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Abstract

In the problem of Secure Message Transmission in the public discussion model (SMT-PD), a Sender
wants to send a message to a Receiver privately and reliably. Sender and Receiver are connected by
n channels, up to t < n of which may be maliciously controlled by a computationally unbounded
adversary, as well as one public channel, which is reliable but not private.

The SMT-PD abstraction has been shown instrumental in achieving secure multi-party computation
on sparse networks, where a subset of the nodes are able to realize a broadcast functionality, which
plays the role of the public channel. However, the implementation of such public channel in point-to-
point networks is highly costly and non-trivial, which makes minimizing the use of this resource an
intrinsically compelling issue.

In this paper, we present the first SMT-PD protocol with sublinear (i.e., logarithmic in m, the mes-
sage size) communication on the public channel. In addition, the protocol incurs a private communication
complexity of O( mn

n−t ), which, as we also show, is optimal. By contrast, the best known bounds in both
public and private channels were linear. Furthermore, our protocol has an optimal round complexity of
(3, 2), meaning three rounds, two of which must invoke the public channel.

Finally, we ask the question whether some of the lower bounds on resource use for a single execution
of SMT-PD can be beaten on average through amortization. In other words, if Sender and Receiver must
send several messages back and forth (where later messages depend on earlier ones), can they do better
than the naı̈ve solution of repeating an SMT-PD protocol each time? We show that amortization can
indeed drastically reduce the use of the public channel: it is possible to limit the total number of uses of
the public channel to two, no matter how many messages are ultimately sent between two nodes. (Since
two uses of the public channel are required to send any reliable communication whatsoever, this is best
possible.)

Key words: Secure message transmission, information-theoretic security, almost-everywhere secure com-
putation, randomness extractors.

1 Introduction

Dolev, Dwork, Waarts and Yung [DDWY93] introduced the model of Secure Message Transmission (SMT)
in an effort to understand the connectivity requirements for secure communication in the information-
theoretic setting. Generally speaking, an SMT protocol involves a sender, S, who wishes to transmit a
message M to a receiver, R, using a number n of channels (“wires”), some of which are controlled by a
malicious adversary A. The goal is to send the message both privately and reliably. Since its introduction,
SMT has been widely studied and optimized with respect to several different settings of parameters (for
example—and non-exhaustively, see [SA96, SNP04, ACH06, FFGV07, KS08]).

Garay and Ostrovsky [GO08] studied a model they called Secure Message Transmission by Public Dis-
cussion (SMT-PD) as an important building block for achieving secure multi-party computation [BGW88,
CCD88] on sparse (i.e., not fully connected) networks. (An equivalent setup was studied earlier in a differ-
ent context by Franklin and Wright [FW98].) In this model, in addition to the wires in the standard SMT
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formulation, called “common” or “private” wires from now on, S and R gain access to a public channel
which the adversary can read but not alter. In this new setting, secure message transmission is achievable
even if the adversary corrupts up to t < n of the private wires—i.e., up to all but one.

The motivation for this abstraction comes from the feasibility in partially connected settings for a subset
of the nodes in the network to realize a broadcast functionality despite the limited connectivity [DPPU86,
Upf92, BG93]1, which plays the role of the public channel. (The private wires would be the multiple paths
between them.) As such, the implementation of the public channel in point-to-point networks is costly and
highly non-trivial in terms of rounds of computation and communication, as already the sending of a single
message to a node that is not directly connected is simulated by sending the message over multiple paths,
not just blowing up the communication but also incurring a slowdown factor proportional to the diameter of
the network, and this is a process that must be repeated many times—linear in the number of corruptions for
deterministic, error-free broadcast protocols (e.g., [GM98]), or expected (but high) constant for randomized
protocols [FM97, KK06].

A main goal of this work is to minimize the use of this expensive resource, both in terms of communi-
cation as well as in the number of times it must be used when sender and receiver must send many messages
back and forth, as it is the case in secure multi-party computation. We first present an SMT-PD protocol
with a logarithmic (in m, the message size) communication complexity on the public channel; the best
known bound, due to Shi, Jiang, Safavi-Naini, and Tuhin [SJST09], was linear (see related work below). In
addition, our protocol incurs a private communication complexity of O( mnn−t), which, as we also show, is
optimal, thus providing an affirmative answer to the question posed in [SJST09] of whether theO(n) private
transmission rate could be improved. Furthermore, our protocol has an optimal round complexity of (3, 2),
meaning 3 rounds, 2 of which must invoke the public channel [SJST09].

Regarding the number of times the public channel must be used when considering SMT-PD as a sub-
routine in a larger protocol, we ask the question whether some of the lower bounds on resource use for a
single execution of SMT-PD can be beaten on average through amortization. In other words, if a sender
and receiver must send several messages back and forth (where later messages depend on earlier ones), can
they do better than the naı̈ve solution of repeating an SMT-PD protocol each time, incurring a cost of three
rounds and two public channel transmissions per message? We show that amortization can in fact drastically
reduce the use of the public channel: indeed, it is possible to limit the total number of uses of the public
channel to two, no matter how many messages are ultimately sent between two nodes. (Since two uses of
the public channel are required to send any reliable communication whatsoever, this is best possible.)

Prior work. The first variant of SMT considered in the literature is perfectly secure message transmission
(PSMT), in which both privacy and reliability are perfect [DDWY93]. It is shown in the original paper that
PSMT is possible if and only if n ≥ 2t + 1. For such n, 2 rounds are necessary and sufficient for PSMT,
while one-round PSMT is possible if and only if n ≥ 3t+ 1.

The communication complexity of PSMT depends on the number of rounds. For 1-round PSMT, Fitzi
et al. [FFGV07] show that transmission rate ≥ n

n−3t is necessary and sufficient. (Recall that n > 3t is
required in this case.) For 2-round PSMT, Srinathan et al. [SNP04] show that a transmission rate ≥ n

n−2t is
required2; this was extended in [SPR07], which showed that increasing the number of rounds does not help.
Kurosawa and Suzuki [KS08] construct the first efficient (i.e., polynomial-time) 2-round PSMT protocol
which matches this optimal transmission rate.

A number of relaxations of the perfectness requirements of PSMT are considered in the literature to
achieve various tradeoffs (see for example [CPRS08] for a detailed discussion of variants of SMT). The
most general version of SMT (or SMT-PD) is perhaps (ε, δ)-SMT. We call a protocol for SMT(-PD) an
(ε, δ)-SMT(-PD) protocol provided that the adversary’s advantage in distinguishing any two messages is at
most ε, and the receiver correctly outputs the message with probability 1− δ. The lower bound n ≥ 2t+ 1
holds even in this general setting (at least for non-trivial protocols, such as those satisfying ε + δ < 1/2);
hence the most interesting case for SMT-PD is the case when the public channel is required: t < n ≤ 2t.
As noted above, this requires round complexity (3,2) [SJST09]. Franklin and Wright [FW98] show that

1Called “almost-everywhere” agreement, or broadcast, in this setting.
2The authors claim a matching upper bound as well, but this was shown to be flawed [ACH06].
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perfectly reliable (δ = 0) SMT-PD protocols are impossible when n ≤ 2t. On the other hand, perfect
privacy (ε = 0) is possible, and is achieved by previous SMT-PD constructions (see below).

The communication complexity lower bounds noted above all apply to PSMT; for more general SMT
bounds, we are aware only of [KS07]. They consider the problem of almost-secure message transmission,
which is only slightly less restrictive than PSMT. Namely, the problem requires perfect privacy, and that the
Receiver never output an incorrect message, though he may output “failure” with probability δ. The authors
show that in this model, there is a communication complexity lower bound of n(m + log(1/δ)) (up to an
additive constant).

A number of protocols for SMT-PD appear in previous work. The first such comes in [FW98] as a
consequence of the equivalence shown there between networks with multicast and those with simple lines
and broadcast (i.e., the public discussion model). Their solution has optimal round complexity (3, 2)3;
however, when t < n < d3t2 e (including the worst case t = n + 1), their protocol has (pick your poison)
either positive privacy error ε > 0, or exponential communication complexity. Garay and Ostrovsky [GO08]
first describe a (4,3)-round (0, δ) protocol which was subsequently improved to (3,2) rounds. The protocol
has linear transmission rate (in terms of message size) on the public and private channels. Shi et al. [SJST09]
give the first protocol with constant transmission rate on the public channel (for messages of sufficient,
modest size)4, with linear transmission rate on the private channels as well; however, the communication
complexity of their protocol is linear.

Our contributions. By contrast, we obtain the first round-optimal SMT-PD protocol with sublinear (log-
arithmic) communication complexity on the public channel. More specifically (and assuming for simplicity
δ = O(1)), our protocol has public channel communication complexity O(n log n logm) for messages of
sufficient size, as compared with O(m) in the protocol of [SJST09]. (The message size required by either
protocol—namely, m/ logm = Ω(n log n) for ours, or m = Ω(n2) for that of [SJST09]—ensures that
O(n log n logm) improves over O(m) for relevant values of n,m.) The protocol also enjoys a private com-
munication complexity of O

(
nm
n−t

)
, which (just by itself) improves on previous constructions and, as we

also show, is optimal. At a high level, the protocol has the same structure as previous 3-round SMT-PD pro-
tocols, with the following important differences: (1) our use of randomness extractors allows us to reduce
the amount of transmitted randomness, which is reflected in the gain in private communication, and (2) typ-
ically in previous protocols the message is transmitted in the last round over the public channel, blinded by
the private randomness thought not to have been tampered with; our improvement to public communication
comes from the transmission of the (blinded) message on the private wires, provided that the sender authen-
ticates the transmission making use of the public channel, which in turn requires smaller communication.
Additionally, we achieve these improved communication bounds even for messages of smaller required size
than Shi et al. [SJST09]. 5 Finally, the protocol achieves perfect privacy.

We arrive at this result through a series a transformations. First, we design a generic SMT-PD protocol
with linear public communication and O

(
nm
n−t

)
private communication (note that this already improves on

existing results); second, we consider instantiations of the generic protocol’s “black boxes” with different
randomness extractors, each providing its own benefits (perfect privacy vis-à-vis smaller message size); and
last, we obtain the final protocol by essentially running two perfect-privacy instantiations of the generic
protocol in parallel, one for the message itself and a “smaller” version for the authentication key. These
results are presented in Section 3.

As noted above, we also show (Section 4) an Ω( nmn−t) lower bound on private communication. The lower
bound holds for SMT without public discussion as well. The bound itself is weaker than previous, but it
holds for a more general class of SMT protocols. In particular, it is the first communication complexity

3The round complexity is not apparent from the text, for two reasons: (1) The protocol is described in terms of the multicast
model, not SMT-PD directly; and (2) the authors consider synchronous “rounds” not in the abstract SMT-PD model, but in the more
concrete setting of nodes relaying messages in the underlying network.

