on i = 1, 2, . . . , � that a processor vi is
synchronized with the earliest processor v1 once vi completes the initial part of its policy.

Base case (i = 2): Observe that v1 and v2 overlap, since there are no points of
discontinuity in the cluster. The overlap occurs during the execution of the initial
part of the policy of v2. Therefore, once v2 completes the initial part of its policy, it is
synchronized with v1.

Induction step: Suppose that once vi−1 completes the initial part of its policy, it is
synchronized with v1. Since there are no points of discontinuity, the processors vi−1
and vi overlap. Let t be the last global time point in which vi−1 performs the initial
part of its policy. (In other words, vi−1 completes the initial part of its policy at time
t.) The last time point t′ in which vi−1 and vi overlap occurs once vi−1 completes the
initial part of its policy, or later. Hence, t ≤ t′. By the induction hypothesis, at time t,
the processor vi−1 is synchronized with v1. From this point on, it remains synchronized
with v1. Hence, at time t′ ≥ t, the processor vi receives a message with the clock value
of v1 and updates its clock accordingly.

Next, we consider the most general problem in which m processors wake up at ar-
bitrary global time points in the time interval [0, n]. If each processor performs the
k-basic policy upon wake-up, then several clusters may be produced. The processors in
each cluster can be synchronized using Procedure Cluster-Synch. However, the execu-
tion of Procedure Cluster-Synch will not synchronize processors from distinct clusters
because any two distinct clusters are separated by a discontinuity point. We devise
a procedure, called Procedure Synchronize, that merges these clusters gradually, un-
til only a single cluster remains. To this end, the parameter k is selected to be large
enough to guarantee that certain clusters have large covering density. The processors
in a cluster with large covering density schedule the next policy execution times in a
specific way that enlarges the length of the cluster to the maximal extent.

Somewhat informally, the cluster is extended roughly equally to both of its sides. In
other words, there is an integer L > 0 such that in the next phase, the cluster begins
L time units earlier than in the previous phase and terminates L units later than in
the previous phase. For a precise definition, see Algorithm 4, line 14. The extension
of the cluster to both of its sides prevents time drifts; consequently, in each phase,
some clusters overlap. Overlapping clusters are merged into fewer clusters of greater
covering weight.

The procedure for extending the length of a cluster is called Procedure Flatten. It is
executed by processors in a synchronized cluster c and proceeds in two stages. The first
stage (see Algorithm 4, lines 1 through 3) is executed by each processor u in the cluster
once the processor u is synchronized with the first processor of the cluster v1 (in other
words, once u completes the initial part of its k-basic policy.) Then, the counters J of u
and v1 are also synchronized. A processor u schedules the next execution of its policy
to be executed in 2n − J time units. The second stage (Algorithm 4, lines 4 through
15) is executed once u performs the policy the next time. Observe that it is executed in
the same time by all processors in the cluster. All processors of the cluster turn their
radio on and learn the number of processors in the cluster, their Ids, and the length
of the cluster len(c) with respect to the first stage. (We describe how to determine
len(c) shortly.) Recall that the processors can communicate simultaneously without

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

13:12 L. Barenboim et al.

Fig. 3. Illustration of Procedure Flatten with four processors (� = 4).3

interference by using an appropriate channel multiplexing scheme (see Section 2.1).
Each processor sorts the Ids and finds its position μ in the sorting. If the current local
time is τ and the number of processors in the cluster is �, it schedules the next policy
execution to local time �2n + τ + len(c)−�·k2

2 + μ · k2� and returns this value.

ALGORITHM 4: Procedure Flatten(Ju, k)
A protocol for a vertex u, executed once u completes the initial part of its policy.
1: /*** First stage ***/
2: J := Ju
3: wait for 2n − J time units
4: /*** Second stage ***/
5: B := {(Idu, J)}
6: transmit (Idu,J)
7: for each received message m = (Idv ,J′) do
8: B := B∪ {m}
9: end for
10: B′ := sort B by Ids in ascending order
11: len(c) := (max{J′|(Id, J′) ∈ B′})
12: μ := the position of (Idu, J) in B′

13: � := |B|
14: next :=

⌊
2n + τu + len(c)−�·k2

2 + μ · k2
⌋

15: return next /* returned locally to the caller of this procedure */

The length of the cluster len(c) is equal to the difference between the global time
points of the beginning and the end of the cluster. Therefore, the length len(c) is deter-
mined by the latest processor in c. Once the latest processor v� completes its policy in
the first stage, its counter J� (which is synchronized with the counter of the earliest
processor) is equal to the number of time units passed since the cluster has started.
Once v� completes its policy, the entire cluster c is completed. Hence, at that moment,
it holds that len(c) = J�. All processors learn this value in the second stage (see step 11
in the pseudocode of Algorithm 4). This completes the description of the procedure. Its
properties are summarized next. Figure 3 provides an illustration.

LEMMA 3.4. Suppose that Procedure Flatten is executed by a cluster c of � processors
that is formed in a global time interval [p, q]. Then,

3Actually, at time t0 + 2n, it is sufficient for each processor to turn the radio on for a single time unit. The
figure reflects the description of the algorithm in which at time t0 + 2n, the entire k-basic policy is performed
(for analysis purposes). The length of this stage that starts at time t0 + 2n is shorter than the previous stage

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

Deterministic and Energy-Optimal Wireless Synchronization 13:13

(1) The second stage of Procedure Flatten is performed at global time p + 2n by all
processors of c.

(2) Performing the policies by the scheduling of the second stage forms a cluster c′ of
length � · k2.

(3) The cluster c′ covers an interval that contains the interval [4n+ p+q
2 − �·k2

2 , 4n+ p+q
2 +

�·k2

2].

