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ABSTRACT
Approximating pairwise, or k-wise, independence with sub-
linear memory is of considerable importance in the data
stream model. In the streaming model the joint distribu-
tion is given by a stream of k-tuples, with the goal of testing
correlations among the components measured over the en-
tire stream. Indyk and McGregor (SODA 08) recently gave
exciting new results for measuring pairwise independence in
this model.

Statistical distance is one of the most fundamental metrics
for measuring the similarity of two distributions, and it has
been a metric of choice in many papers that discuss dis-
tribution closeness. For pairwise independence, the Indyk
and McGregor methods provide log n-approximation under
statistical distance between the joint and product distribu-
tions in the streaming model. Indyk and McGregor leave,
as their main open question, the problem of improving their
log n-approximation for the statistical distance metric.

In this paper we solve the main open problem posed by
Indyk and McGregor for the statistical distance for pair-
wise independence and extend this result to any constant
k. In particular, we present an algorithm that computes
an (ε, δ)-approximation of the statistical distance between
the joint and product distributions defined by a stream of

k-tuples. Our algorithm requires O
((

1
ε
log(nm

δ
)
)(30+k)k)

memory and a single pass over the data stream.

Categories and Subject Descriptors
F.2 [Theory of Computation]: ANALYSIS OF ALGO-
RITHMS AND PROBLEM COMPLEXITY
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1. INTRODUCTION
Finding correlations between columns of a table is

a fundamental problem in databases. Virtually all
commercial databases construct query plans for queries
that employ cross-dimensional predicates. The ba-
sic step is estimating “selectivity” (i.e., the number of
rows that satisfy the predicate conditions) of the com-
plex predicate. Without any prior knowledge, the
typical solution is to compute selectivity of each col-
umn separately and use the multiplication as an esti-
mate. Thus, optimizers make a “statistical independence
assumption” which sometimes may not hold. Incorrect esti-
mations may lead to suboptimal query plans and decrease
performance significantly. Identifying correlations between
database columns by measuring a level of independence be-
tween columns has a long history in the database research
community (see, e.g., Poosala and Ioannidis [26]). For data
warehouses, it is important to find correlated columns for
correct schema construction, as Kimball and Caserta note
in [23]. In practice, typical solutions for finding correla-
tions between columns are either histograms (see e.g., [26])
or sampling (see e.g., Ilyas, Markl, Haas, Brown, Aboulnaga
[19]). These methods have their natural disadvantages, i.e.,
they do not tolerate deletions and may require several passes
over the data. When it comes to very large data volumes,
it is critical to maintain sublinear in terms of memory solu-
tions that do not require additional passes over the data and
can tolerate incremental updates of the data, e.g., deletions.

For these purposes, a theoretical data stream model can be
useful. For data warehouses, the “loading”phase of the ETL
process (see e.g., Kimball and Caserta [23]) can be seen as
a data stream. When reading a database table, the process
can be considered as a stream of data tuples. Thus, the data
stream model represents another setting where approximat-
ing pairwise or k-wise independence with sublinear memory
is of considerable importance.

1.1 Precise Definition of the Problem
The natural way to model database tables in a streaming

model is by considering a stream of tuples. In this paper



we consider a stream of k-tuples (i1, . . . , ik) where il ∈ [n].
(For simplicity, we assume that elements of all columns are
drawn from the same domain, even though our approach
trivially extends to a general case of different domains.) As
pointed out in [26, 19, 21], the natural way to define a joint
distribution of two (or more) columns is given by the fre-
quencies of all combinations of coordinates. Similarly, the
distribution of each column is defined by the corresponding
set of frequencies; the definition of a product distribution
follows. Let us define these notions precisely.1

Definition 1.1. Let D be a stream of elements
p1, . . . , pm, where each stream element is a k-tuple
i = (i1, . . . , ik), where il ∈ [n]. Here m is the size of stream
D. A frequency of a tuple i ∈ [n]k is defined as the number
of times it appears in D: fi = |{j : pj = i}|. For l ∈ [k],
a l-th margin frequency of t ∈ [n] is the number of times
t appears as a l-th coordinate: fl(t) =

∑n
i∈[n]k,il=t fi. A

joint distribution is defined by a vector of probabilities
Pjoint(i) = fi

m
, i ∈ [n]k. A l-th margin distribution is defined

by a vector of probabilities Pl(t) = fl(t)
m

, t ∈ [n]. A product

distribution is defined as: Pproduct(i) =
∏k

l=1 Pl(il), i ∈ [n]k.