4It is also claimed in [SJST09] that constant transmission rate on the public channel is optimal; as we show here, that is not the
case.

5Specifically, [SJST09] require message size m = Ω(n2(log(1/δ))2), where we require only m = Ω(n(logn +
log(1/δ)) log q), with q ≈ mn/(n− t).
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lower bound to consider non-perfect privacy, as well as the first to allow for the Receiver outputting an
incorrect message.

Finally, we show in Section 5 how amortization can drastically reduce the use of the public channel,
allowing sender and receiver to communicate indefinitely after using the public channel twice and a limited
initial message. Our approach is to separate Sender and Receiver’s interaction following the first execution
of SMT-PD into two modes: a Normal Mode and a Fault-Recovery Mode. At a high level, in the Normal
Mode, secure communication is successful provided the adversary does not interfere; this is implemented by
a one-round protocol satisfying a relaxed version of the problem that we call Weak SMT-PD. Fault-Recovery
Mode is entered if corruption is detected.6

Preliminaries and definitions are given in Section 2. For the purpose of readability, many of the proofs,
as well as some complementary material, are presented in the appendix.

2 Model and Preliminaries

Definition 2.1 If X and Y are random variables over a discrete space S, the statistical distance between
X and Y is defined to be

∆(X,Y )
def
=

1
2

∑
s∈S
|Pr[X = s]− Pr[Y = s]| .

We say that X and Y are ε-close if ∆(X,Y ) ≤ ε.

The public discussion model. The public discussion model for secure message transmission [GO08] con-
sists of a Sender S and Receiver R (PPTMs) connected by n communication channels, or wires, and one
public channel. S wishes to send a message MS from message space M to R, and to this end S and R
communicate with each other in synchronous rounds in which one player sends information across the wires
and/or public channel. Communication on the public channel is reliable but public; the common wires may
be corrupted and so are not necessarily reliable or private.
A is a computationally unbounded adversary who seeks to disrupt the communication and/or gain in-

formation on the message. A may adaptively corrupt up to t < n of the common wires (potentially all
but one!). Corrupted wires are actively controlled by A: he can eavesdrop, block communication, or place
forged messages on them. Further, we assume A is rushing—in each round, he observes what is sent on
the public channel and all corrupted wires before deciding what to place on corrupted wires, or whether to
corrupt additional wires (which he then sees immediately).

An execution E of an SMT-PD protocol is determined by the random coins of S , R, and A (which we
denote CS , CR, CA respectively), and the message MS ∈ M. The view of a player P ∈ {S,R,A} in an
executionE, denoted ViewP , is a random variable consisting ofP’s random coins and all messages received
(or overheard) by P . (S’s view also includes MS). Additionally, let ViewP(M0) denote the distribution on
ViewP induced by fixing MS = M0. In each execution, R outputs a received message MR, a function of
ViewR.

We can now define an (ε, δ)-SMT-PD protocol (cf. [FW98, GO08, SJST09]):

Definition 2.2 A protocol Π in the model above, in which S attempts to send a message MS toR, is (ε, δ)-
secure (or simply, is an (ε, δ)-SMT-PD protocol) if it satisfies:

PRIVACY: For any two messages M0,M1 ∈M, ViewA(M0) and ViewA(M1) are ε-close.

RELIABILITY: For all MS ∈ M and all adversaries A, R should correctly receive the message with
probability at least 1 − δ; i.e., Pr[MR = MS ] ≥ 1 − δ. (The probability is taken over all players’
random coins.)

6Effectively, this is an instantiation in the SMT context of the “fast-track” approach (e.g., [Lam87, GRR98]), where if things are
“smooth” then the algorithm or protocol performs very efficiently, reverting to a more punctilious mode otherwise.
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Error-correcting codes and consistency checks for codewords. For our purposes, the following defini-
tion of error-correcting codes is sufficient:

Definition 2.3 Given a finite alphabet Σ, an error-correcting code E of minimum distance d is a pair of
mappings Enc : ΣK → ΣN , where K < N and Dec : ΣN → ΣK , such that (1) any two distinct elements
x, y in the image of Enc (the codewords) have dist(x, y) ≥ d in the Hamming metric; (2) Dec(Enc(x)) =
x for all x ∈ FKq .7 We say E has rate K/N and relative minimum distance d/N .

We require a family of codes of increasing input length which is asymptotically good, that is, E should
have constant rate and constant relative minimum distance D. See, e.g., [MS83] for a standard reference.

Of particular interest for us are the well-known Reed-Solomon codes over Fq, obtained by oversampling
polynomials in Fq[X]. Given an input in FKq , we interpret it as a polynomial f of degree≤ K− 1; to obtain
a codeword from f , we simply evaluate it at N distinct points in Fq, for any N > K. Indeed, any two
such polynomials agree on at most K − 1 points, therefore the Reed-Solomon code has minimum distance
N −K + 1.

Our protocols make use of a simple method to probabilistically detect when codewords sent on the
private wires are altered byA. Simply put, the sender of the codeword reveals a small subset of the codeword
symbols. Formally, suppose S sends a codeword C ∈ ΣN toR over one of the private wires, andR receives
the (possibly altered) codeword C̃. (If R receives a non-codeword, he immediately rejects it.) Then to
perform the consistency check, S chooses a random set J = {j1, j2, . . . , j`} ⊂ [N ] and sends (J, C|J) to
R, where C|J represents the codeword C restricted to the indices in J . If the revealed symbols match, then
the consistency check succeeds; otherwise the check fails andR rejects C̃ as tampered.

Suppose A alters C to a different codeword, C̃ 6= C. symbols. Therefore, the probability that they agree
on a randomly chosen index is ≤ 2/3, and so

Pr[R accepts C̃] = Pr[C|J = C̃|J ] ≤ (2/3)`.

Thus, with probability≥ 1−(2/3)`,Rwill reject a tampered codeword. Of course, the validity of the check
depends upon A not knowing J at the time of potential corruption of C.

Average min-entropy and average-case randomness extractors. Recall that the min-entropy of a distri-
bution X = (X1, . . . , XN ) over {0, 1}N is defined as

H∞(X) = min
x

(− log (Pr[X = x])) ,

and gives a measure of the amount of randomness “contained” in a weakly random source. We say a
distribution X is a kmin-source if H∞(X) ≥ kmin.

A (seeded) (N,M, kmin, ε)-strong extractor is a (deterministic) function

Ext : {0, 1}N × {0, 1}D → {0, 1}M

such that for any kmin-source X , the distribution UD ◦ Ext(X,UD) is ε-close to UD ◦ UM (where Uk
represents the uniform distribution on {0, 1}k). The input to the extractor is the N -bit kmin-source, X ,
together with a truly random seed s, which is uniformly distributed over {0, 1}D. Its output is an M -bit
string which is statistically close to uniform, even conditioned on the seed s used to generate it.

This notion of min-entropy, and of a general randomness extractor, may be an awkward fit when con-
sidering an adversary with side information Y as above. In these cases, a more appropriate measure may be
found in the average min-entropy of X given Y , defined in [DORS08] by

H̃∞(X|Y ) = − log
(
Ey←Y

[
max
x

Pr [X = x|Y = y]
])
.

Note that this definition is based on the worst-case probability for X , conditioned on the average distribu-
tion (as opposed to worst-case probability) of Y . The rationale is that Y is assumed to be outside of the

7Note in particular that this allows us to test for membership in the image Enc(ΣK) by first decoding and then re-encoding.

5



adversary’s control; however, once Y is known, the adversary then predicts the most likely X , given that
particular Y .

[DORS08] use average min-entropy to define an object closely related to extractors: A (seeded) average-
case (N,M, kmin, ε)-strong extractor is a (deterministic) function

Ext : {0, 1}N × {0, 1}D → {0, 1}M

such that the distribution of (UD ◦ Ext(X,UD), I) is ε-close to (UD ◦ UM , I), whenever (X, I) is jointly
distributed pair satisfying H̃∞(X|I) ≥ kmin. The similarity to an ordinary extractor is clear. [DORS08]
prove the following fact about average min-entropy:

Fact 2.4 If Y has at most 2` possible values, then H̃∞(X|(Y,Z)) ≥ H̃∞(X|Z)− `.

Extracting randomness from Fq. We will make use of a special-purpose deterministic (seedless) extrac-
tor Extq which operates at the level of field elements in Fq as opposed to bits.

Extq works not on general min-entropy sources, but on the restricted class of symbol-fixing sources,
which are strings in FNq such that some subset of K symbols is distributed independently and uniformly
over Fq, while the remaining N −K symbols are fixed. Given a sample from any such source, Extq outputs
K field elements which are uniformly distributed over FKq .

Extq works as follows: Given α ∈ FNq , construct f ∈ Fq[X] of degree ≤ N − 1, such that f(i) = αi
for i = 0, . . . , N − 1. Then Extq(α) = (f(N), f(N + 1), . . . , f(N +K − 1)). (Of course we require
N+K ≤ q.) This extractor has proven useful in previous SMT protocols as well (see, e.g., [ACH06, KS08]).

3 SMT-PD with Small Public Discussion

In this section we present our main positive results. First, we construct a basic (ε, δ)-SMT-PD protocol, ΠGen

(for “generic”), with optimal private communication and linear public communication. We then consider
possible instantiations of ΠGen; using, in particular, Reed-Solomon codes and the extractor Extq, improves
it to a 0-private protocol. Finally, we use ΠGen (instantiated with Reed-Solomon codes) as a building block
to construct our main protocol ΠSPD, which achieves logarithmic public communication while maintaining
optimal private communication (and other desirable properties).

3.1 A generic protocol with optimal private communication

Protocol ΠGen achieves essentially optimal communication complexity on the private wires of O( mnn−t),
where m is the length of the message, while maintaining linear communication complexity on the public
channel. (See Section 4 for a precise statement of the lower bound.) This is the first SMT-PD protocol to
achieve sublinear transmission rate on the private wires, and as such provides an affirmative answer to the
question posed in [SJST09] of whether O(n) private-wire transmission rate can be improved.

ΠGen relies on two primitives as black boxes: an error-correcting code E and an average-case strong
extractor, ExtA. The efficiency of the protocol depends on the interaction between the basic parameters
of the protocol—ε, δ, m, n, and t—and the parameters of E and ExtA. After presenting the protocol and
proving its security, we will examine its complexity in terms of these parameters.