To synchronize m processors that wake up at arbitrary times from the interval [0, n],
set k = �√8 · n/m�. Procedure Synchronize is performed in phases as follows. For
i = 1, 2 . . ., the ith phase starts in global time (i − 1) · 4n. In each phase, two iterations
are performed. Initially, in the first iteration of the first phase, each processor performs
the k-basic radio policy upon wake-up. Consequently, clusters are formed in the interval
[0, 2n]. Each cluster is synchronized using Procedure Cluster-Synch. In the second
iteration of the first phase, Procedure Flatten is performed. Then, the next phase
starts. In the first iteration of each phase, the k-basic policy is performed by each
processor starting from a time point that was scheduled for it in the previous phase
by Procedure Flatten. Consequently, new clusters are formed and synchronized. In the
second iteration, Procedure Flatten is performed and schedulings for the next phase
are determined. Procedure Synchronize terminates once the interval [i ·4n, i ·4n+2n] is
continuous, for an integer i > 0. A continuous cluster of length at least 2n necessarily
contains all m processors. Finally, Procedure Cluster-Synch is executed, causing all m
processors to synchronize. This completes the description of Procedure Synchronize.
The pseudocode is provided next.

ALGORITHM 5: Procedure Synchronize()
An algorithm for a processor v

1: k = �√8 · n/m�
2: τ = 0
3: for i = 1, 2, . . . , �log n� do
4: J := Cluster-Synch(τ , k)
5: τ := Flatten(J, k)
6: end for
7: Cluster-Synch(τ , k)

Procedure Synchronize preserves cluster distances in each phase in the following
sense. Suppose that processors u and v wake up at global times tu and tv, respectively.
Then, for i = 1, 2, . . . , log n, there are clusters ci and c′

i such that ci covers an interval
containing the point (tu + 4n · i), and c′

i covers an interval containing the point (tv +
4n · i). Moreover, the cluster ci contains the processor u, and the cluster c′

i contains the
processor v. This observation, which is a consequence of Lemma 3.4, is summarized
next.

COROLLARY 3.5. Suppose that a processor v performs the k-basic policy in time t ∈
[0, 2n]. If a cluster c covers an interval containing the time point (t + 4n · i) for some
integer i > 0, then c contains v.

In each phase of Procedure Synchronize, after the execution of Procedure Flatten,
the sum of lengths of produced clusters is at least k2 · m > 2n. Consequently, at least
two clusters overlap in each phase, and the number of clusters is decreased in each

in which the processors of the cluster C perform the k-basic policy (unless all processors in C are already
synchronized).

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

13:14 L. Barenboim et al.

Fig. 4. Illustration of the intervals pi . It holds that n′ = 2n.

phase. Hence, it is obvious that m phases are sufficient to merge all clusters into a
single cluster. However, the merging process is actually much faster. The next Lemma
states that after log n phases, there is a single cluster containing all m processors.

LEMMA 3.6. Once Procedure Synchronize is executed, the global time interval [�log n� ·
4n, �log n� · 4n + 2n] is continuous.

PROOF. Suppose without loss of generality that the length of the k-basic policy
k + k2 satisfies k + k2 ≤ n. (Otherwise, all processors overlap with the first awaking
processor, and the problem becomes trivial.) In the execution of Procedure Synchronize,
all processors perform the k-basic policy completely during the interval p0 = [t0, s0] =
[0, 2n]. Hence, the covering weight of the interval p0 is at least k2 ·m ≥ 8n. The covering
density of the interval is at least 4. We define a series of intervals p1 = [t1, s1], p2 =
[t2, s2], . . . , pλ = [tλ, sλ] as follows. For i = 0, 2, . . . , λ − 1, if cden([ti, � 1

2 (ti + si)�]) >

cden([� 1
2 (ti + si)�, si]), then pi+1 = [ti, � 1

2 (ti + si)�]. Otherwise, pi+1 = [� 1
2 (ti + si)�, si].

Observe that pi+1 is contained in pi. Figure 4 provides an illustration. The intervals
were chosen this way to guarantee that for i = 1, 2, . . . , λ, the covering density of pi is
at least 4. This property will be used in the sequel of this proof. Next, we define another
interval series p′

0, p′
1, . . . , p′

λ as follows: p′
0 = pλ, and for i = 1, 2, . . . , λ, p′

i = [t′
i , s′

i] =
[tλ−i + i · 4n, sλ−i + i · 4n]. (Intuitively, p′

i is the interval obtained by shifting pλ−i by i · 4n
time units.)

Set λ = �log n�. We prove by induction on i that p′
i is continuous, for i = 1, 2, . . . , λ.

Base (i = 1): Observe that the length of p′
0 is len(p′

0) = len(pλ) ≤ 2 (since len(pi) ≤
n/2i + 1). In addition, cden(pλ) ≥ 4. Hence, by Lemma 3.4 (3), once the clusters of the
first phase are flattened, the interval [4n+ tλ − len(pλ), 4n+ sλ + len(pλ)] is continuous.
Hence, the interval p′

1 is continuous.
Induction step: By induction hypothesis, assume that p′

i−1 = [tλ−i+1 + (i − 1) ·
4n, sλ−i + 1 + (i − 1) · 4n] is continuous. Thus, there is a cluster c that covers an interval
containing p′

i−1. By Corollary 3.5, the processors of clusters covering intervals that in-
tersect with pλ−i+1 are contained in c. Suppose that there are � processors in c. Since the
covering density of pλ−i+1 is at least 4, it holds that � · k2 ≥ 4 · len(pλ−i+1) = 4 · len(p′

i−1).
Hence, � ·k2 ≥ 4 · (sλ−i+1 − tλ−i+1) = 4 · (s′

i−1 − t′
i−1). By Lemma 3.4 (3), once the clusters of

the phase i are flattened. the interval [i·4n+tλ−i+1−len(pλ−i+1), i·4n+sλ−i+1+len(pλ−i+1)]
is continuous. Hence, the interval p′

i = [tλ−i + i · 4n, sλ−i + i · 4n] is continuous.