Statistical distance is one of the most fundamental metrics
for measuring the similarity of two distributions, and it has
been a metric of choice in many papers that discuss distri-
bution closeness (see e.g., [1, 2, 4, 6, 21, 28, 27]). Given two
distributions over a discrete domain, the statistical distance
is half of L1 distance between the probability vectors.

Definition 1.2. Consider two distributions over a finite
domain Ω given by two random variables V, U . Statistical
distance ∆(V, U) is defined as:

∆(V, U) =
1

2

∑
x∈Ω

|P (V = x)− P (U = x)|.

In particular, one of the most common methods of measur-
ing independence is computing statistical distance between
product and joint distributions (see e.g., [4, 21]). This is
precisely the way we define our problem:

Definition 1.3. An Independence Problem is the follow-
ing: Given stream D of k-tuples, (1 ± ε)-approximate, with
one pass over D, with small memory the statistical distance
between joint and product distribution ∆(Pjoint, Pproduct).

In the streaming model, Indyk and McGregor [21] re-
cently gave exciting new results for measuring pairwise in-
dependence, i.e., for k = 2. To measure the independence,
they consider two metrics: L2 and L1. Recall that the
L2 distance between two probability distributions is a L2

distance of their probability vectors. In particular, the
Independence Problem under the L2 metric is defined as
‖Pjoint−Pproduct‖2. For the L2 metric and k = 2, Indyk and
McGregor give an (1± ε)-approximation using polylogarith-
mic space. Recently Braverman, Chung, Liu, Mitzenmacher
and Ostrovsky [8] generalized the L2 results of [21] to any
constant k.2 However, it is well known that for probability

1Here and henceforth, we use lowercase Latin characters for
indexes. We use an italic font for integers and a boldface
font for multidimensional indexes, e.g., i ∈ [n] and i ∈ [n]k.
For a multidimensional index, we use subscript to indicate
its coordinate, e.g., i1 indicates the first coordinate of i.
2It is worth pointing out that our methods in [8] are com-
pletely different and do not seem to apply to the L1 problem.

distributions, statistical distance is a significantly more pow-
erful metric then the L2 metric. For instance, consider two
distributions on [2n], where the first distribution is uniform
on {1, . . . , n} and the second is uniform on {n + 1, . . . , 2n}.
In this case the statistical distance is 1 but the L2 distance is√

2/n → 0. We refer a reader to a paper of Batu, Fortnow,
Rubinfeld, Smith and White [5] for a further discussion.

For the statistical distance L1 metric and k = 2, the
Indyk and McGregor methods provide log n-approximation
with polylogarithmic memory. In addition to log n-
approximation, Indyk and McGregor give an (1 ± ε)-
approximation that requires Ω(n) memory, and also give a
method that requires two passes to solve a promise problem
for a restricted range of parameters. Indyk and McGregor
leave, as their main open question, the problem of improving
their log n-approximation for the statistical distance metric.

In this paper we solve the main open problem posed by
Indyk and McGregor for the statistical distance for pair-
wise independence and extend this result to any constant
k. In particular, we present an algorithm that computes
an (ε, δ)-approximation of the statistical distance between
the joint and product distributions defined by a stream of

k-tuples. Our algorithm requires O
((

1
ε
log(nm

δ
)
)(30+k)k)

memory and a single pass over the data stream. Theorem
2.5 formally describes our main result. We stress that we
omit from this version optimization of constants and poly-
log factors (including exponents) in our constructions and
analysis, which we leave for the journal version of this pa-
per.

1.2 Implicit Tensors
It is convenient to present an alternative, equivalent for-

mulation of the Independence Problem as well. We can con-
sider the problem of approximating the sum of absolute val-
ues of a tensor MInd.

Definition 1.4. An s-dimensional tensor M is a s-
dimensional array with indexes in the range [n]; that is, M
has an entry for each i ∈ [n]s. We denote by mi the i-th
entry of M for each i ∈ [n]s.

Definition 1.5. Let M be a s-dimensional tensor with
entries mi, i ∈ [n]s. An L1-norm of M is a |M | =∑

i∈[n]s |mi|.