At a high level, the protocol has the same structure as previous 3-round SMT-PD protocols: (1) in the
first round, one of the parties (in our case R) sends lots of randomness on each private wire; (2) using the
public channel, R then sends checks to verify the randomness sent in (1) was not tampered with; (3) S
discards any tampered wires, combines each remaining wire’s randomness to get a one-time pad R, and
sends C = M ⊕R on the public channel. However, our use of extractors allows us to reduce the amount of
transmitted randomness, which is reflected in the gain in private communication.

We remark that one may modify ΠGen to have interaction order S-R-S , instead ofR-R-S as we present
it. One advantage of R-R-S is that when instantiated with deterministic extractors (see below), it does not
require any random coins for S (in contrast to S-R-S, where both parties use randomness crucially).

Now we turn to the details of protocol ΠGen. Let error-correcting code E have encoding and decoding
functions Enc : {0, 1}K → {0, 1}N and Dec : {0, 1}N → {0, 1}K , respectively, and relative minimum
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distance D. (We will specify K below.) While N > K may be arbitrarily large for the purpose of cor-
rectness, we will want K/N and D both to be constant for our complexity analysis—such codes are called
asymptotically good .

Second, let ExtA be an average-case (nK,m, kmin, ε/2)-strong extractor. Here K is, as above, the
source length of the error-correcting code E , and m and ε are the message-length and privacy parameters of
ΠGen. kmin is the min-entropy threshold. Now clearly m ≤ kmin ≤ nK. On the other hand, we require
kmin = O(m) for our complexity claim to hold—that is, ExtA should extract a constant fraction of the
min-entropy. Further, the extractor’s seed length s should be O(n+m).

Finally, let b = 1
1−D , and then set ` = logb(t/δ). Now with foresight, we set K = dkmin/(n− t)e+ `.8

Note that if D and kmin are constant and kmin = O(m), then K = O(m)/(n− t) + `. The protocol, ΠGen,
is presented in Fig. 1.

Protocol ΠGen(ε, δ,m, n, t, E ,ExtA)

1. (R PRI→ S). For each wire i, R chooses a random ri ∈ {0, 1}K and sends the codeword Ci = Enc(ri)
along wire i. Let C̃i be the codeword received by S, and r̃i = Dec(C̃i).

2. (R PUB→ S). R chooses a random subset J = {j1, j2, . . . , j`} ⊂ [N ] of codeword indices, |J | = `. Let

Ci|J = (Ci,j1 , Ci,j2 , . . . , Ci,j`
) ∈ {0, 1}`

be the codeword Ci restricted to the indices of J . R sends (J, {Ci|J}i∈[n]) to S over the public channel.

3. (S PUB→ R). S rejects any wire i which is syntactically incorrect (including the case that C̃i is not a valid
codeword), or for which Ci|J conflicts with C̃i. Call the set of remaining, accepted wires ACC, and let
B ∈ {0, 1}n, where bi = 1 ⇐⇒ i ∈ ACC.
Let α̃ denote the concatenation of r̃i for all i ∈ ACC, padded with zeroes so that |α̃| = nK. S chooses
seed ∈ {0, 1}s uniformly at random. He applies ExtA : {0, 1}nK × {0, 1}s → {0, 1}m to obtain
R̃ = ExtA(α̃, seed), where |R̃| = m. S puts C = MS ⊕ R̃, and sends (B,C, seed) on the public
channel.
Receiver: R usesB to reconstruct ACC. He forms α by concatenating ri for each i ∈ ACC, and padding
with zeroes to size nK. He applies ExtA : {0, 1}nK → {0, 1}m, obtaining R = ExtA(α, seed). He
then recovers MR = C ⊕R.

Figure 1: A generic SMT-PD protocol with optimal communication complexity on the private wires and
linear communication complexity on the public channel.

Theorem 3.1 Let t < n. Protocol ΠGen is a (3, 2)-round (ε, δ)-SMT-PD protocol with communication
complexityO( mnn−t) on the private wires provided thatm/(n−t) = Ω(`), and max(O(`(n+logm)), O(m+
n)) on the public channel, provided only that m = Ω(`).

Proof. Privacy. We first claim that if we omit C, then A has essentially no information (up to ε) on S’s
output of the average-case extractor, R̃ = ExtA(α̃, seed). Formally:

Claim 3.1 The distribution (Us, R̃,ViewA \ C) is ε/2-close to (Us, Um,ViewA \ C).

(Proof in the appendix.) The remainder of the proof of ε-privacy is by contradiction: We show that, if there
exists an adversary A and messages M0,M1 such that ∆(ViewA(M0),ViewA(M1)) > ε, then there exists
a distinguisher D which can distinguish (Us, R̃,ViewA \C) from (Us, Um,ViewA \C), in contradiction to
the above claim.

8As a sanity check, observe that kmin ≤ nK = n(kmin/(n− t) + `), so the extractor we define can exist.
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So suppose such an A, M0, M1 exist. Then there exists a distinguisher D0 which satisfies

|Pr[D0(ViewA(M0)) = 1]− Pr[D0(ViewA(M1)) = 1]| > ε

In particular it follows that either

(1)
∣∣Pr[D0(ViewA(M0)) = 1]− Pr[D0(ViewA(M$)) = 1]

∣∣ > ε/2

or
(2)

∣∣Pr[D0(ViewA(M$)) = 1]− Pr[D0(ViewA(M1)) = 1]
∣∣ > ε/2.

Here ViewA(M$) denotes the random variable obtained by first sampling M$ uniformly from {0, 1}m, and
then sampling from ViewA conditioned on MS = M$. (If the probability distribution on M is uniform,
then the distribution of ViewA(M$) is identically that of ViewA, but we do not assume this here.)

Without loss of generality, we assume case (1) above holds. Now we describe D, which uses D0 as a
black box in order to distinguish (Us, R̃,ViewA \ C) and (Us, Um,ViewA \ C). First, the challenger flips
a coin. On heads, he samples u← (Us, R̃,ViewA \ C), and on tails, u← (Us, Um,ViewA \ C). In either
case he obtains u = (us, utest, uview) which he passes on to D. D forms CD = M0 ⊕ utest, which plays
the role of C in the protocol. He passes uview ∪ CD to D0, which returns a bit b representing its guess that
uview ∪ CD was sampled from ViewA(Mb). If b = 0, then D outputs a guess of “heads” (i.e., guesses utest
was sampled from R̃), otherwise D guesses “tails” (utest was sampled from Um).

Now consider the success probability of D when the challenger flips heads, so that utest ∼ R̃. In this
case, CD = M0 ⊕ R̃ is obtained exactly as in ΠGen, and therefore uview ∪ CD is distributed identically
with ViewA(M0). Thus Pr[D(u) = 1|heads] = Pr[D0(ViewA(M0)) = 1]. Alternatively, suppose the
challenger flips tails, and utest is uniform. Then CD = M0 ⊕ utest is uniform, which is also the distribution
of C if we choose M = MS uniformly at random. Thus Pr[D(u) = 1|tails] = Pr[D0(ViewA(M$)) = 1].
Putting these together, we discover∣∣Pr[D(Us, R̃,ViewA \ C) = 1]− Pr[D(Us, Um,ViewA \ C) = 1]

∣∣
=
∣∣Pr[D0(ViewA(M0)) = 1]− Pr[D0(ViewA(M$)) = 1]

∣∣ > ε/2,

which contradicts the above claim. This completes the verification of ε-privacy.

Reliability. Observe that MR = C ⊕R and MS = C ⊕ R̃. Therefore,

R fails to decode correctly (MR 6= MS) ⇐⇒ Ext(α, seed) = R 6= R̃ = Ext(α̃, seed)
=⇒ α 6= α̃

=⇒ ∃i ∈ ACC s.t. ri 6= r̃i

=⇒ ∃i ∈ ACC s.t. Ci 6= C̃i.

The latter event only happens if A succeeds in altering Ci without S detecting it. By construction, our
consistency check (Section 2) guarantees that this happens with probability at most (1 − D)` = δ/t for a
single wire, hence (taking a union bound over corrupt wires) probability at most δ overall. Consequently,
Pr[MR = MS ] ≥ 1− δ.

Complexity. The private wires are used only in round 1, to sendEnc(ri) on each wire. The total complexity
is therefore nN = O(nK) (for E of constant rate). As noted above, our assumptions on E and ExtA imply
that K = O(m/(n− t) + `), and therefore the total private wire complexity is O(mn/(n− t) +n`), which
is O(mn/(n− t)) provided m/(n− t) = Ω(`).

The public channel is used in Rounds 2 and 3. In Round 2, R transmits J ⊂ [N ] of size `, and the
restricted codewords Ci|J , at total cost `n+` logN = `n+`(logK+O(1)) = `n+O(`(log(m/(n−t)+`))).
Provided that m = Ω(`), this is O(`(n+ logm)).

In Round 3, S uses the public channel to send (B,C, seed) where B indicates accepted wires, C hides
the messageMS , and seed is a seed for ExtA. Thus the Round 3 public communication is n+m+s, which
is O(n+m) for any extractor with reasonable seed length. 2
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3.2 Instantiating the generic protocol

Here we consider possible instantiations of ΠGen. Since our main interest is in 0-private protocols, the
most important instantiation will be that with Reed-Solomon codes and the extractor Extq of Section 2.
Nevertheless, other choices of (explicit) extractor are possible, and we examine one such in particular.

Kamp and Zuckerman’s symbol-fixing extractor. The first extractor we suggest is the deterministic
symbol-fixing extractor of Kamp and Zuckerman [KZ06, Theorem 1.3]. This extractor, like Extq, works for
the class of symbol-fixing sources; here the symbols come from an alphabet of constant size d ≥ 3. It is an
efficiently computable (n,m,O(m + 1/ε), ε)-extractor (the O hides constants depending on d); it extracts
a constant fraction of min-entropy and has output exponentially close to uniform. Additionally, it works for
sources of any min-entropy rate—that is, kmin has no dependence on n. It also has the advantage of being
deterministic, thus obviating the need for S to choose and send a seed in Round 3. In this case, S does not
require any random coins at all.

To convert the extractor of Kamp and Zuckerman into an average-case extractor as in Section 2, we may
invoke the following fact, proven in [DORS08]:

Fact 3.2 For any γ > 0, if Ext : {0, 1}N × {0, 1}D → {0, 1}M is an (N,M, kmin, ε)-strong extractor,
then Ext is an (N,M, kmin + log(1/γ), ε+ γ)-strong average-case extractor.

Taking γ = ε, we obtain a 2ε-extractor, while the additional additive error of log(1/ε) is absorbed into
the O(log(1/ε))-term already appearing in Kamp and Zuckerman’s extractor. Provided that ε = Ω(2−cm),
we have log(1/ε) = O(m), and so the new min-entropy satisfies k′min = O(m), as required in the com-
plexity analysis.

