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EFFECTIVE COMPUTATIONS ON SLIDING WINDOWS∗

VLADIMIR BRAVERMAN† AND RAFAIL OSTROVSKY‡

Abstract. In the streaming model, elements arrive sequentially and can be observed only once.
Maintaining statistics and aggregates is an important and nontrivial task in this model. These tasks
become even more challenging in the sliding windows model, where statistics must be maintained only
over the most recent n elements. In their pioneering paper, Datar et al. [SIAM J. Comput., 31 (2002),
pp. 1794–1813] presented the exponential histogram, an effective method for estimating statistics on
sliding windows. In this paper we present a novel smooth histogram method that is more general
and achieves stronger bounds than the exponential histogram. In particular, the smooth histogram
method improves the approximation error rate obtained via exponential histograms. Furthermore,
the smooth histogram method not only captures and improves multiple previous results on sliding
windows but also extends the class of functions that can be approximated on sliding windows. In
particular, we provide the first approximation algorithms for the following functions: Lp norms,
frequency moments, the length of the increasing subsequence, and the geometric mean.
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1. Introduction. Many recent applications deal with large data volumes for
which methods that require multiple data passes may be infeasible. For these appli-
cations, the data stream model is often more appropriate. In this model, data arrives
sequentially and can be observed only once. The number of data elements is unknown
and may be unbounded. A typical goal is to continuously maintain statistics or ag-
gregates over past data using minimal memory while keeping the desired precision of
the answers. In this scenario, it may be challenging to maintain even simple statis-
tics. Recently, numerous algorithms were developed for various problems in the data
stream model. We refer readers to the books of Muthukrishnan [31] and Aggarwal [2]
for detailed surveys on data steaming models and algorithms.

Most applications tend to discard old data and base their queries only on the
recent elements. Thus, the sliding window model, in which only the last n elements
are taken into consideration, is important in data stream processing. In this model we
separate past elements into two groups. Recent elements represent a window of active
or nonexpired elements, and the rest are expired. An active element may eventually
become expired, but expired elements stay in this status forever. Only active elements
are relevant for statistics or queries. The window can be sequence-based, where every
insertion corresponds to a deletion of the oldest element. In timestamp-based windows,
there is no restriction on the number of insertions and deletions. (Typically, each
element is associated with a timestamp, and the window contains all elements with
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2114 VLADIMIR BRAVERMAN AND RAFAIL OSTROVSKY

active timestamps.)

1.1. Notations. We use the following notations throughout our paper. We
denote the stream by D and pi, i ≥ 0 as its ith element. For 0 ≤ x < y we define
[x, y] = {i, x ≤ i ≤ y}. Bucket B(x, y) is the set of all stream elements between px
and py−1: B(x, y) = {pi, i ∈ [x, y − 1]}. For a function f that is defined on buckets,
we denote f(i, j) = f(B(i, j)). We denote N as the size of the stream and n as the
size of a window. For the Lp problem, we denote m as the size of a vector (number
of dimensions) that is presented by a stream. An algorithm maintains a (1 ± ε)-
approximation of function f on stream D if, at any moment, the algorithm outputs
f ′ such that (1− ε)f(D) ≤ f ′(D) ≤ (1 + ε)f(D). Similarly, an algorithm maintains a
(1± ε, δ)-approximation of function f if at any moment the algorithm outputs f ′ such
that (1 − ε)f(D) ≤ f ′(D) ≤ (1 + ε)f(D) with probability at least 1 − δ. We denote
Õ(f(m)) = 1

εO(1) (logm)O(1)(log n)O(1)f(m). We use notation B ⊆r A to indicate
that bucket B is a suffix of A; i.e., if A = {pn1 , . . . , pn2} (for some n1 < n2), then
B = {pn3 , . . . , pn2}, where n1 ≤ n3 ≤ n2. We denote by A ∪ C the union of adjacent
buckets A and C.

1.2. Problems, results, and related work. Research on the sliding window
model has a long history. In their pioneering paper, Datar et al. [17] gave effective
algorithms for such fundamental statistics as count and sum of positive integers, av-
erage, Lp, p ∈ [1, 2], etc. A further improvement to count and sum was reported by
Gibbons and Tirthapura [21], who provided memory- and time-optimal algorithms
for these problems. Lee and Ting [28] provided an optimal solution for a relaxed
version of the counting problem, where the correct answer is provided only if it is
comparable with the window’s size. Besides these basic statistics, numerous prob-
lems were effectively solved on sliding windows. Chi et al. [13] considered a problem
of frequent itemsets. Algorithms for frequency counts and quantiles were proposed
by Arasu and Manku [4] and by Lee and Ting [29]. Datar and Muthukrishnan [18]
solved problems of rarity and similarity. Babcock et al. [6] provided algorithms for
variance and k-medians problems. Feigenbaum, Kannan, and Zhang [19] presented
an efficient solution for the diameter of a data set in multidimensional space. Later,
Chan and Sadjad [11] presented optimal solutions for this and other geometric prob-
lems. Agarwal, Har-Peled, and Varadarajan [1] used coresets to maintain statistics
in the streaming model. Babcock, Datar, and Motwani [5] presented algorithms for
uniform random sampling from sliding windows. In several recent papers, a variation
of the streaming model is described that is different from sliding windows (see e.g.,
Cormode, Tirthapura, and Xu [16]; Guha, Gunopulos, and Koudas [23]; Tirthapura,
Xu, and Busch [34]). In this model, data arrives in the asynchronous manner; i.e.,
the timestamps of arriving elements are not necessarily increasing. In this paper, as
in the above papers, we do not address this model.

For more details about recent results in the sliding window model, we refer readers
to the survey by Datar and Motwani in [2, Chapter 8].

The use of exponential histograms as a general technique for sliding windows was
proposed by Datar et al. [17]. This method is widely used and numerous algorithms
are based on exponential histograms or their variations (see [2] for examples of such
applications). It is applicable to a wide class of “weakly additive” functions [2] with
the following properties. Following the notations from [17], we denote by A and B
adjacent buckets; we denote by ∪ the concatenation of adjacent buckets; and we
denote by |A| the number of elements in A.

1. f(A) ≥ 0.
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2. f(A) ≤ poly(|A|).
3. f(A ∪B) ≥ f(A) + f(B).
4. f(A ∪B) ≤ Cf (f(A) + f(B)) for some constant Cf ≥ 1.
5. The function f(A) admits a “sketch” which requires g(|B|) space and is com-

posable; i.e., the sketch for f(A ∪ B) can be composed efficiently from the
sketches for f(A) and f(B).

For this class of functions, [17] presents two general results. If f can be computed
precisely on D, then it is possible to maintain f on sliding windows with relative
error (εC2

f + Cf − 1), using O(1ε logn(g + logn)) bits and O(1) amortized time per
element. Moreover, if f can be approximated on D with relative error ε̂, then f can
be approximated on sliding windows with relative error (1+ ε̂)2εC2

f +Cf − 1+ ε̂ using
the same space and time.