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

Deterministic and Energy-Optimal Wireless Synchronization 13:15

By Corollary 3.5 and Lemma 3.6, all m processors are synchronized during global
time interval [�log n� · 4n, �log n� · 4n + 2n]. Each processor performs the k-basic policy
a constant number of times in each phase. Hence, in each phase, the number of time
units in which each processor turns its radio on is O(k) = O(

√
n/m). The properties of

Procedure Synchronize are summarized in the following theorem.

THEOREM 3.7. Procedure Synchronize performs clock synchronization of m processors
waking up at arbitrary time points from the interval [0, n]. The energy efficiency of each
processor is O(

√
n/m · log n). The running time of Procedure Synchronize is O(n log n).

3.2. Procedure Dynamic-Synch

In this section, we show that by using more sophisticated procedures, one can achieve
energy efficiency of O(

√
n/m) per processor. We start with describing a gas station

riddle, whose solution gives an intuition to the main ideas of the procedures that we
devise in this section. A variation of this riddle can be found in Chapter 1 (Gasoline
Crisis) of Winkler [2003]. (See also Problem 21 in Chapter 3 of Lovasz [2007].) Consider
mgas stations that are arbitrarily placed on a one-way circular road. The total amount
of gas in all stations is sufficient for a car to complete exactly two laps on the road. The
car’s gas-tank is sufficiently large; hence, each time the car approaches a station, it can
add all the gas of the station to its tank. Can a car with an initially empty gas tank
start from one of the stations and complete an entire lap? The answer to this riddle is
affirmative. There always exists such a station. To find the station, select an arbitrarily
station p on the road. Place the car at the earliest station s
= p before p (with respect
to the driving direction) such that the car is able to arrive from s to p. In other words,
if the car is placed at any station that appears before s (i.e., not in the interval from
s to p), the car runs out of gas before arriving to s. (If there is no such station, then a
car placed at the station that succeeds p can complete an entire lap, and we are done.)
Figure 5 provides an illustration. The car drives from s to p. When it arrives at p, it
has enough gas to complete an entire lap, since the gas stations in the interval from
p to s do not have enough fuel to complete this interval. Consequently, the fuel of the
stations in the interval from s to p is sufficient for completing this interval plus another
complete lap.

In our algorithms, the stations represent processors. Using the fuel of a certain
station represents turning the radio on by the appropriate processor. However, using x
units of fuel represent a radio use of O(

√
x). For i = 1, 2, . . . , m, the goal of a processor i

is to execute its radio use policy in the time interval in which the car would use the gas
of station i. Since in each time unit the car uses the gas from only one station, there
are no time units in which more than one main part of a policy is executed. However,
for a processor to be able to determine the appropriate intervals, a more sophisticated
flattening procedure has to be used.

We devise a procedure called Dynamic Flattening. The use of dynamic flattening
allows completing the synchronization in two phases instead of O(log n) phases that
are required by Procedure Synchronize that was devised in the previous section. The
main difference of Procedure Dynamic Flattening comparing to Procedure Flatten is
that the scheduling stage is performed during the first execution of the policy rather
than in the end of a phase. This scheduling is performed only once, shortly after a
processor wakes up. A processor schedules the next execution of its policy to the first
available free interval—that is, an interval in which no other processor is scheduled.
To this end, a queue of processors is maintained by each cluster. Consequently, the next
policy execution of each processor v is scheduled in such a way that the main part of
v’s policy does not overlap with any of the other m− 1 processors when they execute
the main parts of their policies after scheduling. (In contrast, in Procedure Flatten the

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

13:16 L. Barenboim et al.

Fig. 5. A circular road with eight fuel stations. Each station contains an amount of fuel that is sufficient
for completing 1/4 lap. The driving directions is clockwise. A car that starts from station s can complete an
entire lap.

new scheduling of phase i guarantees only that the main part of the policy of v does not
overlap with any processor in the cluster containing v in phase i.) At time 2n, at least
1
2 m processors are scheduled one after the other to perform their policy. As a result,
the global interval [2n, 4n] is continuous. To guarantee that all m processors perform
their policy during this interval, each processor performs an additional independent
invocation of its policy at time 2n from wake-up.

The algorithm that employs this idea is called Procedure Dynamic-Synch.

Informal Description of Procedure Dynamic-Synch (for each processor
v ∈ V)

Step 1: The vertex v sets k := �√8 · n/m� and performs the initial part of the k-basic
policy.

Step 2: If during step 1 one of the following holds, (i) v does not discover any other
processor whose radio is turned on, or (ii) all discovered processors have woken up after
v did, or have woken up at the same time as v but have smaller Ids than that of v, then
v initializes a cluster c and an empty queue qc. The processor v enqueues itself on qc
and starts the main part of its policy once the initial part is complete.

Step 3 (Dynamic Flattening): Otherwise, a queue q is already initialized and main-
tained by the processor u currently executing the main part of its policy. (The queue
q was created by the earliest processor in the cluster and passed in a rely-race man-
ner. We stress that u is not necessarily the earliest processor in the cluster.) Then, v
enqueues itself on q by communicating with u and receives the number � of processors

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

Deterministic and Energy-Optimal Wireless Synchronization 13:17

Fig. 6. Illustration of Procedure Dynamic-Sync at time point t. Processors 1, 2, and 3 have already performed
the scheduled main part of their policy. Processors 4 and 5 are already scheduled but have not performed
their scheduled main part yet. Processor 6 will be scheduled once the main part of processor 5 is performed.

that appear in q before v. Suppose that u has performed the main part of its policy for r
rounds once communicating with v. Then, v schedules the next k-basic policy execution
such that the main part of its policy is executed in (� − 1) · k2 − r time units. Such
scheduling guarantees that policies of processors in q are executed one after the other
immediately, in the order they appear in q.