We note that since the extractor of [KZ06] works on alphabets of fixed constant size, it is able to achieve
optimal communication complexity for messages of size Ω(n`), as in ΠGen. In contrast, the instantiation
with Reed-Solomon has a dependence on the field size log q ≈ log(mn/(n− t)) as well.

Reed-Solomon codes and the extractor Extq. Statistical error is a feature of all general-purpose random-
ness extractors. To get around it, we can exploit the fact that the sources arising from ΠGen are not general
min-entropy sources. Rather, conditioning on the adversary’s view, each good wire carries independent,
uniform randomness, and the corrupt wires carry fixed values. Thus the source we are interested in actually
carries quite a great deal of structure. In particular, we may view it as a symbol-fixing source as described
in Section 2, since we may group bits into symbols, and the adversary has no information on the symbols
carried by good wires.

Consider an instantiation of ΠGen using the extractor Extq : FkNq → Frq of Section 2, which is indeed
errorless. (Here r = m/ log q is the size of MS in field elements.) Extq is, according to our notation,
a (kN, r, r, 0) extractor for sources over Fq: It extracts 100% of the randomness from its input with no
statistical error. (It is also deterministic, hence trivially strong.) Since Extq operates at the level of field
elements, Reed-Solomon codes are a natural choice for the error-correcting code E of ΠGen. We choose E
to be Extq : FKq → F2K

q , which has relative minimum distance 1/2.
We now describe two requirements imposed by this instantiation. First, the description of ΠGen as-

sumes an extractor which operates on bits rather than field elements. This presents no real problem, as all
statements can be recast in a straightforward way to this new setting. However, as mentioned above, the
move from {0, 1} to Fq does have the effect of adding a log q term to the message size required for optimal
communication complexity (see statement of and complexity analysis for Theorem 3.2 ).

Second, we must specify the appropriate field size q in terms of the basic parameters m,n, t, δ. Recall
` = log(t/δ). We require (with foresight):

q log q = Ω(mn/(n− t)) and (q − 2`) log q >
2m
n− t

.

Thus MS ∈ Frq, where r = m/ log q.
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For the proof of privacy, we require Extq : FnKq → Frq is in fact a perfect randomness extractor—so we
need q ≥ nK + r. Since K = r/(n− t) + `, we have (using m = Ω(n`)):

nK + r = n · ( r

n− t
+ `) + r = r(

n

n− t
+ 1) + n`

=
m

(log q)
· n

n− t
+O(m) = O(

m

(log q)
· n

n− t
).

Thus, for q ≥ nK + r it suffices that q log q = Ω(mn/(n− t)), which is our first assumption on q.
Now observe that in order for our codeword authentication to be valid, we need q ≥ 2K = 2r/(n −

t) + 2`. Thus we require:

q ≥ 2r/(n− t) + 2` ⇐⇒ q ≥ 2m
(log q)(n− t)

+ 2`

⇐⇒ q log q ≥ 2m
n− t

+ 2` log q

⇐⇒ (q − 2`) log q ≥ 2m
n− t

,

which gives our second condition on q.

3.3 A protocol with logarithmic public communication

In this section we present a protocol for SMT-PD which is the first to achieve logarithmic communication
complexity (in m) on the public channel. The protocol is perfectly private, achieves the optimal communi-
cation complexity of O( mnn−t) on the private wires, and has optimal round complexity of (3, 2).

In its Round 3 communication, ΠGen incurs a cost of size m on the public channel, which we wish to
reduce to O(logm). Our improvement comes from the insight that S can send the third-round message (C,
in the notation of ΠGen) on the common wires, provided that S authenticates the transmission (making use
of the public channel).
S could simply send C on every common wire and authenticate C publicly. The downside of this

approach is that the private wire complexity would be Ω(mn) rather than O( mnn−t)—no longer optimal. Our
solution is to take C and encode it once again using Reed-Solomon into shares C1, . . . , Cn, each of size
≈ m

n−t , such that any n − t correct Ci’s will reconstruct C. S then sends Ci on wire i, and authenticates
each Ci publicly.

This authentication uses a short secret key, s̃, of size `(n+log( cmn−t)) (which is the cost of authenticating
n messages of size cm/(n− t), using the consistency check of Section 2; c is an absolute constant defined
below). Thus, S and R will run two processes in parallel: a “small” strand, in which S privately sends
the short key to R; and a “big” strand, in which S sends MS to R, making use of the shared key in the
third round. The small protocol sends the short key using any reasonably efficient SMT-PD protocol; for
ease of exposition, we use ΠGen, instantiated with Reed-Solomon codes. We also use ΠGen with Reed-
Solomon codes for the big strand of the protocol in order to achieve perfect privacy and optimal private wire
complexity.

We now describe the protocol in detail. Many of the parameters are the same as in (the Reed-Solomon
instantiation of) ΠGen: We set ` = log(t/δ), and fix a prime q such that

q log q = Ω(mn/(n− t)) and (q − 2`) log q ≥ 2m
n− t

.

The message space isM = Frq, that is, an m-bit message is considered as a sequence of r = dm/ log qe
field elements in Fq. (However, we also assume, for the purpose of the Round 3 authentication, that the field
elements are actually represented as bit-strings of length r log q.) Set K = dr/(n− t)e+ ` and N = 2K.

In addition to the above parameters, we will also define their small-strand counterparts, which we notate
using variables with hats. Set m̂ = `(n+log(cK log q))—as noted above, this is the size of the shared secret
which will be used to authenticate the Ci’s. Here the constant c > 1 is the expansion factor of an efficiently
computable, constant-rate error-correcting code E ′ of relative minimum distance (say) 1/3. (We caution
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Protocol ΠSPD

1. (R PRI→ S). (small) For each wire i, R chooses a random f̂i ∈ Fq̂[X] such that deg(f̂i) ≤ K̂. R sends

the Reed-Solomon (RS) codeword Ĉi =
(
f̂i(1), f̂i(2), . . . , f̂i(N̂)

)
along wire i. Let ˜̂Ci be the codeword

received by S, and ˜̂fi = DecRS(˜̂Ci).
(big) For each wire i,R chooses a random fi ∈ Fq[X] such that deg(fi) ≤ K. R sends the RS codeword
Ci =

(
fi(1), fi(2), . . . , fi(N)

)
along wire i. Let C̃i be the codeword received by S, and f̃i = DecRS(C̃i).

2. (R PUB→ S). (small) R chooses a random subset Ĵ = {ĵ1, . . . , ĵ`} ⊂ [N̂ ] of codeword indices, |Ĵ | = `.
R performs codeword verification as in Section 2 by sending Ĵ , as well as {Ĉi|Ĵ} for each wire i, over
the public channel.
(big) R chooses a random subset J = {j1, . . . , j`} ⊂ [N ] of codeword indices, |J | = `. R performs
codeword verification as in Section 2 by sending J , as well as {Ci|J} for each wire i, over the public
channel.

3. (S PUB+PRI−→ R). S rejects any wire i which is syntactically incorrect or which fails one of the consis-
tency checks in Round 2. Call the set of remaining, accepted wires ACC.

(small) Let ˜̂α denote the concatenation of ˜̂fi for each i ∈ ACC, padded with 0 ∈ Fq so its length is K̂n.
Applying Extq̂ : FK̂n

q̂ → Fr̂
q̂ of Section 2, S obtains s̃ = Extq̂(˜̂α).

(big) Let α̃ denote the concatenation of f̃i for each i ∈ ACC, padded with 0 ∈ Fq so its length is Kn.
Applying the randomness extractor Extq : FKn

q → Fr
q , S obtains R̃ = Extq(α̃).

Now MS and R̃ are both vectors in Fr
q; S puts C = R̃ + MS . Now S applies the Reed Solomon code

Fr
q → FKn

q to C, obtaining a codeword D ∈ FKn
q . Let D = (D1, . . . , Dn) where each Di ∈ FK

q . View
Di as a bit-string of length K log q, and let Ei = Enc(Di), so that |Ei| = cK log q (in bits). S sends Ei

on wire i ∈ ACC; let Ẽi denote the message received byR on wire i.
To authenticate each Ei, S chooses a random subset J ′ ⊆ [cK log q], |J ′| = `3/2. Put authS =
(J ′, {Ei|J′}i∈ACC); we have |authS | ≤ m̂ (with equality if every wire is in ACC). Padding as nec-
essary, view authS as an element of Fr̂

q̂ . S sets V = s̃+authS and sends (V,B) over the public channel,
where B is an n-bit string representing the set ACC.
Receiver: R learns ACC from B. For i ∈ ACC, he forms α, the concatenation of fi for each i ∈ ACC
(padded with 0 ∈ Fq to length Kn). He applies Extq to obtain R = Extq(α) ∈ Fr

q .

Similarly, for i ∈ ACC, he forms α̂, the concatenation of f̂i for each i ∈ ACC (padded with 0 ∈ Fq to
length K̂n). He applies Extq̂ to obtain s = Extq̂(α̂) ∈ Fr̂

q̂ .

Next R forms V − s, which he parses as authR = (J̃ ′, {checki}i∈ACC). For each (correctly formed)
Ẽi, R verifies its authenticity by checking that Ẽi|J̃′ = checki. For those which pass, he recovers
D̃i = Dec(Ẽi), D̃i ∈ FK

q . OnceR has recovered at least n− t valid D̃i’s, he has K(n− t) = r symbols
in Fq , which he uses to decode the RS code used by S to encode C. (This is simply interpolation.) Call
the result C̃ ∈ Fr

q . Finally,R obtains MR = C̃ −R.

(On failure to authenticate at least n− t Ẽi’s, or to parse authR correctly,R outputs ⊥.)

Figure 2: SMT-PD protocol with small (logarithmic) public communication and optimal private communi-
cation.
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that E ′ plays a different role in ΠSPD than E did in ΠGen, hence the different name.) We will use Enc and
Dec to denote the encoding and decoding functions of E ′; we use EncRS and DecRS for the encoding and
decoding functions of the Reed-Solomon code which functions as E for ΠSPD.

Fix q̂ to be a prime such that

q̂ log q̂ = Ω(
m̂n

n− t
) and (q̂ − 2`) log q̂ >

2m̂
n− t

,

Set r̂ = m̂/ log q̂, K̂ = r̂/(n− t) + `, and N̂ = 2K̂. Finally, set `3/2 = log3/2(t/δ).
The protocol, ΠSPD (for “small public discussion”), is shown in Figure 2. Keep in mind the high-level

understanding of the protocol: The first two rounds are simply parallel versions of Rounds 1 and 2 of ΠGen,
run with different (big and small) parameters. In Round 3, we complete the small instance of ΠGen as usual,
and use the resulting shared secret to blind the (public-channel) authentication of the Ci’s which encode
C. The latter have been sent on the unreliable private wires, unlike in ΠGen, where no authentication was
required in Round 3 since C itself was sent on the public channel.