1.2.1. Summary of our results. In this paper we introduce the notion of a
smooth function and present techniques that allow us to maintain smooth functions
over sliding windows.

Definition 1. Function f is (α, β)-smooth if it preserves the following proper-
ties:

1. f(A) ≥ 0.
2. f(A) ≥ f(B) for B ⊆r A.
3. f(A) ≤ poly(n).1

4. For any 0 < ε < 1, there exists α = α(ε, f) and β = β(ε, f) such that
• 0 < β ≤ α < 1;
• if B ⊆r A and (1 − β)f(A) ≤ f(B), then (1 − α)f(A ∪ C) ≤ f(B ∪ C)
for any adjacent C.

Informally, smooth functions are nonnegative, nondecreasing, and polynomially
bounded functions with the following property. Let B ⊆r A; that is, B contains
recent elements from A and does not contain the old elements. Consider the case
when f(B) is close to f(A). If this closeness remains no matter what elements are
added to both buckets and does not depend on A and B, we say that f is smooth
(for a formal definition, see section 2). To measure the closeness before and after
insertions, we introduce two parameters α and β that depend only on the function
f and an approximation parameter ε. Function f is (α, β)-smooth if, once f(B)
is a (1 ± β)-approximation of f(A), we can guarantee that f(B ∪ C) is a (1 ± α)-
approximation of f(A ∪ C) for any portion of new elements C. Typically we require
that β ≤ α. Assume that there exists an algorithm that computes f precisely using g
space and h time per element. (We assume that the time complexity is measured in
the standard RAM model.) Our main result states that it is possible to maintain a
(1±α)-approximation of f over sliding windows, using O( 1β logn(g+ logn)) bits and

O( 1βh logn) time. Further, a (1± ε̂)-approximation of f on D results in a (1±(α+ ε̂))-
approximation of f over sliding windows.

It turns out that many functions are smooth. For instance, sum, count, min, and
diameter are (ε, ε)-smooth, which matches previously known results [11, 17]. More
interestingly, we prove that weakly additive functions, Lp norms, frequency moments,
the length of the longest subsequence, and the geometric mean are smooth. We apply
our method to these functions and obtain the following results:

• We improve the general results from [17] mentioned above. For weakly ad-

1Similar to [17], we assume that f(A)/f(pN ) ≤ poly(n). Otherwise, exponentially decreasing
sequences could require linear memory for both smooth and exponential histograms.
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2116 VLADIMIR BRAVERMAN AND RAFAIL OSTROVSKY

ditive functions that can be computed precisely on D, the relative error is
improved from εC2

f + Cf − 1 to 1 − 1−ε
Cf

. For Cf = 1, it gives a (1 ± ε)-

approximation similar to [17]. For larger Cf , the ratio between relative errors
is approximately Cf . One example of weakly additive functions with Cf � 1
is Lp for large p. The space and time complexities remain unchanged. For
weakly additive functions that can be approximated on D, the relative error
is improved from (1 + ε̂)2εC2

f + Cf − 1 + ε̂ to 1− 1−ε
Cf

+ ε̂.

• We improve the result of [17] for Lp, p ∈ [1, 2] norms and extend it to any p.
For p ∈ [1, 2] we decrease the relative error from 4ε(1+ε̂)2+1+ε̂ to 1+ε

2 +ε̂, pre-
serving memory and time. We also show that adding a multiplicative factor
of 1

εp−1 to the memory can further decrease the relative error to ε. For p > 2

we give an optimal (1 ± ε, δ)-approximation algorithm that uses Õ(m1− 2
p )

memory, where m is the size of the estimated vector. For p < 1 we present a
(1± ε, δ)-approximation algorithm using O(1ε logn(

1
ε2 logM log logn

δε + logn))
bits, where M is the maximal value of an update. For p < 1, Lp is not a
norm; however, it is still a very useful notion of distance; see, e.g., [17, 25].

• We provide the first memory-optimal algorithm up to small factors for fre-
quency moments over sliding windows for constant p > 2. The algorithm

maintains a (1± ε, δ)-approximation using Õ(m1− 2
p ) space.

• We extend the results of Sun and Woodruff [33] to sliding windows, providing
a (1 ± ε)-approximation of the length of the longest increasing subsequence
(LIS) in sliding windows. Our algorithm uses O(1ε logn(k log

L
k +logn)) bits,

where k is the length of the LIS and L is the number of distinct elements in
the window.

• Geometric mean is a fundamental statistic that is useful for financial analysis
(see, e.g., [14]). We provide the first (1 ± ε)-approximation of the geometric
mean on sequence-based windows using O(1ε logn(k + logn)) memory. Here
k is the number of bits needed to store the value of the geometric mean.

Readers may find the detailed discussion of each result in the main body of our
paper.

1.2.2. High-level ideas behind our approach. Let f be (α, β)-smooth for
which there exists an algorithm Λ that calculates f onD using g space and h operation
per element. To maintain f on sliding windows, we construct a data structure that
we call a smooth histogram. It consists of a set of indices x1 < x2 < · · · < xs = N and
instances of Λ for each bucket B(xi, N). Informally, the smooth histogram ensures the
following properties of the sequence. The first two elements of the sequence always
“sandwich” the window, i.e., x1 ≤ N−n < x2. This requirement and the monotonicity
of f give us useful bounds for the sliding window W : f(x2, N) ≤ f(W ) ≤ f(x1, N).
Also, f should slowly but constantly decrease with i, i.e., f(xi+2, N) < (1−β)f(xi, N).
This gradual decrease, together with the fact that f is polynomially bounded, ensures
that the sequence is short, i.e., s = O( 1β log n). Finally, the values of f on successive

buckets were close in the past, i.e., f(xi+1, N
′) ≥ (1 − β)f(xi, N

′) for some N ′ ≤
N . This represents our key idea and exploits the properties of smoothness. Indeed,
f(x2, N

′) ≥ (1 − β)f(x1, N
′) for some N ′ ≤ N ; thus, by the (α, β)-smoothness of f ,

we have f(x2, N) ≥ (1− α)f(x1, N) ≥ (1− α)f(W ).

To maintain a smooth histogram, we ensure that an index u becomes a successor
of index v < u only if at some point we have (1 − β)f(v,N) ≤ f(u,N). Also, we
maintain the invariant (1 − β)f(xi, N) > f(xi+2, N). To do so, we check for every i

D
ow

nl
oa

de
d 

09
/1

8/
17

 to
 1

28
.9

7.
24

4.
16

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EFFECTIVE COMPUTATIONS ON SLIDING WINDOWS 2117

whether there exists at least one j > i + 1 such that (1 − β)f(xi, N) ≤ f(xi+2, N).
If this is the case, we find maximal j and delete all intermediate indices, making
xj the successor of xi. We also reenumerate the indices accordingly; i.e., after this
step xj will be the new xi+1, xj+1 will be the new xi+2, and so on. Note that
the entire procedure requires O( 1βh logn) time since we approach every element in

the list a constant number of times. (The time can be reduced to an amortized
O(h) when Λ supports the merging of buckets.) Similarly, we solve the case when Λ
approximates f on D, although the analysis becomes slightly more complicated. We
maintain s instances of Λ and s timestamps and indices; thus the space complexity is
s(g + logn) = O( 1β log n(g + logn)).