For example, a 1-dimensional tensor is an n-dimensional
vector, a 2-dimensional tensor is an n × n-matrix and so
forth.

Many streaming problems address explicitly defined vec-
tors (or matrices) where entries are equal to frequencies of
corresponding stream elements. The Independence problem
diverges from this setting; e.g., for pairwise independence,
a pair (i, j) affects all entries in i-th row and j-th column
of the product probability matrix. To reflect this important
difference we consider the case where the entries of a tensor
are defined implicitly by a data stream.

Definition 1.6. Let D be a collection of data streams of
size m of elements from domain Ω. Let F : D× [n]s 7→ R be
a fixed function. We say that s-dimensional tensor M with
entries mi = F(D, i), i ∈ [n]s is implicity defined by F ,
given D. We denote an implicitly defined tensor as F(D).



Definition 1.7. Let D be a collection of data streams of
size m of k-tuples from domain [n]k. A k-wise Indepen-
dence Function FInd : D × [n]k 7→ R is a function defined

as FInd(D, i) = mkfi −
∏k

l=1 fl(il) for i ∈ [n]k. Here fi

is given by Definition 1.1. Statistical distance tensor MInd

is a k-dimensional tensor implicitly defined by FInd, i.e.,
MInd = FInd(D).

The main objective of our paper is approximating |MInd|.
In particular, this implies solving the Independence problem
since ∆(Pjoint, Pproduct) = 1

mk |MInd|, and since m = |D|
can be computed precisely. We thus freely interchange the
notions of the Independence Problem and computing |MInd|.
In fact, our approach is applicable to any function F for
which conditions of our main theorems are true.

1.3 Why Existing Methods for Estimating L1

Do Not Work
Alon, Matias and Szegedy [3] initiated the study of com-

puting norms of vectors defined by a data stream. In their
setting vector entries are defined by frequencies of the cor-
responding elements in the stream. Their influential pa-
per was followed by a sequence of results including, among
many others, works by Bhuvanagiri, Ganguly, Kesh and
Saha [7]; Charikar, Chen and Farach-Colton [14]; Cormode
and Muthukrishnan [15, 16]; Feigenbaum, Kannan, Strauss
and Viswanathan [17]; Ganguly and Cormode [18]; Indyk
[20]; Indyk and Woodruff [22]; and Li [24] as well as work of
authors [9, 10, 13].

There is an important difference between settings of [3]
and the Independence problem. Indeed, while the entries
of the independence tensor MInd are defined by frequencies
of tuples, there is no linear dependence. As a result, the
aforementioned algorithms are not directly applicable to the
Independence problem.

To illustrate this point, consider the celebrated method of
stable distributions by Indyk [20]. For L1 norm, Indyk ob-
served that a polylogarithmic (in terms of n and m) number
of sketches of the form

∑
Civi gives an (1±ε)-approximation

of |V |, when Ci are independent random variables with
Cauchy distribution. Let us discuss the applicability of this
method to the problem of pairwise independence. A sketch∑

i Cimi, i ∈ [n]2, would solve this problem; unfortunately,
it is not clear how to construct a sketch in this form. In
particular, the probability matrix of the product distribu-
tion is given implicitly as two vectors of margin sketches. It
is not hard to construct sketches for margin distributions;
however, it is not at all clear how to obtain a sketch for
product distribution without using a multiplication of mar-
gin sketches. On the other hand, if we do use a multiplica-
tion of margin sketches (this is the approach of Indyk and
McGregor), the random variable that is associated with the
tensor’s elements is a product of independent Cauchy vari-
ables. Therefore, random variables for distinct entries are
not independent, and thus typical arguments used for sta-
ble distribution methods do not work anymore. In fact, the
main focus of the Indyk and McGregor analysis is to over-
come this problem:

“Perhaps ironically, the biggest technical chal-
lenges that arise relate to ensuring that differ-
ent components of our estimates are sufficiently
independent.”

For pairwise independence, Indyk and McGregor use the
product of two Cauchy variables, where one of them is“trun-
cated.” Using elegant observations, they show that such a
sketch allows achieving log n-approximation of the statistical
distance. Unfortunately, it is not clear how the method of a
Cauchy product can be improved at all, since the log n factor
is a necessary component of their seemingly tight analysis.