Theorem 3.2 Protocol ΠSPD (Fig. 2) is a valid (3, 2)-round (0, 3δ)-SMT-PD protocol. It has commu-
nication complexity O( mnn−t) on the private wires and O(n` logm) on the public channel, provided m =
Ω(n` log q).

4 Private Communication Lower Bound

In this section we prove a lower bound of Ω( nmn−t) for the expected communication complexity on the private
wires, for any (ε, δ)-SMT-PD protocol (where ε and δ are considered constants). Since protocol ΠGen of
the previous section meets this bound, we provide a complete answer to the question raised in [SJST09] of
determining the optimal transmission rate on private wires for an (ε, δ)-SMT-PD protocol.

Our communication lower bound holds even for a weakened adversary who is passive and non-adaptive—
that is, A chooses which wires to corrupt at the start of the protocol and only eavesdrops thereafter. It also
holds even if we modify δ-reliability so that the probability that MR = MS is taken over the the choice of
MS as well (and not just the players’ coins). Further, as noted in the Introduction, it also holds in the case
of SMT with no public channel, mutatis mutandis.

For the lower bound, we assume thatMS is chosen uniformly at random fromM; in this caseH(MS) =
log |M|. (Refer to Appendix A for entropy definitions and formulas.) In the following lemmas (proofs in
Appendix B) we assume Π is a valid (ε, δ)-SMT-PD protocol, and probabilities are over all players’ coins
as well as the random selection of MS ∈M.

The first two lemmas are complementary, establishing entropy versions of ε-privacy and δ-reliability,
respectively. Namely, in Lemma 4.1, we show that in any ε-private protocol, the entropy of MS remains
high given the adversary’s view. Then in Lemma 4.2, we show that for any δ-reliable protocol (with passive
adversary), the entropy ofMS given the entire transcript of communications is low. Though these statements
are quite intuitive, their proofs are relatively delicate.

Lemma 4.1 For all adversaries A and all ε-private protocols, H
(
MS

∣∣ ViewA
)
≥ − log(1/|M|+ 2ε).9

The transcript T of an (ε, δ)-SMT-PD protocol execution is the random variable consisting of the list of
messages the players send on public and private channels over the course of the protocol. Thus in the case
of a passive adversary, T is completely determined by MS and the coins of S and R. For a given set of
wires S, we will let TS denote the transcript restricted to communications on the wires in S. In the sequel
we use PUB, PRIV, CORR, and SEC to denote respectively the public channel, private wires, corrupted
wires, and secure (uncorrupted and private) wires.

We use H2(·) to denote the binary entropy function, H2(p) = −p log p− (1− p) log(1− p).

Lemma 4.2 For all δ-reliable protocols, H(MS |T ) ≤ H2(
√
δ) + 2

√
δH(MS).

9This entropy lemma is not directly equivalent to a seemingly related probability version (as in [SJST09], Lemma 2).
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Given Lemmas 4.1 (a proof of “high” entropy) and 4.2 (a proof of “low” entropy), we take the difference
of the two inequalities (leaving still a “high” amount of entropy), and show that this bounds from below
H(TSEC|SEC). This is intuitive: the adversary knows which wires are secure, and yet it is only from these
wires that S and R can leverage any privacy at all. Therefore the entropy of the messages on them should
be high.

Lemma 4.3 − log(1/|M|+ 2ε)−H2(
√
δ)− 2

√
δ log |M| ≤ H

(
TSEC

∣∣ SEC
)
.

Our main lower bound theorem follows. The idea is straightforward. Since the set of secure wires is
unknown to S and R (for a passive adversary, say), it must be that, in an average sense, every set of n − t
private wires carries the requisite entropy. Then we use Han’s inequality (see proof) to “average” the entropy
over all subsets of n− t wires and obtain an estimate for the total entropy on private wires, completing the
proof.

Theorem 4.1 Let Π be any (ε, δ)-SMT-PD protocol with n ≤ 2t, in the presence of a passive, non-adaptive
adversary A. Let C denote the expected communication (in bits) over the private wires (the expectation is
taken over all players’ coins and the choice of MS ∈M). Then

C ≥ n

n− t
· (− log(1/|M|+ 2ε)−H2(

√
δ)− 2

√
δ log |M|)

In particular, if ε = O(1/|M|) and δ = O(1), then C = Ω(mn/(n− t)).

Corollary 4.4 Provided that ε = O(1/|M|), and δ = O(1), protocols ΠGen and ΠSPD have optimal
private communication complexity O

(
nm
n−t

)
for messages of size m = Ω (n`) and m = Ω (n` log q),

respectively.

5 Amortized Use of the Public Channel

A natural question when considering SMT-PD as a subroutine in a larger protocol is whether some of
the lower bounds on resource use for a single execution of SMT-PD can be beaten on average through
amortization. For instance, an almost-everywhere secure computation protocol may invoke an SMT-PD
subroutine every time any two nodes in the underlying network need to communicate. Must they use the
public channel twice every single time, or can the nodes involved, say, save some state information which
allows them to reduce their use of the public channel in later invocations?

Our next result shows that amortization can in fact drastically reduce the use of the public channel:
indeed, it is possible to limit the total number of uses of the public channel to two, no matter how many
messages are ultimately sent between two nodes. (Since two uses of the public channel are required to send
any reliable communication whatsoever, this is best possible.)

Of course, S and R may use the first execution of SMT-PD to establish a shared secret key, which
can be used for message encryption and authentication on the common wires. The Sender computes a
ciphertext and sends it (with authentication) on every common wire. With overwhelming probability, no
forged message is accepted as authentic, and the Receiver accepts the unique, authentic message which
arrives on any good wire. However, since we are considering the information-theoretic setting, each use
of the shared key reduces its entropy with respect to the adversary’s view. If the parties know in advance
an upper bound on the total communication they will require, and can afford to send a proportionally large
shared key in the first execution of SMT-PD, then this approach is tenable by itself.

In some situations, however, the players may not know a strict upper bound on the number of messages
they will send. And even when they do, it may happen that the protocol terminates early with some prob-
ability, so that an initial message with large entropy is mostly wasted. With these considerations in mind,
we now explore strategies which allow S and R to communicate indefinitely after using only two broad-
cast rounds and a limited initial message. Our approach is to separate Sender and Receiver’s interaction
following the first execution of SMT-PD into two modes: a Normal Mode and a Fault-Recovery Mode.
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In the Normal Mode, S andR communicate over the common wires without making use of their shared
key; they are successful provided the adversary does not actively interfere. If the adversary does interfere,
one of the players (say R) will detect this and enter Fault-Recovery Mode, in which he uses the shared key
to broadcast information about the messages he received on each common wire, allowing S to determine at
least one corrupted wire (which he then informsR about, authentically).

In this way, S andR communicate reliably and privately so long as the adversary is passive; and any time
he is active, they are able to eliminate at least one corrupted wire10. (Of course, once they have eliminated
all t corrupt wires, communication becomes very efficient.) In the sequel we describe implementations of
Normal Mode and Fault-Recovery Mode, as well as how the two modes interact with each other.

Normal Mode. Let us first define a weaker version of SMT by public discussion in which reliability is
only guaranteed for a passive adversary. Let Π be a protocol which attempts to send a message from S
to R using only the common wires (and not relying on any shared secret key). Then we say Π is a Weak
(ε, δ) SMT-PD protocol if it satisfies Definition 2.2 where we (1) add to the adversary’s view a bit indicating
whetherR accepted a message or not (see next point), and (2) replace RELIABILITY with:

WEAK RELIABILITY:

(Correctness with passive adversary) If the adversary only eavesdrops, then R receives the message
correctly.
(Detection of active adversary) If the adversary actively corrupts any wire, then with probability≥ 1−δ,
either R receives the message correctly (MR = MS), or R outputs “Corruption detected.”

The first change above affects ε-privacy since it alters the definition of ViewA; this is necessary because in
the compiled, amortized protocol using Weak SMT-PD as a subroutine, the adversary will learn whether R
accepted a message based on whetherR does or does not enter Fault-Recovery Mode.

We remark in passing that Weak SMT-PD is similar in spirit to almost SMT from the standard (non-
public discussion) model [KS07], in that both are relaxations which allow one-round transmission (for
Weak SMT-PD, only with a passive adversary). The difference is that in the ordinary model, definitions for
almost SMT require that the message be correctly received with overwhelming probability regardless of the
adversary’s actions; in the public discussion model, when the adversary controls a majority of wires, this
is impossible, so we only require that corruptions be detected. Indeed, we cannot guarantee reliability in a
single round even when the adversary simply blocks transmission on corrupted wires (otherwise a minority
of wires would carry enough information to recover the message, thus violating privacy).

If we do not require the Weak SMT-PD protocol to finish in one round, then there is a simple solution:
use the common wires to simulate the public channel wire in an ordinary SMT-PD protocol. Any time a
party would use the public channel, they instead send the public-channel message over every common wire.
Two possibilities arise: (1) The adversary never tampers with any such “virtual” public channel invocation.
In this case, the virtual public channel functions like an actual public channel, and the protocol succeeds with
the same probability as the underlying SMT-PD protocol. (2) The adversary at some point tampers with a
virtual public channel invocation. If he does, then the receiving party in that round will detect tampering,
and can notify the other player by sending a flag on every channel (or, if the receiving player is R and it is
the final round, he just outputs “Corruption Detected”).11

The above Weak SMT-PD protocol is conceptually simple (given a pre-existing SMT-PD protocol!), but
we might hope to do Weak SMT-PD in a single round, as opposed to the three rounds required for ordinary
SMT-PD. The following simple scheme shows one way this can be done.

Assume the Sender wants to send a single field element MS = α ∈ Fq. The one-round protocol,
ΠW−SMT−PD, is shown in Figure 3. Essentially, the sender performs a 3t + 2-out-of-3n Shamir secret
sharing of the message; however, rather than sending externally specified shares on each wire i (such as
f(1), f(2), f(3) on wire 1), he chooses a set of random points on which to evaluate f .

Lemma 5.1 The protocol of Figure 3 is a Weak (δ, δ)-SMT-PD protocol for q sufficiently large (Ω(t/δ)).

10This is akin to the “slow” PSMT original protocol in [DDWY93]. .
11We do not consider here whether such a protocol preserves (ε-)privacy when the adversary knows whetherR detects corruption;

obviously this depends on the details of the protocol. Therefore this is not quite a black-box reduction.
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Protocol ΠW−SMT−PD

1. (S PRI→ R). S chooses a random polynomial f ∈ Fq[x] with deg(f) ≤ 3t + 1 and f(0) = α, and a
random sequence x(1)

1 , x
(2)
1 , x

(3)
1 , x

(1)
2 , x

(2)
2 , x

(3)
2 , . . . , x

(1)
n , x

(2)
n , x

(3)
n of 3n distinct elements of Fq \ {0}.