Step 4: Once a processor completes executing its main part, it dequeues itself from q
and passes q to the next scheduled processor (with which it necessarily overlaps).

Step 5: Execute the k-basic policy at time 2n + 1 from wake-up. (Independently of
steps 1 through 4.)

This completes the description of the procedure. (Figure 6 provides an illustration.)
Its formal description and pseudocode are given in Appendix A. Its properties are
summarized next.

LEMMA 3.8. Suppose that m processors wake up during the global time interval [0, n]
and execute Procedure Dynamic-Synch. Then, the following hold:

(1) For any pair of processors u and v, the time intervals in which their main parts are
executed are distinct (i.e., have no common time points) in the global interval [0, 2n].

(2) Each cluster c that covers an interval in [0, 2n] satisfies that cden(c) ≤ 1.
(3) There exists a cluster c′ that covers an interval containing the global time point 2n.

At global time 2n, the queue of c′ contains at least m/2 processors.

PROOF. (1) Let c be the dynamic cluster formed by Procedure Dynamic-Synch that
contains u. Let tc be the global time of wake-up of the earliest processor w in c. (The
time tc is also the start point of the original cluster of w.) Suppose that a processor u
has �u processors in c that wake up before u, or wake up at the same time as u but
have greater Ids. Procedure Dynamic Flattening schedules the main part of u to be
executed in the interval Iu = (tc + �u · k2, tc + (�u + 1) · k2]. If a processor v
= u belongs to
c, then �v
= �u. The interval in which the main part of v is executed is Iv = (tc + �v · k2,
tc + (�v + 1) · k2]. Hence, it holds that Iu ∩ Iv = ∅. If v does not belong to c, then by
definition, Iu and Iv do not have common time points.

(2) Consider a cluster c that covers an interval p = [s, t] in [0, 2n]. By (1), the main
parts of policies in c occur in distinct time intervals. Consequently, the sum of lengths
of the main parts is at most len(p). Hence, cden(c) ≤ 1.

(3) At global time point 2n, all processors have already woken up and entered queues.
By (2), at most m/2 processors performed the main part in the interval [0, 2n]. (Because

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

13:18 L. Barenboim et al.

k2 ·m/2 > 2n. Thus, if more than m/2 processors perform the main parts in the interval
[0, 2n], at least one cluster must have density greater than 1—a contradiction.) There-
fore, there exists a cluster c′ covering an interval containing the point 2n. At time point
2n, the queue of c′ contains all processors that have not executed the main part before
time 2n. Hence, it contains at least m/2 processors.

By Lemma 3.8 (3), at global time point 2n, at least m/2 processors are scheduled
consequently. Hence, the global interval [2n, 4n] is continuous. All m processors execute
their policy during this interval. Therefore, all m processors synchronize their clocks.
Each processor executes the k-basic policy (fully or partly) three times. The correctness
of Procedure Dynamic-Synch is summarized in the next theorem.

THEOREM 3.9. Procedure Dynamic-Synch synchronizes the clock of m processors that
wake up in the interval [0, n]. The energy efficiency per processor is O(

√
n/m).

Each processor completes the execution of Procedure Dynamic-Synch within at most
4n time units from wake-up. Therefore, the running time of the procedure is O(n).
Since in the worst case a processor may wait �(n) time units to exchange messages
with any other processor, this running time is tight up to constant factors. This fact is
summarized in the following theorem.

THEOREM 3.10. The running time of Procedure Dynamic-Synch is O(n). It is optimal
up to constant factors.

PROOF. The upper bound O(n) follows directly from the fact that all processors
synchronize their clocks during the global time interval [2n, 4n]. Next, we prove that
it is tight. Suppose for contradiction that there is a synchronization algorithm A with
running time o(n). Consider an execution X of A in which a single processor v wakes
up at global time 1, and all other processors wake up at global time n. The processor v
completes the execution of A in o(n) time—that is, before global time point n in which
all other processors wake up. Therefore, v does not exchange messages with other
processors. Next, consider an execution X ′ of A in which v wakes up at global time
point 2, and all other processors wake up at global time point n. In this execution, v
does not exchange messages with the other processors as well. Hence, the executions
of A by v are identical in X and X ′.

Suppose that v completes A after t time units from wake-up and sets the logical clock
to τv. Then, at global time point t + 2 + i, for any integer i ≥ 0, the logical clock of v in
execution X shows τv + 2 + i, and the logical clock of v in execution X ′ shows τv + 1 + i.
On the other hand, in both executions X and X ′, the logical clock of a processor u
= v
shows the same value τ(i,u). Obviously, either τ(i,u)
= τv + 2 + i or τ(i,u)
= τv + 1 + i.
Therefore, either in execution X or in execution X ′, the processor v is not synchronized
with the processor u. This is a contradiction to the correctness of A.

4. LOWER BOUNDS

In this section, we show strong lower bounds for energy use in clock synchronization in
general graphs. We consider two scenarios. In the first scenario, the energy efficiency
of an algorithm is the maximum energy efficiency of a processor. This is the scenario
discussed in previous sections. In the second scenario, the energy efficiency of an algo-
rithm is the average of energy consumed by the processors in the worst case. Observe
that the second scenario is weaker in the sense that an algorithm with energy efficiency
O(k) in the second scenario may have energy efficiency ω(k) in the first scenario. The
goal of an efficient algorithm in the first scenario is minimizing the maximum radio
use of a processor. On the other hand, the goal in the second scenario is minimizing

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

Deterministic and Energy-Optimal Wireless Synchronization 13:19

the sum of energy used by all processors. We prove our lower bounds for both scenar-
ios. Moreover, our lower bounds apply not only to general graphs but also to specific
families of graphs that are used to model wireless networks, such as unit disk graphs.