1.4 A Description of Our Approach
As we discuss below, solving the Independence problem re-

quires developing multiple new tools and using them jointly
with known methods.

Dimension Reduction for Implicit Tensors . Our solution
can be logically divided into three steps which are explained,
informally, below.

First, we prove that given a polylog-approximation algo-
rithm for k-dimensional tensors and an ε-approximation al-
gorithm for a special type of (k − 1)-dimensional tensors,
it is possible to derive an ε-approximation algorithm on k-
dimensional tensors, where the resulting algorithm increases
memory bound by a factor O(( 1

ε
log nm

δ
)O(1)). Thus, we can

trade dimensionality and precision for memory. To illus-
trate this step, consider pairwise independence. There exist
an ε-approximation algorithm on vectors [20] and a log n-
approximation algorithm on matrices [21]. We show that
these algorithms can be used to obtain an ε-approximation
algorithm on matrices. This informal idea is stated precisely
as Dimension Reduction Theorem 2.1. This theorem is the
main technical contribution of our paper; the majority of
the paper is devoted to establishing its validity.

Second, given a polylog-approximation algorithm for k-
dimensional tensors and an ε-approximation algorithm on
vectors, we can derive an ε-approximation algorithm on
k-dimensional tensors by applying the Dimension Reduc-
tion Theorem recursively k-times. The memory will be

increased by a factor roughly O(( 1
ε
log nm

δ
)(30+k)k

) which

is O(( 1
ε
log nm

δ
)O(1)) for constant k. This informal idea is

stated precisely as Theorem 2.2.
Third, we show that the conditions for Theorem 2.2 hold

for the Independence problem. These results are stated in
Lemmas 2.4 and 2.3, and in fact are a generalization of re-
sults from [20, 21].

The rest of our discussion is devoted to a description of
the main ideas behind the Dimension Reduction Theorem.

Hyperplanes and Absolute Vectors . Consider a matrix M ; a
very natural idea to approximate |M | is by approximating a
L1 norm of a vector with entries equal to L1 norms of rows
of M . We generalize this idea to tensors by defining the
following operators.

Definition 1.8. For any s, t ≥ 0, we denote by (, ) a
mapping from [n]s× [n]t to [n]s+t obtained by concatenation
of coordinates. For instance, ((1, 2), 3) is a an element from
[n]3 with coordinates 1, 2, 3 respectfully.

Definition 1.9. Let M be a s-dimensional tensor with
entries mj, j ∈ [n]s. For any l ∈ [n], Hyperplane(M, l) is a
(s− 1)-dimensional tensor with entries m(l,i) for i ∈ [n]s−1.

For example, when k = 2, the l-th hyperplane of a matrix
M is its l-th row.



Definition 1.10. An l-th hyperplane is α-significant if
|Hyperplane(M, l)| ≥ α|M |.

For example, when k = 2, the l-th row is α-significant3 if
the L1-norm of the vector defined by the l-th row carries at
least α-fraction of |M |.

Definition 1.11. For a s-dimensional tensor M , an
AbsoluteV ector(M) is a vector of dimensionality n with
entries |Hyperplane(M, l)|, l ∈ [n]. In particular,
|AbsoluteV ector(M)| = |M |.

Projected Dimensions. To prove Dimension Reduction The-
orem 2.1 we need to map s-dimensional tensors to (s − 1)-
dimensional tensors with a small distortion of L1. We come
up with the following mapping.

Definition 1.12. Let M be a s-dimensional tensor with
entries ml, where l ∈ [n]s, and let 0 ≤ t ≤ s. A Suffix-Sum
tensor Tt(M) is a (s − t)-dimensional tensor with entries (
for each i ∈ [n]s−t):

m′
i =

∑

j∈[n]t

m(j,i)

Also, we define T0(M) = M . In other words, the i-th entry
of Tt(M) is obtained by summing all elements of M with the
(s− t)-suffix equal to i. In particular, Ts(M) is a scalar that
is equal to

∑
i∈[n]s mi.