On wire i S sends to R the three pairs (x(1)
i , f(x(1)

i )), (x(2)
i , f(x(2)

i )), (x(3)
i , f(x(3)

i )). (The indexing is
unimportant; what matters is that on each wire he sends three evaluation points, and the resulting shares.)

Receiver: R receives (x̃(j)
i , ỹ

(j)
i ) for j = 1, 2, 3, on each wire i. He verifies that all 3n x̃i’s are distinct,

and that the 3n points (x̃i, ỹi) lie on a polynomial f̃ of degree ≤ 3t + 1. If so, he outputs MR = f̃(0);
otherwise (or in case some wire is syntactically incorrect) he outputs “Corruption detected.”

Figure 3: A one-round Weak SMT-PD protocol.

We are now ready to describe Normal Mode for S and R: it is simply the repeated execution of the
Weak SMT-PD protocol, with the two players alternating the role of Sender and Receiver, until one of them
as Receiver outputs “Corruption detected.” At that time, that player’s next message to the other party will
alert them to enter Fault-Recovery Mode.

Fault-Recovery Mode. Specifically, suppose R detects corruption in a message sent by S. He will then
use the shared secret established in the initial execution of (ordinary) SMT-PD to secretly and authentically
send the following on all wires: (1) a flag signalling Fault-Recovery Mode; (2) a list of specific wires known
to be corrupted (if any); (3) the received transmission on all wires not known to be corrupt.

Since at least one of the wires is not corrupted, S will receive this communication on it and (verifying its
authenticity) enter Fault-Recovery Mode also. S recovers the set of received transmissions and determines
which ones were tampered with. He then sends the following toR, again using the shared secret for privacy
and authentication: (1) the message MS on which R detected corruption; (2) an updated list of specific
wires known to be corrupted. At this time,R has received the intended message and Normal Mode resumes
withR now playing the role of Sender.

Each time Fault-Recovery Mode occurs, S and R are able to detect at least one previously unknown
corrupt wire. If at any point S and R have jointly detected t wires as corrupt, they will simply send all
future transmissions on the remaining, good wires, guaranteeing perfect privacy and reliability.

Theorem 5.1 Given an initial shared secret consisting of O(n2) field elements, S andR can communicate
indefinitely using only the private wires. The probability that one of them will ever accept an incorrect
message is ≤ tδ. Moreover, with probability ≥ 1− tδ, A gains at most δ information on each of t different
messages, and no information on any other message.
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A Some Entropy Formulas

Here we briefly review some facts about entropy. For a good reference, see, e.g., [CT91]. The entropy of a
discrete random variable X (defined over a space X ) is defined as

H(X) = −
∑
x∈X

Pr[X = x] log Pr[X = x].

Entropy provides a measure of the expected information content of X; to be precise, it measures the ex-
pected number of bits in a representation of X . The conditional entropy of X given Y , denoted H(X

∣∣ Y ),
expresses the expected additional information given by X if we already know Y . It satisfies the following
formula, known as the chain rule for conditional entropy:

H(X
∣∣ Y ) = H(X,Y )−H(Y ). (1)

Here H(X,Y ) is the entropy of the random variable (X,Y ) in the product space X × Y; it measures
the expected information on learning the values of X and Y (which may be correlated). Some additional
formulas which we will find useful include:

(E1) H(X) ≤ log |X |, with equality iff X is uniformly distributed over X .

(E2) H(X
∣∣ Y ) ≤ H(X

∣∣ f(Y )).

(E3) H(X
∣∣ Z) ≤ H(X

∣∣ Y ) +H(Y
∣∣ Z).

(E4) H(X
∣∣ Y ) ≤ H(X)).

B Proofs

We repeat the statements of the claims here for convenience.

Claim 3.1 The distribution (Us, R̃,ViewA \ C) is ε/2-close to (Us, Um,ViewA \ C).

Proof. (Claim.) We first show that H̃∞(α̃|ViewA \ C) ≥ kmin. Recall that α̃ is, by definition, the
concatenation of r̃i for i ∈ ACC (padded to length nK). Let SEC denote the set of secure (private,
uncorrupted) wires. Then for i ∈ SEC, we have that r̃i = ri, and therefore

H̃∞(r̃i|ViewA \ C) = H̃∞(ri|ViewA \ C)

= H̃∞(ri|(J, Ci|J)),

where the latter equality follows since ri is independent of everything in A’s view except (J, Ci|J) (and C,
which we exclude). Now we apply Fact 2.4: since Ci|J has at most 2` possible values, then

H̃∞(ri|(J, Ci|J)) ≥ H̃∞(ri|J)− `
= H̃∞(ri)− ` (independence of ri, J)
= K − ` = dkmin/(n− t)e+ `− ` = dkmin/(n− t)e.

Since the transmissions on the private wires, and associated codeword verifications, are all mutually
independent, we then have

H̃∞(α̃|ViewA \ C) = H̃∞({r̃i}i∈ACC|ViewA \ C)

≥ H̃∞({ri}i∈SEC|ViewA \ C)

=
∑
i∈SEC

H̃∞(ri|(J, Ci|J))

≥ (n− t)dkmin/(n− t)e ≥ kmin,
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which shows as we claimed that H̃∞(α̃|ViewA \ C) ≥ kmin. From here the overall claim follows immedi-
ately because ExtA is an (nK,m, kmin, ε/2)-strong average-case extractor, and R̃ = ExtA(α̃, seed) with
seed uniformly random. 2

Theorem 3.2 Protocol ΠSPD (Fig. 2) is a valid (3, 2)-round (0, 3δ)-SMT-PD protocol. It has com-
munication complexity O( mnn−t) on the private wires and O(n` logm) on the public channel, provided
m = Ω(n` log q).

Proof. Reliability. We first claim that, with high probability, R receives authS = (J ′, {Ei|J ′}i∈ACC)
correctly in Round 3—that is, (J̃ ′, {checki}i∈ACC) = (J ′, {Ei|J ′}i∈ACC)). Since (J̃ ′, {checki}i∈ACC) =
V − s and (J ′, {Ei|J ′}i∈ACC) = V − s̃, it is enough to show that s = s̃. According to the protocol,

s = Extq̂(α̂) and s̃ = Extq̂(˜̂α),

so again it is enough to show that α̂ = ˜̂α. These variables are defined as the concatenations (over i ∈ ACC)

of f̂i and ˜̂fi respectively (appropriately padded). Thus it suffices to show that for every i ∈ ACC, f̂i = ˜̂
fi.

This in turn will only fail to be the case provided that A tampers with one of the codewords Ĉi transmitted
in Round 1, and is not caught by the consistency check in Round 2. By construction, the probability that A
beats the consistency check on a given wire is at most 2−` = δ/t, and so the probability that he beats any of
the consistency checks at all, is bounded by t · 2−` = δ. This proves

Claim B.1 Let G1 be the event in which R receives (J ′, {Ei|J ′}i∈ACC) correctly. The probability of G1 is
≥ 1− δ.

Note that if G1 holds, then the Round 3 consistency check R performs on the Ẽi’s is done using the
correct authentication, authR = authS . Nevertheless, R may still incorrectly accept some Ẽi 6= Ei if A
tampers withEi and even the correct authentication vector fails to detect the tamper. We claim that the prob-
ability that this happens is also≤ δ (provided G1 holds). For in order forR to accept a tampered Ẽi, it must
fail the Round 3 consistency check. Now ViewA is statistically independent of authS = (J ′, {Ei|J ′}i∈ACC),
since the latter is sent using a 0-private instantiation of ΠGen.

Therefore the Round 3 consistency check is valid, and (since we use a code of relative minimum distance
1/3) the probability A successfully tampers any given corrupt wire is again ≤ (2/3)`3/2 = δ/t, and the
chance of any successful tampering is ≤ δ. We have thus established

Claim B.2 Suppose G1 holds (so that R uses the correct authentication vector). Let G2 be the event in
which the first n− t Ẽi’s accepted by R are in fact valid (Ẽi = Ei). Then the probability of G2, given G1,
is ≥ 1− δ.

(Note that if G1 does not hold, then there is no guarantee that R will accept any Ẽi’s, let alone n − t of
them. On the other hand, if it does hold, thenR will correctly accept Ẽi = Ei on every good wire i, and the
only question is whether he accepts a tampered Ẽi first (since the protocol hasR use the first n− t accepted
Ẽi’s to reconstruct C. The claim above shows that this bad outcome happens with negligible probability.)

Now if G1 and G2 both hold, then it follows that for every accepted Ẽi, D̃i = Dec(Ẽi) = Dec(Ei) =
Di, and hence R decodes correctly using these D̃i’s, and we thus have C̃ = C. In this case, since MS =
C−R̃ andMR = C̃−R, reliability will hold provided that R̃ = R. This last equality is satisfied providedA
does not successfully tamper with any of the Ci’s sent in Round 1—therefore it is satisfied with probability
≥ 1− δ. Therefore we have:

Claim B.3 Suppose G1 and G2 hold. Then Pr[MR = MS ] ≥ 1− δ.

Taking the three previous claims all together, we find:

Pr[MR = MS ] ≥ Pr[MR = MS |G1, G2] · Pr[G1, G2]
≥ (1− δ) Pr[G2|G1] Pr[G1]

≥ (1− δ)3 ≥ 1− 3δ,
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which completes the proof of 3δ-reliability.

(Perfect) Privacy. The proof is essentially the same as that in the privacy analysis for protocol ΠGen. In
fact it is simpler, since here we specialize to ε = 0.

In a nutshell, suppose we exclude from the adversary’s view C = MS + R̃ (which is to say, we exclude
the codewordsEi which he could use to reconstructC). Then according to this restricted view, R̃ = Extq(α̃)
is distributed uniformly at random over Frq, because Extq is an error-less extractor. Thus replacing C in his
view still gives A no information on MS .

Complexity. By its definition, m̂ = `(n + log(cK log q)) = `n + O(` log m
n−t). This is O(m) provided

that m = Ω(n` log q), since log q = Ω(log(n/(n − t))) by the second condition on its size. Since m̂ =
O(m), and since Rounds 1 and 2 have the same structure for the big and small strands, it follows that the
communication complexity in these two rounds is dominated by the big strand, so we consider only those
messages.

Note also that our assumption m/(n − t) = Ω(` log q) is equivalent to r/(n − t) = Ω(`) (since m =
r log q). As a result, we freely replace K = r/(n− t) + ` with r/(n− t) in the estimates below.