We start with considering the first scenario, in which the energy efficiency of the
algorithm is the maximum energy efficiency of a processor. We require the following
results from Bradonjic et al. [2009].

LEMMA 4.1 [BRADONJIC ET AL. 2009]. In a two-processor network, for any deterministic
radio use policy used by two processors u and v, if u and v turn their radio on for o(

√
n)

times each, there exist waking up global times tu,tv ∈ [0, n] of u and v, respectively, such
that u and v do not overlap.

LEMMA 4.2 [BRADONJIC ET AL. 2009]. Suppose that each processor v1, v2, . . . , vm in the
complete graph of m processors turns its radio on for o(

√
n/m) time units. Then, for any

deterministic synchronization algorithm A, there are global time points t1, t2, . . . , tm ∈
[0, n] of wake up and execution of A by v1, v2, . . . , vm, respectively, such that no two
processors overlap.

By Lemma 4.1, a synchronization of any m-vertex network that contains an isolated
vertex w (a vertex with degree 1) has radio efficiency �(

√
n) per processor. Otherwise, if

all processors have radio efficiency o(
√

n), then there are global time points tw, t′
w ∈ [0, n]

such that w wakes up at time tw, the neighbor of w wakes up at time t′
w, and w does not

synchronize with its neighbor. Hence, if the goal is minimizing the maximum radio use
per processor, then any algorithm for general graphs has efficiency �(

√
n) per processor.

Next, we consider the second scenario, in which the energy efficiency of the algorithm
is the average of energy consumed by the processors. Surprisingly, we get the same
result even for this weaker scenario.

THEOREM 4.3. In any deterministic clock synchronization algorithm A for general
(connected) graphs, the sum of the processors’ radio use is �(m·√n). The energy efficiency
of A in both scenarios is �(

√
n).

PROOF. Let G′ = (V ′, E′) and G′′ = (V ′′, E′′) be complete graphs of m′ = m′′ = m/2
vertices each. Suppose for contradiction that there exist a synchronization algorithm
A for general graph of m processors in which the sum of radio use of all processors is
o(m

√
n). Then, in any invocation of A on a graph G = (V, E), there is a processor v ∈ V

whose radio use is o(
√

n). Suppose that all processors of G′ wake up at global time t′,
and all processors of G′′ wake up at global time t′′. Let X ′ denote an execution of A on
G′, and X ′′ the execution of A on G′′. There is a vertex v′ ∈ V ′ (respectively, v′′ ∈ V ′′),
whose radio use in the execution X ′ (resp., X ′′) is o(

√
n).

Consider the graph Ĝ = (V ′ ∪ V ′′, E′ ∪ E′′ ∪ (v′, v′′)) that is achieved from G′ and G′′
by connecting the vertices v′ and v′′ (Figure 7). For i, j ∈ {0, 1, . . . , n}, let X(i, j) be the
execution of A on Ĝ where all processors of V ′ wake up at time i, and all processors of
V ′′ wake up at time j. Since A synchronizes all processors of Ĝ, the processors v′ and
v′′ overlap in each execution X(i, j). Consider a two-vertex network H consisting of a
connected pair of vertices u,w. The vertex u simulates the graph G′, and w simulates G′′.
The vertex u (respectively, w) turns its radio on if and only if v′ (respectively, v′′) turns
its radio on. Once an algorithm A is invoked by u (respectively, w), it simulates locally
the execution of A on G′ (respectively, G′′). Once u and w overlap, the simulation is
terminated. For any execution X(i, j) on H, the processors u and w overlap, since v′ and
v′′ overlap in the execution of A on Ĝ. In each execution, each of the processors u and

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

13:20 L. Barenboim et al.

Fig. 7. The graph Ĝ is obtained by connecting the vertex v′ of G′ and the vertex v′′ of G′′.

w has a radio use of o(
√

n). This contradicts Lemma 4.1. Hence, at least m/2 vertices in
Ĝ (all vertices of G′ or all vertices of G′′) must have radio efficiency �(

√
n).

Theorem 4.3 applies also to unit disk graphs—that is, a graph in which all vertices
are placed in the plane and have the same transmission range.

COROLLARY 4.4. In any clock synchronization algorithm A for unit disk graphs, the
sum of the processors’ radio use is �(m·√n). The energy efficiency of A in both scenarios
is �(

√
n).

PROOF. Let r be the radius of transmission in a unit disk graph. Place the vertices
of V ′ on the border of a cycle c′ of radius 1/2 · r. Similarly, place the vertices of V ′′ on
the border of a cycle c′′ of radius 1/2 · r. Place v and v′ in distance r one from the other
such that all other vertices u′ ∈ V ′, u′′ ∈ V ′′ are in distance greater than r one from the
other. The lower bound in Theorem 4.3 applies for this construction as well.

In what follows, we present lower bounds for an even narrower family of �-connected
graphs. An �-connected graph is a graph in which there are at least � edge-disjoint
paths connecting any pair of vertices.

THEOREM 4.5. For a positive integer parameter � < m/4 − 2, in any clock synchro-
nization algorithm A for �-connected graphs, the sum of the processors’ radio use is
�(m · √

n/�). The energy efficiency of A in both scenarios is �(
√

n/�).