For matrix M with entries mi,j , the Suffix-Sum operator
T1(M) defines a vector V with entries vj =

∑
i mi,j . In other

words, all entries of M that belong to the same columns (i.e.,
have the same second coordinate, i.e., the same “suffix”) are
“summed-up” to generate a single entry of V . Note that the
Suffix-Sum operator is different from the AbsoluteVector op-
erator. In the latter case we sum up the absolute values that
belong to the same hyperplane, i.e., have identical prefix; in
the former case we sum up all elements (and not their ab-
solute values) that have an identical suffix.

Clearly |T1(M)| ≤ |M |; however, it is possible in general
that |T1(M)| ¿ |M |. The key observation is that in some
cases |T1(M)| ∼ |M | and thus we can use an approximation
of |T1(M)| to approximate |M |. To illustrate this point,
consider a matrix M with entries mi,j that contains a very
“significant” row i (i.e.,

∑
j |mi,j | ∼ |M |). The key obser-

vation is that in this case |T1(M)| ∼ |M |; thus, if there is
a significant row, it can approximated using |T1(M)|. The
same idea is easily generalized: if a s-dimensional tensor M
contains a (1− ε)-significant hyperplane Hyperplane(M, l),
then |T1(M)| is an 2ε-approximation of |Hyperplane(M, l)|.
We prove this statement in Fact 3.6.

Note that T1(M) is a (s−1)-dimensional tensor; if M is a
matrix, then T1(M) is a vector for which we can apply meth-
ods from [20]. Thus, approximating |T1(M)| is potentially
an easier problem.

3It is important to note that the notion of α-significant is
different from the notion of α-major in our other paper in
this STOC [12]. In particular, here, we compare an element
with the entire sum, while in [12] we compare an element
with the sum of all elements except of that element. Further,
notice that α-significant ≤ 1, while α-major can be arbitrary
large.

Certifying Tournaments. We have shown that T1(M) can be
useful for approximating |M |. However, when can we rely on
the value of |T1(M)|? In particular, how can we distinguish
between the cases when there is a heavy hyperplane (and
thus |T1(M)| is a good approximation) and the case when
there is no heavy hyperplane (and thus |T1(M)| does not
contain reliable information)? The second key observation
is that it can be done using “certifying tournaments.” To
illustrate this point, consider again the case k = 2, where
M is a matrix. Split M into two random sub-matrices by
sampling the rows w.p. 1/2. If there is a heavy row, then
with probability close to 1, one sub-matrix will have a signif-
icantly larger norm then the other. Recall that the method
of [21] gives us a log n-approximation. Thus, for very heavy
rows, the ratio between approximations of norms obtained
by the method from [21] will be large. On the other hand,
we show that if there are no heavy rows, then such behavior
is quite unlikely to be observed many times. Thus, there
exists a way to distinguish between the first and the second
cases for (1− ε

log2 n
)-significant rows.4

The method of certifying tournaments can be generalized
to any s ≤ k as follows. Let M be a s-dimensional tensor
with entries mi for i ∈ [n]s. We “split” M into two “sam-
pled” s-dimensional tensors M0 and M1 by randomly sam-
pling the first coordinate. That is, M1 has entries miH(i1)
and M0 has entries mi(1 − H(i1)), where H : [n] 7→ {0, 1}
is pairwise independent and uniform. If there exists a β-
approximation algorithm for sampled tensors, and there ex-
ists an ε-approximation algorithm for Suffix-Sum, |T1(M

0)|
and |T1(M

0)|, then we can approximate L1 norm of signifi-
cant hyperplanes. Indeed, if there exists a significant hyper-
plane Ml of M , then the ratio between β-approximations of
|M0| and |M1| will be large. If this is the case, the approx-

imation of T (MH(l)) is also an ε-approximation of |Ml|.
To summarize, our main technical Theorem 4.3 proves

that it is possible to output a number U such that U is
either an approximation of some hyperplane or 0. Further,
if there exists a (1 − ε

β2 )-significant hyperplane, then with

high probability, U is its approximation. We call such an
algorithm an α-ThresholdMax algorithm, for α = O( ε

β2 ).

Indirect Sampling . Many streaming algorithms compute
statistics on sampled streams, which are random subsets of
D defined by some randomness H. In many cases, a sam-
pled stream directly corresponds to a collection of sampled
entries of a frequency vector. In contrast, subsets of D do
not correspond directly to entries MInd. Thus, our algo-
rithms employ indirect sampling, where randomness defines
sampled entries of MInd rather then the entries of a data
stream D. We define a Prefix-Zero operator.