Regarding communication on the private wires, note that they are used first in Round 1 to send 2K field
elements per wire, at a total cost of

2Kn log q = O

(
r

n− t
· n · log q

)
.

which yields a communication complexity of O( mnn−t) since m = r log q.
The private wires are used again in Round 3 to send the Ei’s, each of which has size cK log q = cm

n−t .
Thus, since we send at most n, we again get communication complexity O(mn/(n − t)) on the private
wires.

The public channel is used in Rounds 2 and 3; in Round 2 R specifies ` positions out of [N ], and sends
a total of n` field elements. Hence the Round 2 public communication is

` log(N) + n` log q = O(` log(K) + n` log q)
= O(` log r + n` log q).

Now r = m/ log q < q (by assumption on q). Hence log r < log q, so the above is O(n` log q). By
our choice of q, we have log q + log log q ≥ logm + log(n/(n − t)) + O(1).12 Therefore the Round
2 public communication is O(n`(logm + log(n/(n − t)))); in particular it is O(n` logm) provided that
m = Ω(n/(n− t)), per our assumption.

In Round 3, S sends (V,B) publicly. B just has size n, and V has size m̂ = `(n+ log( cmn−t)), which are
dominated by the Round 2 public communication. 2

Lemma 4.1 For all adversaries A and all ε-private protocols, H
(
MS

∣∣ ViewA
)
≥ − log(1/|M|+ 2ε).

Proof. Let V denote the support of ViewA, and for brevity let V = ViewA. By the ε-privacy condition,
we have that for any two messages m0,m1 ∈M,∑

v∈V

∣∣∣Pr[V = v|MS = m0]− Pr[V = v|MS = m1]
∣∣∣ ≤ 2ε

∑
v∈V

∣∣∣Pr[V = v,MS = m0]
Pr[MS = m0]

− Pr[V = v,MS = m1]
Pr[MS = m1]

∣∣∣ ≤ 2ε

∑
v∈V

∣∣∣Pr[MS = m0, V = v]− Pr[MS = m1, V = v]
∣∣∣ ≤ 2ε
|M|

.

Summing over messages m0, we obtain that for all m1 ∈M:∑
m0∈M

∑
v∈V

∣∣∣Pr[MS = m0, V = v]− Pr[MS = m1, V = v]
∣∣∣ ≤ 2ε.

12It is easy to check that the second condition on q’s size does not affect our conclusions.
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For any fixed v ∈ V , let mv denote a maximally probable value of MS , given that ViewA = v. That is,
for all m1 ∈ M, Pr[MS = mv|V = v] ≥ Pr[MS = m1|V = v], or equivalently Pr[MS = mv, V =
v] ≥ Pr[MS = m1, V = v]. We then remove all summands in the previous inequality except those with
m0 = mv, which results in the valid inequality (for all m1 ∈M):∑

v∈V

(
Pr[MS = mv, V = v]− Pr[MS = m1, V = v]

)
≤ 2ε

∑
v∈V

Pr[MS = mv, V = v] ≤
∑
v∈V

(
Pr[MS = m1, V = v]

)
+ 2ε

= Pr[MS = m1] + 2ε = 1/|M|+ 2ε. (2)

Now consider H(MS |ViewA). Since H(MS |V = v) ≥ H∞(MS |V = v), it follows that

H(MS |V ) = Ev←V [H(MS |V = v)] ≥ Ev←V [H∞(MS |V = v)]

=
∑
v∈V

Pr[V = v]
(
− log

(
max
m∈M

Pr[MS = m|V = v]
))

=
∑
v∈V

Pr[V = v]
(

log
(

Pr[V = v]
maxm∈M Pr[MS = m,V = v]

))
≥ log

(
1∑

v∈V maxm∈M Pr[MS = m,V = v]

)
= − log

(∑
v∈V

Pr[MS = mv, V = v]

)
, (3)

where the next-to-last line is an application of the log sum inequality.13 Finally, we can substitute (2) into
(3) to obtain

H(MS |V ) ≥ − log(1/|M|+ 2ε).

2

Lemma 4.2 For all δ-reliable protocols, H(MS |T ) ≤ H2(
√
δ) + 2

√
δH(MS).

Proof. The proof of the lemma follows from a series of several claims.
Call a given transcript τ good if Pr[MS = MR|T = τ ] ≥ 1−

√
δ. Otherwise τ is bad.

Claim B.4 With probability ≥ 1−
√
δ, T is a good transcript.

Proof. Suppose not, then we will show Pr[MR = MS ] < 1− δ, contradicting δ-reliability. Indeed:

Pr[MR = MS ] =
∑

τ∈T,m∈M
Pr[MR = m ∧MS = m ∧ T = τ ]

=
∑
τ good

Pr[MR = MS |T = τ ] Pr[T = τ ] +
∑
τ bad

Pr[MR = MS |T = τ ] Pr[T = τ ]

<
∑
τ good

Pr[T = τ ] +
∑
τ bad

(1−
√
δ) Pr[T = τ ]

= Pr[T good] + (1−
√
δ) Pr[T bad]

= 1− Pr[T bad] + (1−
√
δ) Pr[T bad]

= 1−
√
δ Pr[T bad] < 1− δ.

2

Our next claim relates the probability that MS = M0, given fixed transcript τ and coins for R, to the
probability of MS = M0 given only the transcript τ .

13For ai, bi ≥ 0 with
∑
ai = a and

∑
bi = b, the log sum inequality states

∑
i

(
ai log ai

bi

)
≥ a log a

b
.
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Claim B.5 For all messages M0, coins cr forR, and transcripts τ :

Pr[MS = M0|CR = cr ∧ T = τ ] ≤ Pr[CR = cr]
Pr[CR = cr|T = τ ]

Pr[MS = M0|T = τ ].

Proof. The LHS is equal to Pr[MS = M0 ∧ CR = cr ∧ T = τ ]/Pr[CR = cr ∧ T = τ ]. Considering
only the numerator of this expression to begin with, we have:

Pr[MS = M0 ∧ CR = cr ∧ T = τ ]

=
∑
c′s

Pr[MS = M0 ∧ CR = cr ∧ T = τ ∧ CS = c′s]

=
∑
c′s

Pr[MS = M0 ∧ CS = c′s] Pr[CR = cr]{τ = T (M0, cr, c
′
s)}.

The previous line uses our independence assumptions on R’s coins. It also uses a bracket notation to
simplify summation notation: here {P} = 1 if the predicate P is true and 0 otherwise. Continuing, the
above is

= Pr[CR = cr]
∑
c′s

Pr[MS = M0 ∧ CS = c′s]{τ = T (M0, cr, c
′
s)}

≤ Pr[CR = cr]
∑
c′s

Pr[MS = M0 ∧ CS = c′s]
∑
c′r

{τ = T (M0, c
′
r, c
′
s)}

= Pr[CR = cr]
∑
c′s

∑
c′r

Pr[MS = M0 ∧ CS = c′s]{τ = T (M0, c
′
r, c
′
s)}

= Pr[CR = cr]
∑
c′s

Pr[MS = M0 ∧ CS = c′s ∧ T = τ ]

The last equality may be easier to understand if you work backwards from the last line to the previous one.
It says that we can get the probability of a fixed message M0 and coins of S c′s and transcript τ , by summing
over all coins for R, the probability that the message and coins appear, conditioned on the fact that the
transcript generated by the message and coins in that summand is in fact τ .

= Pr[CR = cr] Pr[MS = M0 ∧ T = τ ] = Pr[CR = cr] Pr[T = τ ] Pr[MS = M0|T = τ ].

Dividing back through by the denominator Pr[CR = cr ∧ T = τ ] yields the statement of the claim. 2

For a given transcript τ , let Mmax(τ) denote the maximally probable MS given that T = τ . (If two
are equiprobable, break the tie arbitrarily.) The next claim asserts that for a good transcript, the sender’s
message equals Mmax(τ) with high probability.

Claim B.6 For any good transcript τ , Pr[MS = Mmax(τ)|T = τ ] ≥ 1−
√
δ.

Proof. By Claim B.4, we have Pr[MR = MS |T = τ ] ≥ 1−
√
δ. On the other hand,

Pr[MR = MS |T = τ ] =
∑
cr

Pr[MR = MS |CR = cr ∧ T = τ ] Pr[CR = cr|T = τ ]

=
∑
cr

Pr[MS = MR(τ, cr)|CR = cr ∧ T = τ ] Pr[CR = cr|T = τ ].

Now apply Claim B.5 with M0 = MR(τ, cr):

≤
∑
cr

Pr[MS = MR(τ, cr)|T = τ ] Pr[CR = cr]

≤
∑
cr

Pr[MS = Mmax(τ)|T = τ ] Pr[CR = cr]

= Pr[MS = Mmax(τ)|T = τ ],
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as desired. 2

Now (finally) we consider H(MS |T ). By definition,

H(MS |T ) =
∑
τ

Pr[T = τ ]H(MS |T = τ)

=
∑
τ

Pr[T = τ ]
∑
M

Pr[MS = M |T = τ ] log Pr[MS = M |T = τ ].

We estimate the sum by splitting its domain depending on whether τ is good or bad. Considering first the
sum over bad τ : ∑

τ bad

Pr[T = τ ]H(MS |T = τ) ≤
∑
τ bad

Pr[T = τ ]H(MS) (E4)

= Pr[T bad]H(MS) ≤
√
δH(MS).

Moving to the sum over good τ , we re-interpret it as an entropy H((MS)good|Tgood), where the random
variables are those induced by restricting the space of executions to ones which produce good transcripts.
Then we apply Fano’s inequality [CT91], which states that for random variables X , Y over a discrete space
S, if p̂ = Pr[X 6= Y ], then

H
(
X
∣∣ Y ) ≤ H2(p̂) + p̂ log(|S| − 1).

In our case this becomes

H((MS)good|Tgood) ≤ H((MS)good|Mmax(Tgood)) (E2)

≤ H2(
√
δ) +

√
δ log(|M| − 1)

≤ H2(
√
δ)
√
δH(MS),

where the second line applies Fano’s inequality to the fact that (for good transcripts) Pr[MS 6= Mmax(τ)] ≤√
δ (Claim B.6).

Combining the two estimates, we see that H(MS |T ) ≤ H2(
√
δ) + 2

√
δH(MS), as required. 2

Lemma 4.3 − log(1/|M|+ 2ε)−H2(
√
δ)− 2

√
δ log |M| ≤ H

(
TSEC

∣∣ SEC
)
.

Proof. Since a secure (ε, δ)-SMT-PD protocol must work for any adversary A, it is enough to show that
the inequality holds when A is passive and only uses randomness to decide which wires to corrupt. In this
case ViewA = (TPUB∪CORR,SEC).