PROOF. Consider an m = 2m′ vertex graph Ĝ consisting of two complete graphs
G′ = (V ′ = {v′

1, v
′
2, . . . , v

′
m/2}, E′) and G′′ = (V ′′ = {v′′

1, v′′
2, . . . , v′′

m/2}, E′′). Let � be a
positive integer parameter such that � < m/4 − 2. For i = 1, 2, . . . , � + 2, the vertices
v′

i and v′′
i are connected. For i, j > � + 2, the vertices v′

i and v′′
j are not connected. It

is easy to see that Ĝ is an �-connected graph (Figure 8). Suppose that each vertex
v′

1, v
′
2, . . . , v

′
�, v

′′
1, v′′

2, . . . v′′
� turns its radio on for o(

√
n/�) time units. Then, by Lemma 4.2,

for any synchronization algorithm, there are time points such that no two processors
among v′

1, v
′
2, . . . , v

′
�, v

′′
1, v′′

2, . . . v′′
� overlap. Since the endpoints of each edge that connects

G′ and G′′ belong to {v′
1, v

′
2, . . . , v

′
�, v

′′
1, v′′

2, . . . v′′
� }, the network is not synchronized. Thus,

if there are at least � vertices in G′ that have radio use o(
√

n/�) each, and at least
� vertices in G′′ that have radio use o(

√
n/�) each, the network is not synchronized.

Consequently, at least m− 2� + 1 = �(m) vertices must use the radio for �(
√

n/�) time
units each to synchronize the network.

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

Deterministic and Energy-Optimal Wireless Synchronization 13:21

Fig. 8. The graph Ĝ is obtained by connecting the vertex v′
i of G′ and the vertex v′′

i of G′′, for i = 1, 2, . . . , �+2.

5. DETERMINING THE MAXIMUM DIFFERENCE BETWEEN WAKE-UP TIMES

The algorithms presented in previous sections assume that all processors know the
maximum difference between wake-up times n. In this section, we discuss how this can
be achieved in various scenarios.

Consider for instance an infrastructure monitoring system, such as a sensor network
that analyzes the robustness of bridges in case of typhoons. Such a system may consist
of hundreds or thousands of sensors that are spread over a path of several kilometers
in length. The sensors’ goal is to monitor the conditions of their surroundings in case of
heavy winds. Consequently, sensors have to wake up only when the wind speed reaches
a certain threshold. (An appropriate mechanism can be installed for waking up the
sensors, which is triggered by a sufficiently strong wind.) Obviously, not all sensors
wake up at once, since the speed of wind is not exactly the same in an area of several
kilometers. However, in case of a typhoon in the region, the speed will eventually exceed
the threshold in the entire area in which the sensors are spread. The time between the
moment in which the first sensor notices the strong wind and the last one does so can
be bounded as a function of the speed threshold and the maximum distance between a
pair of processors. Consequently, the value of the maximum difference between wake
up times n can be deduced.

Another example is sensor networks that are deployed gradually, such as sensors
that are distributed over a broad area using aircrafts. The sensors are thrown from the
aircrafts and wake up once they hit the ground. Consequently, the wake-up times differ,
but the maximum difference can be deduced from the size of the area and the speed of
deployment. A similar approach for deducing the parameter n can be applied in many
scenarios when n is bounded as a consequence of some physical phenomena. One such
example is a sensor network powered by solar energy in which sensors wake up once
they receive a sufficient amount of light. In such a network, the sensors wake up at
sunrise. However, if they are spread over a broad area, this will not happen at once.
On the other hand, the speed of earth’s rotation and the maximum distance between
sensors determines the parameter n.

6. CONCLUSION

In this article, we have devised optimal radio use deterministic algorithms for clock
synchronization in single-hop networks with energy efficiency �(

√
n/m). We also proved

lower bounds of �(
√

n) for multihop networks. Our results suggest that to beat this
bound of �(

√
n), each neighborhood in the graph must be highly connected, containing

no isolated regions. For wireless networks, this requires a certain level of uniformity
in the processors’ distribution. In other words, for each processor u, each neighbor

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

13:22 L. Barenboim et al.

of u must be in the communication range of a significant number of other neighbors
of u.

In Bradonjic et al. [2009], a deterministic synchronization algorithm was devised
for two-processor networks with efficiency O(

√
n). This algorithm can also be used

in multihop networks to synchronize each processor with its neighbors. The energy
efficiency in this case is O(

√
n) per processors. Somewhat surprisingly, our lower bounds

imply that this simple approach is optimal in general multihop networks.

APPENDIX

A. PROCEDURE DYNAMIC-SYNCH

The pseudocode of Procedure Dynamic-Synch is given next. Each vertex maintains the
local variables candidate, winner, and q. During the execution of the main part by a
processor v, the processor v is called a temporary leader. The goal of the procedure is
to guarantee that there is at most one leader at any time point. However, during the
execution of the algorithm, there may be numerous leaders since different processors
may become temporary leaders at distinct time intervals. To this end, each vertex u
initially sets its local variable candidate to true—that is, it is a candidate for leader-
ship. Then, it sends an initial message for k rounds. If u receives a response from a
leader, u cannot become a leader in this phase. Hence, u sets the variable candidate
as false. If, on the other hand, u does not receive a response from a leader during
the initial phase (the first k rounds), it can become a leader. However, an additional
processor may try doing so concurrently. To select exactly one leader at a time, a local
variable winner is maintained by each processor. Similarly to leadership, winning is
a temporary state. In other words, at any time point there is at most one winner, but
in different time points there may be distinct winners. A processor u is set as tempo-
rary winner only if in the first round performed by u there are no other winners, or if
all other potential winners have smaller Ids. (Consequently, these potential winners
lose.)

A temporary winner candidate becomes a temporary leader once its initial part
is complete. It sends a response for each initial message that it receives from other
processors. The response contains the information required for the other processor to
schedule a time interval in which it can become a temporary leader and execute its main
part exclusively. To this end, a temporary leader u maintains a queue q that initially
contains only Id(u). The queue q represents all processors that are already scheduled
to perform their main parts but have not completed the main parts yet. Each received
message with an Id of another processor v is enqueued on q. A response is sent with
the position of Id(v) in q. Consequently, any two distinct processors receive from u a
distinct position and schedule the executions of their main parts to distinct intervals.
Moreover, once u completes its main part, it pops its Id from q and passes q to the next
temporary leader that is scheduled right after u. Consequently, any two processors
schedule distinct time intervals for their main parts, even if they communicate with
different leaders.