We stress that our approach works both for sequence-based and timestamp-based
windows. Since memory bounds of smooth histograms are similar for both cases, we
present our results for a more general model, i.e., timestamp-based windows. Inter-
estingly, the majority of our work does not require the knowledge of actual times-
tamps (the only step of our algorithms that does require timestamps is checking to
see whether an element has expired); the order of element arrivals is sufficient. As
a result, the notion of timestamp is rarely used in our algorithms; instead we use
sequence numbers. We stress that this is not a limitation of our approach, but rather
a simplification of the algorithms’ presentation.

Our approach is similar to exponential histograms in the sense that both methods
capture gradual lessening of f using a logarithmic number of Λ instances. However,
there is a critical difference between these approaches that makes our results possi-
ble. Exponential histograms divide W into distinct blocks B1, . . . , Bk. This requires
a strong assumption about Λ, namely, the ability to merge buckets. Further, the
algorithm [17] requires f(Bi) to be close to

∑
j>i f(Bj), and that limits applicability

of exponential histograms to additive functions. Smooth histograms maintain f on
suffixes rather than on distinct parts of the window and require closeness between
these suffixes, eliminating the above restrictions. The ability to work with suffixes is
due to the smoothness of f ; thus it is a critical property.

1.2.3. An example of a smooth function. Let us illustrate the main idea by
the following toy example (see also Figure 1). Consider a problem of approximating
the maximum over sliding windows with precision ε = 0.5. For the simplicity of our
presentation, we assume that the stream consists of positive integers. It is easy to
see that max is (ε, ε)-smooth for any ε. Indeed, let A = {pi, . . . , pN} for some i and
let B be the suffix of A; i.e., B = {pj, . . . , pN} for some j > i. Let C represent a
continuation of D; i.e., C = {pN+1, . . . , pN ′} for some N ′ > N . It is straightforward
that

max(B)

max(A)
≤ max(B ∪ C)

max(A ∪ C)
.

Indeed, if max(A ∪C) �= max(A), then

max(B ∪ C)

max(A ∪C)
= 1 ≥ max(B)

max(A)
.

Otherwise,

max(B ∪ C)

max(A ∪ C)
=

max(B ∪ C)

max(A)
≥ max(B)

max(A)
.
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Fig. 1. Max function.

Thus for any ε, we have that if (1− ε)max(A) ≤ max(B), then (1− ε)max(A ∪C) ≤
max(B ∪ C), i.e., max is a smooth function.

Figure 1 represents the case where the window is “sandwiched” between A and
B; i.e., i ≤ N − n ≤ j. In this case, maintaining max(A) and max(B) is sufficient
to obtain a 0.5-approximation; this is exactly what the smooth histogram does. To
overcome the problem of expiration, the smooth histogram maintains, in addition,
a sequence of indices for which max is gradually decreasing. In Figure 1 we show
the first three indices of such a sequence. In this case x1 = i, x2 = j, and x3 = k.
Note the important condition 0.5max(B) ≤ max{pk, . . . , pN} < 0.5max(A). That
is, max{pk, . . . , pN} cannot be used for the current approximation; however, it may
be useful in the future. Indeed, eventually pj will expire and the window will be
“sandwiched” between buckets B and {pk, . . . , pN}. In this case, smoothness and
the fact that 0.5max(B) ≤ max{pk, . . . , pN} will ensure a proper approximation for
any N ′ > N . Also, the smooth histogram ensures a gradual decrease in the value
of the function for the stored indices. In Figure 1 this is reflected by the condition
max{pk, . . . , pN} < 0.5max(A). As a result, the number of elements in this sequence
is bounded by a log of the maximum of stream elements. Finally, as new elements
arrive, the maximum, and thus the stored information, may be subject to change; this
is achieved through our update procedure.

1.3. Roadmap. Section 2 briefly describes smooth histograms and states our
main results. In section 3 we apply the smooth histogram method to approximate
weakly additive functions and the Lp norms, frequency moments, the length of the
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LIS, and the geometric mean. Finally, in section 4 we discuss our future work on
frequency moments.

2. Smooth histograms. In this section we assume that f is (α, β)-smooth (see
Definition 1) and there exists an algorithm Λ that calculates f (precisely or approxi-
mately) on the whole stream D. We construct (1± α)-approximation algorithms for
such f on sliding windows. Typically, α = ε, so we obtain a (1 ± ε)-approximation;
however, for weakly additive functions, we put α = 1 − 1−ε

Cf
. First, we assume that

Λ calculates f precisely using g space and h operations per element. Λ applied on
bucket B(i, j) is denoted by Λ(i, j).

Definition 2. A smooth histogram is a structure that consists of an increas-
ing set of indices XN = {x1, . . . , xs = N} and s instances of algorithm Λ, namely,
Λ1, . . . ,Λs with the following properties:

1. px1 is expired, px2 is active, or x1 = 0 and p0 is active.
2. For all i < s at least one of the following holds:

(a) xi+1 = xi + 1 and f(xi+1, N) < (1− β)f(xi, N).
(b) (1 − α)f(xi, N) ≤ f(xi+1, N) and if i + 2 ≤ s, then f(xi+2, N) < (1 −

β)f(xi, N).
3. Λi = Λ(xi, N) maintains f(xi, N).

Lemma 1. It is possible to maintain a smooth histogram using O( 1β (g+logn) logn)

bits and O( 1βh logn) operations per element. For any i, f(xi, N) can be retrieved in

O(1) time.
Proof. Note that the properties 2(a) and 2(b) may overlap, so it is possible that

both conditions are true for some xi. For N = 1, we put x1 = 1, s = 1, and we
initiate Λ with px1 . Given a smooth histogram at step N and the new element pN+1,
we execute the following update procedure.

I. For all i, calculate f(xi, N + 1) using Λi = Λ(xi, N) and pN+1.
II. Put s = s+ 1 and xs = N + 1 and initiate a new algorithm instance Λ(N +

1, N + 1).
III. For i = 1, . . . , s− 2 do

(a) find the largest j > i such that f(xj , N + 1) ≥ (1− β)f(xi, N + 1);
(b) delete all xt, i < t < j and all instances Λ(xt, N);
(c) shift the indices accordingly:

(i) for j′ = j, . . . , s put xi+j′−j+1 = xj′ ;
(ii) put s = s+ i− j + 1.

IV. Find the smallest i such that pxi is expired and pxi+1 is active. Delete all
xj , j < i and Λj structures and change the enumeration accordingly. (It is
worth mentioning that for sequence-based windows there is at most one such
i; i.e., at most one element will be deleted.)

Below we prove that the update procedure maintains a smooth histogram. It follows
from the last operation that property 1 is preserved. Property 3 follows from the first
two steps. To prove property 2, let v < N + 1 be a fixed index from XN that was
not deleted during the update procedure. Let v′ be the successor of v in the sequence
XN at step N ; i.e., for some i we had xi = v, xi+1 = v′.