Definition 1.13. Let M be a s-dimensional tensor with
entries mi, i ∈ [n]s and let H1, . . . , Ht, t ≤ s be hash
functions Hj : [n] 7→ {0, 1}. A Prefix-Zero tensor
W (M, H1, . . . , Ht) a is a s-dimensional tensor with entries
mi

∏t
l=1 Hl(il).

Our algorithms work with tensors that are defined by com-

4It is worth noting that the idea of “split-and-compare” is
not new. Group testing [16] exploits a similar approach.
However, the methods from [16] require ε-approximation of
L1; in contrast, we use certifying tournaments to improve
the approximation.



positions of FInd, Prefix-Zero and Suffix-Sum. We thus ex-
tend the definition of implicitly defined tensors.

Definition 1.6. (Revised) Let D be a collection of data
streams of size m of elements from domain Ω and let H be
a collection of hash functions from [n] to {0, 1}. Let F :
D × Ht × [n]s 7→ R be a fixed function, for some 0 ≤ t ≤ s.
We say that a s-dimensional tensor M with entries mi =
F(D,H, i), i ∈ [n]s is implicity defined by F , given D ∈ D
and H ∈ Ht. We denote an implicitly defined tensor as
F(D,H).

Example 1.14. Consider k = 2. Then F ′(D, H) =
W (FInd(D), H) defines a matrix that represents a collection
of rows sampled by a hash function H : [n] 7→ {0, 1}.

Generalizing the Method of Indyk and Woodruff [22] . The
ThresholdMax algorithm solves the problem that resembles
the well-known problem of finding an element with maximal
frequency, see, e.g., [14] and [15]. The celebrated method of
Indyk and Woodruff [22] uses maximal entries to estimate
Lp norms on vectors defined by frequencies. We apply the
ideas of [22] to approximate |AbsoluteV ector(M)| = |M |.

Unfortunately, the method of Indyk and Woodruff [22] is
not directly applicable since some basic tools available for
frequency vectors (such as L2 norm approximation) cannot
be used. We propose a different algorithm which is still
in the same spirit as [22]. We prove Lemmas 5.5 and 5.3
which state that an existence of an α-ThresholdMax algo-
rithm for an implicitly defined vector V implies an existence
of an (ε, δ)-approximation algorithm for |V |, with memory
increased by an additional factor of 1

α
poly( 1

ε
log nm

δ
).

Other Technical Issues. There are several other technical
issues that need to be resolved. We need to prove that the
methods of Indyk [20] and Indyk and McGregor [21] are
applicable for k-dimensional tensors that are obtained from
MInd by applying Prefix-Zero and Suffix-Sum operators. We
prove these claims in Lemmas 2.4 and 2.3. To prove our main
theorems, certain properties of the operations on tensors
should be established. We prove these in Section 3.

1.5 Related Work
Measuring pairwise independence between two or more

random variables is a fundamental problem that touches
many areas of computer science. The problems of efficiently
testing pairwise, or k-wise, independence were recently con-
sidered by Alon, Andoni, Kaufman, Matulef, Rubinfeld and
Xie [1]; Alon, Goldreich and Mansour [2]; Batu, Fortnow,
Fischer, Kumar, Rubinfeld and White [4]; and Batu, Ku-
mar and Rubinfeld [6]. These works address the problem
of minimizing the number of samples needed to obtain suffi-
cient approximation, when the joint distribution is accessible
through a sampling procedure. Unlike the work in [1, 2, 4,
6], in the streaming model, the joint distribution is given by
a stream of tuples.

2. MAIN THEOREMS
The proof of our result is based on three main steps which

are summarized by the following theorems. The remainder
of this paper is devoted to establishing these theorems.

Theorem 2.1. Dimension Reduction for Implicit
Tensors. Let s ≥ 1 and let M be a s-dimensional tensor
with poly(n, m)-bounded entries that is defined by a function
F , i.e., M = F(D,H) where D is a data stream and H is a
fixed randomness. Let H : [n] 7→ {0, 1} be an arbitrary fixed
hash function. Assume that

1. There exists an algorithm A(D,H, H, δ) that, given
D and an access to H and H, in one pass obtains
(logk(n), δ)-approximation of |W (M, H)|;

2. There exists an algorithm B(D,H, H, ε, δ) that, given
D and an access to H and H, in one pass obtains an
(ε, δ)-approximation of |T1(W (M, H))|;

3. Both algorithm require memory ν(n, m, ε, δ) ≤
O(

(
1
ε
log nm

δ

)(30+k)s

), beyond the memory required for
H and H.