The exact computation of the time interval to perform the main part is performed
by Procedure Dynamic Flattening as described earlier. Its pseudocode follows. The
procedure accepts as input the variables k, candidate, winner, q, �, di f . The variable �
is the position of the processor in the queue of the temporary leader. The variable di f
is the difference between the number of rounds that the main part of the leader has
executed and the number of rounds that the current processor has executed. Based on
this information, the processor schedules the time of execution of its main part and
becomes a temporary leader during this period.

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

Deterministic and Energy-Optimal Wireless Synchronization 13:23

ALGORITHM 6: Procedure Dynamic-Synch()
An algorithm for a processor v. The rounds are counted from wake-up.
1: k = �√8 · n/m� ; candidate := true ; winner :=true ; q := {Id(v)}
2: /*** initial part ***/
3: for rounds r := 1, 2, . . . , k do
4: transmit the message initial(Id(v), r)
5: for each received message initial(Id(u), ru) do
6: /* local processing of messages is by ascending order of Ids */
7: if (r = 1) and (ru > r or (ru = r and Id(u) > Id(v))) then
8: winner := false
9: end if
10: if Id(u) /∈ q then
11: q.enqueue(Id(u)) /* q[|q| + 1] := Id(u) */
12: end if
13: end for
14: if received the message initial-response(Id(v), �, r̂) then
15: candidate := f alse
16: Dynamic-Flattening(k, candidate, winner, q, � , r̂ − r)
17: end if
18: if r = k and candidate and winner then
19: for j = 1, 2, . . . , |q| do
20: transmit the message initial-response(q[j], j, 0)
21: end for
22: Dynamic-Flattening(k, candidate, winner, q, 0 , 0)
23: end if
24: end for
25: execute the k-basic policy independently starting from round 2n + 1

ALGORITHM 7: Procedure Dynamic-Flattening(k, candidate, winner, q, �, di f)
An algorithm for a processor v. The rounds are counted from wake-up.
1: if candidate and winner then
2: next := k
3: else
4: next := (� − 1) · k2 − di f
5: end if
6: /*** main part ***/
7: for rounds r :=next + k, next + 2k, . . . , next + k2 do
8: if (r = next + k) and not (candidate and winner) then
9: receive the message pass(q′)
10: q := q′

11: end if
12: for each received message initial(Id(u), ru) do
13: /* local processing of messages is by ascending order of Ids */
14: q.enqueue(Id(u))
15: end for
16: for j = 1, 2, . . . , |q| do
17: transmit the message initial-response(q[j], j, r − next)
18: end for
19: end for
20: on round next + k2 + k perform q.dequeue() and transmit the message pass(q)

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

13:24 L. Barenboim et al.

REFERENCES

L. Barenboim, S. Dolev, and R. Ostrovsky. 2010. Deterministic and energy-optimal wireless synchronization.
Retrieved June 17, 2014, from http://arxiv.org/abs/1010.1112.

M. Ben-Or. 1983. Another advantage of free choice: Completely asynchronous agreement protocols. In
Proceedings of the 2nd ACM Symposium on Principles of Distributed Computing (PODC’83). 27–
30.

P. Blum, L. Meier, and L. Thiele. 2004. Improved interval-based clock synchronization in sensor net-
works. Proceedings of the 3rd International Symposium on Information Processing in Sensor Networks
(IPSN’04). 349–358.

M. Bradonjic, E. Kohler, and R. Ostrovsky. 2009. Near-optimal radio use for wireless network synchro-
nization. In Proceedings of the 5th International Workshop on Algorithmic Aspects of Wireless Sensor
Networks (ALGOSENSORS’09). 15–28.

A. Boulis and M. Srivastava. 2004. Node-level energy management for sensor networks in the presence of
multiple applications. Wireless Networks 10, 6, 737–746.

A. Boulis, S. Ganeriwal, and M. Srivastava. 2003. Aggregation in sensor networks: An energy-accuracy
trade-off. Ad Hoc Networks 1, 2–3, 317–331.

N. Burri, P. von Rickenbach, and R. Wattenhofer. 2007. Dozer: Ultra-low power data gathering in sensor
networks. In Proceedings of the 6th International Symposium on Information Processing in Sensor
Networks (IPSN’07). 450–459.

S. F. Bush. 2005. Low-energy sensor network time synchronization as an emergent property. In Proceedings
of the 14th International Conference on Communications and Networks (ICCCN’05), 93–98.

B. Chlebus, L. Gasieniec, A. Gibbons, A. Pelc, and W. Rytter. 2002. Deterministic broadcasting in ad hoc radio
networks. Distributed Computing 15, 1, 27–38.

P. Dutta and D. Culler. 2008. Practical asynchronous neighbor discovery and rendezvous for mobile sens-
ing applications. In Proceedings of the 6th ACM Conference on Embedded Network Sensor Systems
(SenSys’08). 71–84.

J. Elson and K. Römer. 2003. Wireless sensor networks: A new regime for time synchronization. Computer
Communication Review 33, 1, 149–154.

J. Elson, L. Girod, and D. Estrin. 2002. Fine-grained network time synchronization using reference broad-
casts. In Proceedings of the 5th Symposium on Operating Systems Design and Implementation (OSDI’02).
147–163.

J. Elson and K. Römer. 2002. Wireless sensor networks: A new regime for time synchronization. In Proceed-
ings of the 1st Workshop on Hot Topics in Networks (HotNets-I’02).

R. Fan, I. Chakraborty, and N. Lynch. 2004. Clock synchronization for wireless networks. In Proceedings of
the 8th International Conference on Principles of Distributed Systems (OPODIS’04). 400–414.