If v′ /∈ XN+1, let u and w be two successors of v in XN+1. By the update
procedure, it must be the case that f(u,N+1) ≥ (1−β)f(v,N+1) ≥ (1−α)f(v,N+1)
and f(w,N + 1) < (1− β)f(v,N + 1). Thus, property 2(b) is correct for v.

If v′ ∈ XN+1 and v′ > v+1, let N ′ ≤ N be the step when v′ became the successor
of v. The update procedure implies that f(v′, N ′) ≥ (1 − β)f(v,N ′), and since f is
(α, β)-smooth we have f(v′, N+1) ≥ (1−α)f(v,N+1). Let u be the successor (if one
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2120 VLADIMIR BRAVERMAN AND RAFAIL OSTROVSKY

exists) of v′ inXN+1. Since v
′ was not deleted, we have f(u,N+1) < (1−β)f(v,N+1).

Thus, property 2(b) is correct for v.

Finally, if v′ ∈ XN+1 and v′ = v + 1, we have two cases. If f(v′, N + 1) <
(1 − β)f(v,N + 1), then property 2(a) is true. Otherwise, we have f(v′, N + 1) ≥
(1 − β)f(v,N + 1) ≥ (1 − α)f(v,N + 1). Let u be the successor (if one exists) of v′

in XN+1. Similarly, f(u,N + 1) < (1− β)f(v,N + 1). Thus, property 2(b) is correct
for v, and property 2 is preserved for any v < N + 1.

Let us bound the size s of the sequence XN . By the properties above, we have
that for any i either f(xi+2, N) or f(xi+1, N) is less then (1 − β)f(xi, N). This and
the fact that f is polynomially bounded imply s = O( 1β logn). Since we maintain

exactly s instances of algorithm Λ and timestamps, the space complexity is O(s(g +
logn)) = O( 1β (g + log n) logn), and the time complexity per element is O(sh) =

O( 1βh logn).

Theorem 1. Let f be an (α, β)-smooth function. If there exists an algorithm
Λ that precisely calculates f on streams, uses space g, and performs h operations per
element, then there exists an algorithm Λ′ that calculates a (1± α)-approximation of
f on sliding windows and uses O( 1β (g + logn) logn) bits and O( 1βh logn) operations
per element.

Proof. The algorithm maintains a smooth histogram and outputs f(x2, N) as an
approximation of f on the window. To prove that this is a (1 ± α)-approximation,
let j be the index of the last active element, so the precise value is f(j,N). If
property 2(a) is correct for x1, then, by property 1, j = x2 and the answer is precise.
Otherwise property 2(b) is correct for x1, and we have, since f is monotonic, f(j,N) ≥
f(x2, N) ≥ (1− α)f(x1, N) ≥ (1 − α)f(j,N).

In many cases it is impossible to calculate f precisely. Below we show how to
adapt approximation algorithms to sliding windows. We assume that Λ maintains a
(1± ε̂)-approximation of f on D, ε̂ ≤ β

4 , and uses g(ε̂) space and h(ε̂) operations per
element. We call such an approximation f ′.

Definition 3. The approximate smooth histogram is a structure that consists of
an increasing set of indices XN = {x1, . . . , xs = N} and s instances of algorithm Λ,
namely, Λ1, . . . ,Λs with the following properties:

1. px1 is expired, px2 is active, or x1 = 0.
2. For all i < s, one of the following holds:

(a) xi+1 = xi + 1 and f ′(xi+1, N) < (1 − β
2 )f

′(xi, N).
(b) (1 − α)f(xi, N) ≤ f(xi+1, N) and if i + 2 ≤ s, then f ′(xi+2, N) <

(1− β
2 )f

′(xi, N).
3. Λi = Λ(xi, N) maintains f ′(xi, N).

Lemma 2. It is possible to maintain an approximate smooth histogram using
O( 1β (g(ε̂) + logn) logn) bits and O( 1βh(ε̂) log n) operations per element.

Proof. The update procedure repeats Lemma 1. For N = 1, we put x1 = 1, s = 1,
and we initiate Λ with px1 . Given an approximate smooth histogram at step N and
the new element pN+1, we execute the following update procedure.

I. For all i, calculate f ′(xi, N + 1) using Λi = Λ(xi, N) and pN+1.
II. Put s = s+ 1 and xs = N + 1, and initiate a new algorithm instance Λ(N +

1, N + 1).
III. For i = 1, . . . , s− 2 do

(a) find the largest j > i such that f ′(xj , N + 1) ≥ (1− β
2 )f

′(xi, N + 1);
(b) delete all xt, i < t < j and all instances Λ(xt, N);
(c) shift the indices accordingly:
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EFFECTIVE COMPUTATIONS ON SLIDING WINDOWS 2121

(i) for j′ = j, . . . , s put xi+j′−j+1 = xj′ ;
(ii) put s = s+ i− j + 1.

IV. Find the smallest i such that pxi is expired and pxi+1 is active. Delete all
xj , j < i and Λj structures, and change the enumeration accordingly.

It follows from the last operation that property 1 is preserved. Property 3 follows
from the first two steps. To prove property 2, let v < N + 1 be a fixed index from
XN that was not deleted during the update procedure. Let v′ be the successor of v
in the sequence XN at step N ; i.e., for some i we had xi = v, xi+1 = v′.

If v′ /∈ XN+1, let u and w be two successors of v in XN+1. By the update
procedure, it must be the case that f ′(u,N + 1) ≥ (1 − β

2 )f
′(v,N + 1), thus

(1 − α)f(v,N + 1) ≤ (1− β)f(v,N + 1) ≤
(
1− β

2

)
1− β

4

1 + β
4

f(v,N + 1)

≤ 1− β
2

1 + β
4

f ′(v,N + 1) ≤ f ′(u,N + 1)

1 + β
4

≤ f(u,N + 1).

Also, it must be the case that f ′(w,N +1) < (1− β
2 )f

′(v,N +1); thus, property 2(b)
is correct for v.

If v′ ∈ XN+1 and v′ > v+1, let N ′ ≤ N be the step when v′ became the successor
of v. The update procedure implies that f ′(v′, N ′) ≥ (1 − β

2 )f
′(v,N ′) and thus

(1 − β)f(v,N ′) ≤ (1− β)

(1− β
4 )

f ′(v,N ′) ≤ (1− β)

(1− β
4 )(1 − β

2 )
f ′(v′, N ′)

≤ (1− β)(1 + β
4 )

(1− β
4 )(1 − β

2 )
f(v′, N ′) ≤ f(v′, N ′).

Since f is (α, β)-smooth we have f(v′, N + 1) ≥ (1 − α)f(v,N + 1). Let u be the
successor (if one exists) of v′ in XN+1. Since v

′ was not deleted, we have f ′(u,N+1) <
(1− β

2 )f
′(v,N + 1). Thus, property 2(b) is correct for v.