By Lemmas 4.1 and 4.2 and the properties of entropy, we have (assuming A is passive):

− log(1/|M|+ 2ε)−H2(
√
δ)− 2

√
δ log |M| ≤ H

(
MS

∣∣ ViewA

)
−H

(
MS

∣∣ T ) (Lemmas 4.1, 4.2)

≤ H
(
T
∣∣ ViewA

)
(E3)

= H
(
TPUB∪CORR, TSEC

∣∣ TPUB∪CORR,SEC
)

= H
(
TSEC

∣∣ TPUB∪CORR,SEC
)

≤ H
(
TSEC

∣∣ SEC
)
. (E2)

2

Theorem 4.1 Let Π be any (ε, δ)-SMT-PD protocol with n ≤ 2t, in the presence of a passive, non-adaptive
adversary A. Let C denote the expected communication (in bits) over the private wires (the expectation is
taken over all players’ coins and the choice of MS ∈M). Then

C ≥ n

n− t
· (− log(1/|M|+ 2ε)−H2(

√
δ)− 2

√
δ log |M|)

In particular, if ε = O(1/|M|) and δ = O(1), then C = Ω(mn/(n− t)).

Proof. Let A be a passive adversary who chooses t wires uniformly at random to corrupt. Let T
refer to the space of possible transcripts, and likewise for a wire i or set of wires S, let Ti and TS denote
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the space of possible restricted transcripts Ti and TS . By the definition of entropy, H(TSEC|SEC) =
H(TSEC,SEC)−H(SEC) is equal to:

−
∑
I⊆[n]
|I|=n−t

∑
τ∈TI

Pr[TI = τ ∧ SEC = I] · log (Pr[TI = τ ∧ SEC = I]) − H(SEC).

But since A is passive, S and R have no information on which wires are in CORR or SEC. It follows that
the transcript TI is independent of SEC; hence

Pr[TI = τ ∧ SEC = I] = Pr[TI = τ ] Pr[SEC = I] = Pr[TI = τ ]
1(
n
n−t
) ,

since every set of size n− t is equally likely to be SEC. The previous sum is then equal to

−
∑
I⊆[n]
|I|=n−t

∑
τ∈TI

Pr[TI = τ ]
1(
n
n−t
) ·(log(Pr[TI = τ ]) + log

1(
n
n−t
)) − H(SEC)

=
−1(
n
n−t
) ∑

I⊆[n]
|I|=n−t

∑
τ∈TI

Pr[TI = τ ] · log (Pr[TI = τ ])

− 1(
n
n−t
) log

1(
n
n−t
) ∑

I⊆[n]
|I|=n−t

∑
τ∈TI

Pr[TI = τ ] − H(SEC).

Now by the definition of entropy we have that −
∑

τ∈TI
Pr[TI = τ ] · log (Pr[TI = τ ]) = H(TI). Addi-

tionally, log 1

( n
n−t)

= − log
(
n
n−t
)
, and

∑
τ∈TI

Pr[TI = τ ] = 1. Making these substitutions, the previous

expression is equal to

1(
n
n−t
) ∑

I⊆[n]
|I|=n−t

H(TI) +
1(
n
n−t
) log

(
n

n− t

) ∑
I⊆[n]
|I|=n−t

1

 − H(SEC)

=
1(
n
n−t
) ∑

I⊆[n]
|I|=n−t

H(TI) +
1(
n
n−t
) log

(
n

n− t

)(
n

n− t

)
− H(SEC)

=
1(
n
n−t
) ∑

I⊆[n]
|I|=n−t

H(TI) + log
(

n

n− t

)
− H(SEC)

=
1(
n
n−t
) ∑

I⊆[n]
|I|=n−t

H(TI),

since, by (E1), H(SEC) = log
(
n
n−t
)
.

So far we have shown the inequality(
− log(1/|M|+ 2ε)−H2(

√
δ)− 2

√
δ log |M|

)
≤ 1(

n
n−t
) ∑

I⊆[n]
|I|=n−t

H(TI),

and rearranging gives(
n

n− t

)(
− log(1/|M|+ 2ε)−H2(

√
δ)− 2

√
δ log |M|

)
≤

∑
I⊆[n]
|I|=n−t

H(TI).
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Now we apply Han’s inequality [CT91]: For a random variable X = (X1, . . . , Xn) and 1 ≤ q ≤ n, we
define

Hq(X) =
1(
n−1
q−1

) ∑
I⊆[n]
|I|=q

H(X|I)

(where X|I is the random variable (Xi)i∈I ).
Then Han’s inequality states that

H1(X) ≥ H2(X) ≥ · · · ≥ Hn(X) = H(X).

For our purposes, q = n− t and X = TPRIV = (T1, . . . , Tn) is the transcript restricted to the private wires.
Dividing the previous inequality on both sides by

(
n−1
n−t−1

)
yields

n

n− t

(
− log(1/|M|+ 2ε)−H2(

√
δ)− 2

√
δ log |M|

)
≤ 1(

n−1
n−t−1

) ∑
I⊆[n]
|I|=n−t]

H(TI)

= Hn−t(TPRIV)
≤ H1(TPRIV)

=
∑
i∈[n]

H(Ti)

≤
∑
i∈[n]

E[# bits transmitted on wire i]

= E[total # bits transmitted on private wires].

The last line is exactly C, which shows as desired that

C ≥ n

n− t

(
− log(1/|M|+ 2ε)−H2(

√
δ)− 2

√
δ log |M|

)
.

2

Lemma 5.1 The protocol of Figure 3 is a Weak (δ, δ)-SMT-PD protocol for q sufficiently large (Ω(t/δ)).

Proof. If the adversary is passive, it is clear thatR will receive the correct message.
Consider an active adversary. We will look at the worst case, when n = t+ 1 (i.e., only one good wire).

Also, we assume the adversary “materially alters” the shares ((xi, yi) pairs) on the wires he controls—which
is to say, alters them in some way besides simply permuting the 3t shares sent by the Sender. (Clearly,
simply permuting the shares leads to R accepting the correct message.) We claim that with overwhelming
probability, if the adversary materially alters the shares, thenR will detect corruption.

Let f̃ denote the polynomial obtained from interpolating the 3t + 2 shares consisting of all shares on
corrupted wires, and 2 of the 3 shares on the good wire. Then f̃ is a polynomial of degree ≤ 3t + 1. Note
that R will accept some message precisely if the remaining share on the good wire, which was not used to
define f̃ , also lies on f̃ ; otherwise he will output “Corruption detected.” Now if the adversary materially
alters the shares, then he does at least one of the following: (1) alter the value of f at one or more of the
evaluation points chosen by S; or (2) alter the set of evaluation points chosen by S . In case (1) it is certainly
the case that f̃ 6= f , since they disagree on a point. In case (2), let x̃i be an altered evaluation point which
does not appear in the Sender’s original list. Observe that since the adversary sees only 3t points in a perfect
3t + 2-out-of-3n secret sharing scheme, then regardless of his knowledge of α = f(0), the value of f at
any other point remains uniformly distributed over Fq according to his view. Therefore the probability that
f̃ = f in this case is ≤ 1/q, the probability that f̃(x̃i) = f(x̃i), which proves our claim.

Now we prove weak reliability. The situation we want to avoid is when the remaining share lies on f̃
and f̃(0) 6= f(0) = α, because this is exactly the situation in whichR accepts a false message. To this end,
we’ll bound the probability that the remaining share lies on f̃ , given that f̃ 6= f .
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Next we claim that, in the case that f̃ 6= f , R detects corruption with overwhelming probability. So
assume f̃ 6= f . Two distinct polynomials of degree ≤ 3t + 1 can agree on at most 3t + 1 points. Consider
the share on the good wire which was not used to interpolate f̃—let us assume it was (x(3)

1 , f(x(3)
1 )). Con-

ditioned on the set of all other evaluation points chosen by the sender, x(3)
1 is distributed randomly among

the remaining q − 1 − (3t + 2) = q − 3t − 3 nonzero points in Fq. Thus, since f̃ and f agree on at most
3t+ 1 points,

Pr[f̃(x(3)
1 ) = f(x(3)

1 )|f̃ 6= f ] ≤ 3t+ 1
q − 3t− 3

.

The above analysis then shows that the overall probability with which R detects corruption, in the case
of material alteration, is ≥ 1− 1/q − (3t+ 1)/(q − 3t− 3) = 1−Θ(t/q). Taking q sufficiently large this
is ≥ 1− δ, which proves weak reliability.

This also shows δ-privacy. Note that of course if we consider the adversary’s view as consisting only of
the shares on corrupt wires, then in fact perfect privacy holds, since the secret sharing scheme is perfect. If
we also include knowledge of whetherR output a message or “Corruption detected,” this only increases the
adversary’s advantage in distinguishing any two messages m0,m1 by a negligible amount (≤ δ), since if
the adversary does not materially alter the shares, then he knows already that R will output a message; and
if he does, then he knows thatR will output corruption detected except with probability δ. 2

Theorem 5.1 Given an initial shared secret consisting of O(n2) field elements, S andR can communicate
indefinitely using only the private wires. The probability that one of them will ever accept an incorrect
message is ≤ tδ. Moreover, with probability ≥ 1− tδ, A gains at most δ information on each of t different
messages, and no information on any other message.

Proof. Let us first argue that an initial secret consisting of O(n2) field elements is sufficient to realize the
scheme described in Section 5 (using our one-round Weak SMT-PD protocol from Figure 3). The shared
secret is only used during Fault-Recovery Mode. In R’s first communication after entering Fault-Recovery
Mode,Rmust encrypt and authenticate a message consisting of a flag, a list of wires, and the entire contents
of S’s previous transmission. The size of this message is 1+n+(log q)3n = O(n log q). In S’s response, he
encrypts and authenticates a message consisting of his original message MS and a list of wires, of total size
log q + n, which of course is also O(n log q). This entire process occurs at most t times, for a total cost of
O(tn log q) =O(n2 log q). Therefore if S andR share an initial secret consisting ofO(n2) field elements of
Fq using ordinary SMT-PD, they can communicate at least a polynomial number of field elements thereafter,
without using the public channel again, before the privacy and reliability errors blow up beyond control.

In fact, as the statement of the theorem indicates, the situation is much better than even that. S and R
can actually communicate indefinitely, not just a polynomial number of times. The reason is that, although
the privacy and reliability errors may accumulate, these errors only occur when the adversary is (materially)
active. And since he is caught with overwhelming probability (≥ 1− δ) each such time, then with similarly
overwhelming probability (≥ 1− tδ) he is caught the first t times he does it, after which S andR are in the
clear. 2
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