M. Fischer, N. Lynch, and M. Paterson. 1985. Impossibility of distributed consensus with one faulty process.
Journal of the ACM 32, 2, 374–382.

T. Herman, S. Pemmaraju, L. Pilard, and M. Mjelde. 2007. Temporal partition in sensor networks. In
Proceedings of the 9th International Conference on Stabilization, Safety, and Security of Distributed
Systems. 325–339.

N. Honda and Y. Nishitani. 1981. The firing squad synchronization problem for graphs. Theoretical Computer
Sciences 14, 1, 39–61.

A. Kesselman and D. Kowalski. 2005. Fast distributed algorithm for convergecast in ad hoc geometric radio
networks. Journal of Parallel and Distributed Computing 66, 4, 578–585.

K. Kobayashi. 1978. The firing squad synchronization problem for a class of polyautomata networks. Journal
of Computer and System Science 17, 300–318.

K. Kothapalli, M. Onus, A. Richa, and C. Scheideler. 2005. Efficient broadcasting and gathering in wireless ad
hoc networks. In Proceedings of the IEEE International Symposium on Parallel Architectures, Algorithms
and Networks (ISPAN’05).

K. Kothapalli, C. Scheideler, M. Onus, and C. Schindelhauer. 2006. Distributed coloring in Õ(
√

log n)
bit rounds. In Proceedings of the 20th International Parallel and Distributed Processing Symposium
(IPDPS’06).

D. Kowalski and A. Pelc. 2003. Broadcasting in undirected ad hoc radio networks. In Proceedings of the 22nd
Annual Symposium on Principles of Distributed Computing. 73–82. ACM, New York, NY.

D. Kowalski and A. Pelc. 2003. Faster deterministic broadcasting in ad hoc radio networks. In Proceedings
of the 20th Annual Symposium on Theoretical Aspects of Computer Science (STACS’03). Lecture Notes
in Computer Science, Vol. 2607, 109–120.

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

Deterministic and Energy-Optimal Wireless Synchronization 13:25

H. Kopetz and W. Ochsenreiter. 1989. Global Time in Distributed Real-Time Systems. Technical Report 15/89.
Technische Universitat Wien, Wien Austria.

C. Lenzen, T. Locher, P. Sommer, and R. Wattenhofer. 2010. Clock synchronization: Open problems in theory
and practice. In Proceedings of the 36th International Conference on Current Trends in Theory and
Practice of Computer Science (SOFSEM’10). 61–70.

L. Lovasz. 2007. Combinatorial Problems and Exercises (2nd ed.). American Mathematical Society.
M. Luby. 1986. A simple parallel algorithm for the maximal independent set problem. SIAM Journal on

Computing 15, 1036–1053.
M. Maroti, B. Kusy, G. Simon, and A. Ledeczi. 2004. The flooding time synchronization protocol. In Proceed-

ings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys’04). 39–49.
D. L. Mills. 1991. Internet time synchronization: The network time protocol. IEEE Transactions on Commu-

nications 39, 10, 1482–1493.
T. Moscibroda, P. Von Rickenbach, and R. Wattenhofer. 2006. Analyzing the energy-latency trade-off during

the deployment of sensor networks (INFOCOM’06). In Proceedings of the 25th IEEE International
Conference on Computer Communications. 1–13.

M. McGlynn and S. Borbash. 2001. Birthday protocols for low energy deployment and flexible neighbor
discovery in ad hoc wireless networks. In Proceedings of the 2nd ACM International Symposium on
Mobile Ad Hoc Networking and Computing (MobiHoc’01). 137–145.

V. Park and M. Corson. 1997. A highly adaptive Distributed Routing algorithm for mobile wireless networks.
In Proceedings of the 16th Annual Joint Conference of the IEEE Computer and Communications Societies.
Driving the Information Revolution (INFOCOM’97). 1405.

S. Palchaudhuri and D. Johnson. 2002. Birthday paradox for energy conservation in sensor networks. In
Proceedings of the 5th Symposium of Operating Systems Design and Implementation.

A. Panconesi and A. Srinivasan. 1995. On the complexity of distributed network decomposition. Journal of
Algorithms 20, 2, 581–592. .

J. Polastre, J. Hill, and D. Culler. 2004. Versatile low power media access for wireless sensor networks. In
Proceedings of the 2nd International Conference on Embedded Networked Sensor Systems (SenSys’04).
ACM, New York, NY, 95–107

M. L. Sichitiu and C. Veerarittiphan. 2003. Simple, accurate time synchronization for wireless sensor net-
works. In Proceedings of the IEEE Wireless Communications and Networking Conference (WCNC’03).
1266–1273.

V. Shnayder, M. Hempstead, B. Chen, G. Allen, and M. Welsh. 2004. Simulating the power consumption of
large-scale sensor network applications. In Proceedings of the 2nd International Conference on Embedded
Networked Sensor Systems (SenSys’04). 188–200.

C. Schurgers, V. Raghunathan, and M. Srivastava. 2003. Power management for energy-aware communica-
tion systems. ACM Transactions on Embedded Computing Systems 2, 3, 431–447.

F. Sivrikaya and B. Yener. 2004. Time synchronization in sensor networks: A survey. IEEE Network: The
Magazine of Global Internetworking 18, 4, 45–50.

B. Sundararaman, U. Buy, and A. D. Kshemkalyani. 2005. Clock synchronization for wireless sensor net-
works: A survey. Ad Hoc Networks 3, 3, 281–323.

P. Winkler. 2003. Mathematical Puzzles: A Connoisseur’s Collection. A. K. Peters/CRC Press.

Received October 2012; revised November 2013; accepted January 2014

ACM Transactions on Sensor Networks, Vol. 11, No. 1, Article 13, Publication date: June 2014.