Finally, if v′ ∈ XN+1 and v′ = v + 1, we have two cases. If f ′(v′, N + 1) <
(1 − β

2 )f
′(v,N + 1), then property 2(a) is true. Otherwise, we have f(v′, N + 1) ≥

(1 − α)f(v,N + 1), repeating the calculations above. Let u be the successor of v′ in
XN+1. Similarly, f ′(u,N + 1) < (1 − β

2 )f
′(v,N + 1). Thus, property 2(b) is correct

for v. Therefore property 2 is preserved for any v < N + 1.
Properties of a histogram imply that for any i, either f ′(xi+2, N) or f ′(xi+1, N)

is less than (1 − β
2 )f

′(xi, N). This property and the facts that f ′ is at least a

(1 ± β
4 )-approximation of f and f is polynomially bounded, imply s = O( 1β logn).

Since we maintain exactly s instances of algorithm Λ, the space complexity is thus
O(sg) = O( 1β (g(ε̂) + logn) logn), and the time complexity per element is O(sh) =

O( 1βh logn).

Theorem 2. Let f be an (α, β)-smooth function (see Definition 1). If there exists
an algorithm Λ that maintains a (1 ± ε̂)-approximation of f on D, using space g(ε̂)
and performing h(ε̂) operations per stream element, then there exists an algorithm
Λ′ that maintains a (1 ± (α + ε̂))-approximation of f on sliding windows and uses
O( 1β (g(ε̂) + logn) logn) bits and O( 1βh(ε̂) log n) operations per element.

Proof. The algorithm maintains an approximate smooth histogram and outputs
f ′(x2, N) as an approximation of f on the window. Let j be the index of the last
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2122 VLADIMIR BRAVERMAN AND RAFAIL OSTROVSKY

active element, so the precise value is f(j,N). If property 2(a) is correct for x1, then
by property 1, j = x2 and the answer is a (1± ε̂)-approximation of f(j,N). Otherwise
property 2(b) is correct for x1, and we have

(1 + α+ ε̂)f(j,N) ≥ 1 + α+ ε̂

1 + β
4

f ′(x2, N) ≥ f ′(x2, N).

Also,

(1 − α− ε̂)f(j,N) ≤ (1 − α− ε̂)f(x1, N) ≤ (1− ε̂)f(x2, N) ≤ f ′(x2, N).

Similarly, we can approximate functions for which there exists an algorithm Λ
that maintains a (1 ± ε̂, δ)-approximation on D. The proof remains the same; we
need only ensure that the probability of failure is at most δ. Recall that the smooth
histogram uses O( 1β logn) instances of Λ. Thus, if for each instance we limit the

probability of failure by δβ
logn , then by the union bound the total probability of failure

will be at most δ. We obtain the following theorem.
Theorem 3. Let f be an (α, β)-smooth function. If there exists an algorithm Λ

that maintains a (1± ε̂, δ)-approximation of f on D using space g(ε̂, δ) and performing
h(ε̂, δ) operations per stream element, then there exists an algorithm Λ′ that maintains
a (1 ± (α + ε̂))-approximation of f on sliding windows and uses O( 1β (g(ε̂,

δβ
log n ) +

logn) logn) bits and O( 1βh(ε̂,
δβ

logn ) log n) operations per element.
Note that the proofs above are correct for sequence-based and timestamp-based

windows.

3. Applications.

3.1. Weakly additive functions. Let f be any weakly additive function that
can be precisely computed on D using space g and time h. The authors in [17] proved
that f can be approximated on sliding windows with relative error εC2

f + Cf − 1,

space O(1ε (g + logn) logn), and amortized time O(h). Smooth histograms improve
the relative error, preserving space and time complexities.

Lemma 3. Weakly additive function f with parameter Cf is (1− 1−ε
Cf

, ε)-smooth.

Proof. Let A be a bucket and let B be its suffix such that (1 − ε)f(A) ≤ f(B).
For any adjacent bucket C we have(

1−
(
1− 1− ε

Cf

))
f(A ∪C) ≤ (1− ε)(f(A) + f(C))

≤ f(B) + f(C) ≤ f(B ∪ C).

Corollary 1. A weakly additive function f can be approximated on sliding
windows with relative error (1 − 1−ε

Cf
) using O(1ε (g + logn) logn) memory bits and

O(h) amortized time per element.
Proof. By applying Theorem 1, we almost obtain the result. The only problem

is the logarithmic number of operations per element. This can be reduced using the
fact that sketches are composable. Instead of recalculating f on buckets for each
new element, we do it for every (1ε logn)th element, collecting all new elements in an
auxiliary buffer. Let v be the index of the first collected point. Since sketches are
composable, we can compute f(u,N) using the sketch for f(u+1, N) and pu for any
v ≤ u < N . Using the sketches for all of the f(u,N), we compute f(xi, N) for all i.
The rest of the algorithm remains unchanged.

D
ow

nl
oa

de
d 

09
/1

8/
17

 to
 1

28
.9

7.
24

4.
16

6.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

EFFECTIVE COMPUTATIONS ON SLIDING WINDOWS 2123

Also, [17] showed that given an algorithm that maintains a (1± ε̂)-approximation
of f on D, f can be approximated on sliding windows with relative error (1+ ε̂)2εC2

f +
Cf − 1 + ε̂, using the same space and time. Using Theorem 2 and repeating the
arguments from Corollary 1, we obtain the following corollary.

Corollary 2. There exists an algorithm that maintains an approximation of f
on sliding windows with relative error (1− 1−ε

Cf
+ ε̂) using O(1ε (g + logn) logn) space

and O(h) amortized time per element.

Note that 1 − 1−ε
Cf

≤ εC2
f + Cf − 1 and 1 − 1−ε

Cf
+ ε̂ ≤ (1 + ε̂)2εC2

f + Cf − 1 + ε̂.

The relative improvement is comparable with Cf ; thus the improvement becomes
significant for large Cf .

3.2. Lp norms. For p ≥ 0 and a vector V = 〈v1, . . . , vm〉, define Lp(V ) =

(
∑m

i=1 |vi|p)
1
p . In the streaming model V is represented as follows. Each element of a

stream D is a pair (i, a), where i ∈ [m] and a ∈ [−M,M ] for some positive M . The
value of the ith coordinate is given by the summation vi =

∑
(i,a)∈D a. If m is small,

it is easy to calculate the Lp norm simply by maintaining the value of each coordinate.
However, the usual assumption is that m is large and Ω(m) space is not allowed.

Computing the frequency moments is a fundamental problem that is directly
related to Lp norms. In this paper we use the definition that was presented by
Bhuvanagiri et al. [8]: Fp =

∑m
i=1 |vi|p = Lp

p . In many papers the simpler model is
considered, where a = 1 for all pairs (i, a) and a’s are omitted.

The first algorithms for frequency moments were proposed in the seminal paper
of Alon, Matias, and Szegedy [3]. For p = 0, 2 they provided (1± ε, δ)-approximation
algorithms that use only polylogarithmic memory. For p > 2 they presented an

algorithm that uses O(m1− 1
p ) memory and showed a lower bound of Ω(m1− 5

p ). For
p > 2, numerous improvements to lower and upper bounds were reported, including
the work of Bar-Yossef et al. [7], Chakrabarti, Khot, and Sun [10], Coppersmith and
Kumar [15], and Ganguly [20]. Finally, Indyk andWoodruff [26] and later Bhuvanagiri

et al. [8] presented algorithms that use Õ(m1− 2
p ) memory and are optimal. The last

two algorithms can be used as well for approximation of Lp, p > 2 norms. For p ∈ [0, 2]
Indyk [25] and Kane, Nelson, and Woodruff [27] presented algorithms that maintain
Lp norms using polylogarithmic space.

The extension of these problems to sliding windows is straightforward. At any

moment Lp(W ) = (
∑m

i=1 v
p
i )

1
p , where vi =

∑
(i,a)∈W a and W is the current window.

Similar to [17], we restrict a to be positive. For negative a, [17] showed that even
for p = 1 and m = 1, the lower bound on the memory is Ω(n). The only known
result for Lp norms was presented in [17] for p ∈ [1, 2]. The algorithm maintains Lp

with high probability and relative error 4ε(1 + ε)2 + 1 + ε using O(1ε logN(logN +
logM log (1/δ)/ε2)) bits.

We extend this result to any p and provide a better approximation ratio for
p ∈ [1, 2]. We prove that Lp is (ε, εp

p )-smooth for p ≥ 1 and (ε, ε)-smooth for p < 1,

so our method can be applied. For p > 2, we apply the algorithm from [8] to show

an optimal (1± ε, δ)-approximation algorithm using Õ(m1− 2
p ) bits. For Lp, p < 1, we

use the algorithm from [25] to construct a (1 ± ε, δ)-approximation algorithm using
O(1ε logn(

1
ε2 logM log log n

δε +logn)) bits. Finally, for Lp, 1 ≤ p ≤ 2, we improve [17] by
decreasing the relative error from 4(1+ ε̂)2ε+1+ ε̂ = 1+ε′ to 1+ε

2 + ε̂ = 1
2 +ε′′ for some

ε′, ε′′. Our method uses O(1ε logn(
1
ε2 logM log log n

δε +logn)) memory bits. We exploit
the fact that Lp

p is weakly additive with Cf ≤ 2 and thus is (1+ε
2 , ε)-smooth. However,
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it is also (ε, εp

p )-smooth and, alternatively, we can achieve a (1 ± ε)-approximation

using O( 1
εp logn( 1

ε2 logM log logn
δε + logn)) bits, i.e., by increasing memory usage by

the factor 1
εp−1 .

One may argue that for p > 2, Lp
p is also a weakly additive function, so we can

apply the exponential histograms method. While this is true, note that the relative
error that can be achieved using exponential histograms is εC2

f + Cf − 1 (see [17]).
For large p the relative error becomes significantly larger then 1.

Our results for the Lp norm can be directly applied to frequency moments. Thus,
for constant p > 2 we obtain optimal results for frequency moments.

In the remainder of this section we show how smooth histograms can be used to
approximate Lp norms on sliding windows. Recall that for this problem D represents
a vector V = 〈v1, . . . , vm〉. Each element is a pair (i, a), where i ∈ [m] and a ∈ [M ] for
some positive M ≤ nO(1). The value of the ith coordinate is given by vi =

∑
(i,a)∈W a,

and Lp(W ) is defined as (
∑m

i=1 v
p
i )

1
p . For this model Datar et al. [17] showed a

(1± (4ε(1 + ε)2 + 1+ ε), δ)-approximation for p ∈ [1, 2]. We extend this result to any
p and improve the approximation parameter for p ∈ [1, 2]. Below we prove that Lp is
a smooth function.

Lemma 4. For p ≥ 1, Lp is an (ε, εp

p )-smooth function. For p < 1, Lp is an

(ε, ε)-smooth function.
Proof. It is easy to see that in this model Lp satisfies the properties of function

f , i.e., it is monotonic on buckets, polynomially bounded, and positive. Let p > 1
and let V, Y be vectors that are represented by buckets A,B (B ⊆r A) such that
(1− εp

p )Lp(A) ≤ Lp(B). Recall that in our model, vi ≥ yi for all i ∈ [m]. We have

(1 − εp)‖V ‖pp ≤
(
1− εp

p

)p

‖V ‖pp ≤ ‖Y ‖pp.

By the triangle inequality, ‖V ‖pp ≥ ‖Y ‖pp + ‖V − Y ‖pp and thus ‖V − Y ‖p ≤ ε‖V ‖p ≤
ε‖V + Z‖p for any Z that is represented by adjacent bucket C (recall that zi ≥ 0).
By the triangle inequality,

‖V + Z‖p ≤ ‖Y + Z‖p + ‖V − Y ‖p ≤ ‖Y + Z‖p + ε‖V + Z‖p.
That concludes the lemma for p > 1. For p < 1, let V, Y be vectors such that
(1− ε)‖V ‖ ≤ ‖Y ‖. We have the following for any Z = 〈z1, . . . , zm〉:

‖Y + Z‖pp = ‖Y ‖pp +
m∑
i=1

((yi + zi)
p − ypi ) ≥ (1− ε)p‖V ‖pp

+(1− ε)p
m∑
i=1

((vi + zi)
p − vpi ) = (1 − ε)p‖V + Z‖pp.

The inequality follows from the assumption that ‖Y ‖p ≥ (1 − ε)‖V ‖p and the fact
that function f(x) = (x + a)p − xp is decreasing for x ≥ 0 and p < 1, a > 0.

For p > 2 we apply the algorithm of Bhuvanagiri et al. [8] for frequency moments.

In our model, frequency moments are simply Lp(x) = Fp(x)
1
p . Thus, for p > 1, the

(1 ± ε)-approximation for Fp is also the (1 ± ε)-approximation for Lp. Recall their
result.

Theorem 4 (see [8]). There exists an algorithm that computes a (1 ± ε, 3
4 )-

approximation of Lp, p > 2 using O( p2

ε
2+ 4

p
m1− 2

p log2 N(logm+ logN)) bits.
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Corollary 3. There exists an algorithm that uses Õ(m1− 2
p ) memory and cal-

culates a (1± ε, δ)-approximation of the Lp, p > 2 norm over sliding windows.
Proof. We apply Theorem 3 and the algorithm from [8] (after amplification). The

resulting space complexity is O( p3

ε
2p+ 4

p
m1− 2

p log3 n(logm+ logn) log logn
δε ).

For p < 1, similar to [17], we can apply the algorithm of Indyk [25]. Recall
that this algorithm provides a (1 ± ε, δ)-approximation of Lp(D), p ∈ (0, 2] and uses
O( 1

ε2 logM log 1
δ ) bits for each sketch. Additionally, O( 1

ε2 logM log m
δ log 1

δ ) bits are
required and are common for all sketches. Since Lp(W ) is an (ε, ε)-smooth function,
we can apply Theorem 3 using the algorithm above.

Corollary 4. There exists an algorithm that calculates a (1±ε, δ)-approximation
of the Lp, p < 1 norm on sliding windows and uses space O(1ε logn(

1
ε2 logM log logn

δε +
logn)).

For p ∈ [1, 2] we present two solutions. We can repeat the arguments above or
we can apply Corollary 1 noting that Lp

p, p ∈ [1, 2] is weakly additive with Cf ≤ 2 by
[17].

Corollary 5. It is possible to maintain an approximation of Lp, p ∈ [1, 2]
over sliding windows with relative error ε + εp

p and probability at least 1 − δ using

O( 1
εp logn( 1

ε2 logM log logn
δε + logn)) bits. Also, it is possible to obtain a relative

error of 1+
2 + ε using O(1ε logn(

1
ε2 logM log log n

δε + logn)) bits.
The second result strictly improves [17], while the first one significantly improves

the relative error and increases memory requirements by a factor of 1
εp−1 .

3.3. Frequency moments. Approximation for frequency moments can be de-
rived immediately from section 3.2. Thus, this section has rather illustrative purposes;
we do show, however, that frequency moments are smooth.

Lemma 5. For p ≥ 1, Fp is an (ε, εp

pp )-smooth function. For p < 1, Fp is an

(ε, ε)-smooth function.
Proof. Let p ≥ 1 and let X,Y be two vectors such that(

1− εp

pp

) m∑
i=1

xp
i ≤

m∑
i=1

ypi .

We have

m∑
i=1

(xi − yi)
p ≤ εp

pp

m∑
i=1

xp
i .

Thus for any vector Z that is added to X and Y , we have

(
m∑
i=1

(xi − yi)
p

) 1
p

≤ ε

p

(
m∑
i=1

(xi + zi)
p

) 1
p

,

and by the triangle inequality,

(
m∑
i=1

(yi + zi)
p

) 1
p

≥
(

m∑
i=1

(xi + zi)
p

) 1
p

−
(

m∑
i=1

(xi − yi)
p

) 1
p

≥
(
1− ε

p

)( m∑
i=1

(xi + zi)
p

) 1
p

.
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Thus,

m∑
i=1

(yi + zi)
p ≥

(
1− ε

p

)p m∑
i=1

(xi + zi)
p ≥ (1− ε)

m∑
i=1

(xi + zi)
p.

If p < 1 we have the following, for X,Y, Z as above, and assuming (1 − ε)Fp(X) ≤
Fp(Y ):

m∑
i=1

(yi + zi)
p =

m∑
i=1

ypi +

m∑
i=1

((yi + zi)
p − ypi ) ≥ (1 − ε)

m∑
i=1

xp
i

+(1− ε)

m∑
i=1

((xi + zi)
p − xp

i ) = (1− ε)

m∑
i=1

(xi + zi)
p.

The inequality follows from the assumption above and from the fact that function
(x+ a)p − xp is decreasing for p < 1, a > 0.

Now, we can apply the algorithm of Bhuvanagiri et al. [8].

Corollary 6. For constant p > 2, there exists an algorithm that uses Õ(m1− 2
p )

memory and calculates a (1 ± ε, δ)-approximation of the pth frequency moment over
sliding windows.

Proof. The proof is identical to that of Corollary 3.

3.4. Length of the longest increasing subsequence. Let D be a stream
where pi is an integer, pi ∈ [L] for some L. An increasing subsequence is defined as
px1 , . . . , pxk

such that xi < xi+1 and pxi ≤ pxi+1 for i < k. (In fact, the sequence
is nondecreasing, but we follow the notations of the previous works.) The longest
increasing subsequence LIS(D) is an increasing subsequence with maximal size k.
Correspondingly, LIS(W ) on window W is defined as a LIS on the set of last n
elements. This is a well-studied statistic that is used in bioinformatics and other fields.
(See the works of Gusfield [24] and Pevzner [32].) Recent results in the streaming
model include the papers by Liben-Nowell, Vee, and Zhu [30], Gopalan et al. [22], and
Sun and Woodruff [33]. The last paper presents a memory-optimal algorithm that
uses Θ(k log L

k ) memory. For sliding windows Chen, Yang, and Yuan [12] present an
algorithm that uses Ω(n) memory.

We extend the result of Sun and Woodruff [33] to sliding windows. Our algorithm
uses O(1ε logn(k log

L
k +logn)) bits and provides a (1±ε)-approximation of the length

of the LIS. First, we show that our technique is applicable.

Lemma 6. The LIS length is an (ε, ε)-smooth function.

Proof. Let Y ⊆r X be two buckets such that

(1− ε)|LIS(X)| ≤ |LIS(Y )|.(1)

It is enough to show that for any new element q we guarantee that

(1− ε)|LIS(X ∪ {q})| ≤ |LIS(Y ∪ {q})|.(2)

To prove (2) we establish the following useful facts. First, we show that if adding q
increases LIS(Y ), then (2) holds. Assume that this is the case, i.e.,

|LIS(Y ∪ {q})| > |LIS(Y )|.(3)
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Fig. 2. Proof of Lemma 6.

By adding a single element, a LIS can increase by at most one. In particular, (3)
implies that |LIS(Y ∪ {q})| = |LIS(Y )|+ 1. Thus,

(1− ε)|LIS(X ∪ {q})| ≤ (1− ε)(|LIS(X)|+ 1) ≤ (1 − ε)|LIS(X)|+ 1

≤ |LIS(Y )|+ 1 = |LIS(Y ∪ {q})|.
Here the last inequality follows from (1). Also, if |LIS(X ∪ {q})| = |LIS(X)|, then
(2) obviously holds:

(1− ε)|LIS(X ∪ {q})| = (1− ε)|LIS(X)| ≤ |LIS(Y )| ≤ |LIS(Y ∪ {q})|.

In the remainder of the proof, we show that no other cases are possible. Assume,
toward a contradiction, that

(|LIS(Y ∪ {q})| = |LIS(Y )|) ∧ (|LIS(X ∪ {q})| > |LIS(X)|).(4)

The assumption (4) implies several facts about the LIS’s on X and Y . In par-
ticular, there exists a LIS on X that can be extended by adding q. Let x1, . . . , xi be
indices of one of such (extendable) LIS’s on X , i.e.,

pxi ≤ q.(5)

Let y1, . . . , yj be indices of a LIS on Y . Intuitively, we show that these two sequences
must “intersect” (see Figure 2 for the illustration). Thus, we can construct a new LIS
on Y by concatenating the y-sequence before the intersection with the x-sequence after
the intersection. By (5), this new LIS can be extended by adding q. This contradicts
assumption (4).

To formally prove the intuition, we establish some useful facts about the sequences
x1, . . . , xi and y1, . . . , yj . Figure 2 illustrates these facts and the relation between
these two sequences. Assumption (4) implies that any longest extendable increasing
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sequence on X must end before any longest increasing sequence on Y and have a
larger last value; i.e.,

(xi > yj) ∧ (pxi < pyj ).(6)

Indeed, assume that pxi ≥ pyj . Then, and by (5), we have q ≥ pxi ≥ pyj . Thus
py1 , . . . , pyj , q is an increasing subsequence; i.e., |LIS(Y ∪ {q})| > |LIS(Y )|, which
contradicts assumption (4). Thus, it must be the case that pxi < pyj , in particular
xi �= yj . Finally, if xi < yj, then px1 , . . . , pxi , pyj is an increasing subsequence on X
that contradicts the maximality of px1 , . . . , pxi . Thus, under assumption (4), claim
(6) is correct.

Let xl be the largest index such that pxl
/∈ Y . There exists such an index since

otherwise the entire subsequence px1 , . . . , pxi belongs to Y ; i.e., |LIS(Y )| = |LIS(X)|.
But then px1 , . . . , pxi , q is an increasing subsequence on Y ∪{q}; i.e., |LIS(Y ∪{q})| ≥
i+ 1 > |LIS(Y )|, which contradicts (4). Next, we show that

pxl
> py1 .(7)

Indeed, |LIS(Y )| = j ≥ i− l since pxl+1
, . . . , pxi is an increasing subsequence on Y . If

j = i−l, then |LIS(Y ∪{q})| > |LIS(Y )| since pxl+1
, . . . , pxi , q is the increasing subse-

quence on LIS(Y ∪{q}); thus j > i−l. Also, if pxl
≤ py1 , then px1 , . . . , pxl

, py1 , . . . , pyj

is an increasing subsequence on X with size larger than i = |LIS(X)|. Thus (7) is
correct.

For s ∈ [j] define next(s) = minxt∈[i]{xt ≥ ys}. Note that this quantity is well
defined since next(s) ≤ xi by (6). We say that ys is covered if pnext(s) ≥ pys . We know
that y1 is covered because next(1) ≥ y1 > xl and thus by (7) pnext(1) ≥ pxl

> py1 .
Let yk be the maximal covered index and denote r = next(k)−1. Note that r ≥ l ≥ 1
and, by (6), k < j. We claim that

pxr ≤ pyk+1
.(8)

Indeed, next(k + 1) > yk > xr and, by the maximality of k, we have pyk+1
>

pnext(k+1) ≥ pxr . Now consider two sequences px1 , . . . , pxr , pyk+1
, . . . , pyj and py1 , . . . ,

pyk
, pr+1, . . . , pxi . By the definition of next and by (8), both of these sequences are in-

creasing. Thus, it must be the case that pyk+1
, . . . , pyj and pr+1, . . . , pxi have the same

length (otherwise we could increase one of the LIS’s). Thus, py1 , . . . , pyk
, pr+1, . . . , pxi

is the longest increased subsequence. But then we can extend it by adding q. This
contradicts (4) and concludes our proof.

Therefore, we can apply Theorem 1 using the algorithm of Sun and Woodruff
[33].

Corollary 7. Let D be a steam of integers such that pi ∈ [L]. There exists an
algorithm that computes a (1±ε)-approximation of |LIS(W )|, where W is the current
window. The algorithm uses space

O

(
1

ε
log n

(
|LIS(W )| log L

|LIS(W )| + logn

))
.

3.5. Geometric mean. The smooth histogram method may be extended to
some nonsmooth functions. To illustrate this point, we discuss the problem of the
geometric mean. Let D be a stream of positive real polynomially bounded numbers.
The geometric mean is defined as GM(D) = (

∏N
i=1 pi)

1
N . For sliding windows we
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define the geometric mean asGM(W ) = (
∏N

i=N−n pi)
1
n . To the best of our knowledge,

this problem has not been considered in the sliding windows model. One possible
method is to apply [17] log pi to a stream of logarithms of the stream elements.
The problem of this approach is that the resulting stream may contain both positive
and negative values. Since the exponential histogram method [17] is applicable to
streams with nonnegative values, this method cannot be directly applied to estimate
the geometric mean. In fact, smooth histograms cannot be applied directly as well,
since GM(W ) is not necessarily a nondecreasing function.

We thus employ a novel idea of “splitting” the sliding window into two subsets,
W≥1 and W<1. The subset W≥1 represents all active elements pi ≥ 1, and W<1 repre-
sents all active elements pi < 1. It is easy to see that bothGM(W≥1) and

1
GM(W<1)

are

smooth functions, and thus we can apply the smooth histogram method. It is worth
mentioning that our idea of splitting is also applicable to exponential histograms.
As a result, we present the first approximation algorithm for the geometric mean on
sequence-based sliding windows that uses O

(
1
ε logn(k + logn)

)
space, where k is the

number of bits needed to store the answer.
Corollary 8. There exists an algorithm that computes a (1±ε)-approximation of

the geometric mean over sequence-based sliding windows using O
(
1
ε (k + logn) logn

)
space.

Proof. We divide D into two substreams, D<1 = {pi|pi ≤ 1} and D>1 = {pi|pi ≥
1}. The active window W is correspondingly separated into W<1 and W>1. We define

two auxiliary functions on buckets h(B) = (
∏

i∈B pi)
1
n and g(B) = (

∏
i∈B

1
pi
)

1
n . We

apply our method on these two substreams and then combine the results to obtain the
approximation. Note that n is fixed, but W>1,W<1 are timestamp-based windows.

It is easy to see that h is (ε, ε)-smooth on D>1. Indeed, it is monotonic (for fixed

n), polynomially bounded, and new elements do not change the ratio h(A)
h(B) for any

buckets A,B. Thus, we can maintain a (1 ± ε)-approximation of h(W ) = GM(W>1)
using O

(
1
ε (k + logn) logn

)
memory. Similarly, g is an (ε, ε)-smooth function on D<1,

and thus we obtain a (1 ± ε)-approximation of g(W ) = 1
GM(W<1)

. Dividing h by g,

we obtain a (1± 2ε)-approximation of the geometrical mean.

4. Future work. In this paper we prove that Fp is (ε, εp

pp )-smooth, and thus

smooth histograms can be used to approximate frequency moments with Õ(ppm1− 2
p )

bits. Thus, for constant p > 2 we obtain optimal results. However, the additional
factor of pp makes the smooth histogram approach infeasible for large p, which the
current paper does not handle. In a recent work [9], we showed how to handle fre-
quency moments for arbitrary p. In particular, we showed how to compute Fp using

Õ(m1− 1
p ) bits for any p > 2.

Also, we point out the following property of the smooth histogram (this property
is, in fact, shared by the previous work, e.g., [17]). Let f be a function that can
be approximated on sliding windows using the smooth histogram method. Then the
smooth histogram for sliding window W provides “complimentary” approximation
of f for any “subwindow” W ′ ⊆r W . Indeed, for any W ′ there exists i such that
pxi /∈ W ′ and pxi+1 ∈ W ′. By the properties of the smooth histogram, this implies
that f({pxi, . . . , pN}) is an approximation of f(W ′). This property may be useful for
applications since it allows changing a window’s size in the online manner and still
preserving statistics without requiring recomputation. Moreover, a smooth histogram
in fact stores approximations for all suffixes of W , and thus it allows us to track
changes in f as the window shortens. Further elaboration of this property may be an
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interesting research direction.
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