Then there exists an algorithm that, given an access to
H, in one pass obtains an (ε, δ)-approximation of |M | using

memory
(

1
ε
log nm

δ

)(30+k)s+1

.

Proof. Follows from Theorem 4.3, Lemma 5.5, Lemma
5.3 and elementary computations.

Indeed, the assumptions of Theorem 2 imply, by
Theorem 4.3, an existence of a ε

log2k(n)
-ThresholdMax

algorithm (see Definition 4.2) for restricted function
F ′ = AbsoluteV ector(F(D,H)). The existence of a
ThresholdMax algorithm implies, by Lemma 5.3, the
existence of a Cover algorithm (see Definition 5.2) for
AbsoluteV ector(F(D,H)). The assumption that the
entries of M are polynomially bounded and Fact 3.7
imply that the entries of AbsoluteV ector(F(D,H))
are polynomially bounded as well. By Lemma 5.5,
there exists an (ε, δ)-approximation algorithm for
|AbsoluteV ector(F(D,H))| and |AbsoluteV ector(F(D,H))|
=

∑
i∈[n] |Hyperplane(F(D,H), l)| = |M |.

After substituting the parameters, the mem-
ory required is less than (for sufficiently large n)
1

ε30
log( 1

δ
) log2k+20(nm)ν(n, m, ε7

log4(nm)
, ε17

log2k(n) log8(mn)
) ≤

(
1
ε
log nm

δ

)(30+k)s+1

.

Theorem 2.2. Approximation Theorem for Tensors
Let M be a k-dimensional tensor with entries bounded by

poly(n, m) and implicitly defined by a function F(D). As-
sume that

1. There exists an algorithm Bs(D, H1, . . . , Hs) (for
some s < k) that, given D and an access to fixed hash
functions H1, . . . , Hs, in one pass obtains an (ε, δ)-
approximation of |Ts(W (M, H1, . . . , Hs))|;

2. There exist algorithms As1,s2(D, H1, . . . , Hs1) (for any
0 ≤ s2 ≤ s1 ≤ s) that, given D and an access to
His, in one pass obtain a (logk(n), δ)-approximation
of |Ts2(W (M, H1, . . . , Hs1))|;

3. All algorithms use memory bounded by

O(
(

1
ε
log nm

δ

)20
), beyond the memory required for

His.

Then there exists an algorithm that in one pass
obtains an (ε, δ)-approximation of |M | using memory

O(
(

1
ε
log nm

δ

)(30+k)k

).



Proof. Define g(x) =
(

1
ε
log nm

δ

)(30+k)k−x

First, we
show that for any s1 ≤ s there exists an algorithm
Bs1(D, H1, . . . , Hs1) that gives an (ε, δ)-approximation of
|Ts1(W (M, H1, . . . , Hs1))| and uses memory at most g(s1).

We prove this fact by induction on s1. For s1 = s,
the fact follows from the first assumption of Theo-

rem 2.2 since g(s) ≥ (
1
ε
log nm

δ

)20
. For s1 < s, de-

note F ′(D, H1, . . . , Hs1) = Ts1(W (F(D), H1, . . . , Hs1).
Denote M ′ = F ′(D, H1, . . . , Hs1) and let H
be an arbitrary hash function. By Corollary
3.4, W (M ′, H) = W (F ′(D, H1, . . . , Hs1), H) =
W (Ts1(W (F(D), H1, . . . , Hs1), H), i.e.,

W (M ′, H) = Ts1(W (M, H1, . . . , Hs1 , H)). (1)

Thus, and by the second assumption of the theorem, there
exists an algorithm As1,s1+1 that in one pass obtains a
(logk(n), δ)-approximation of |W (M ′, H)| using memory less
than or equal to g(s1 + 1).

Also, by Corollary 3.5 and by (1):

T1(W (M ′, H)) = Ts1+1(W (M, H1, . . . , Hs1 , H)). (2)

By induction, there exists an algorithm that gives an
(ε, δ)-approximation of |Ts1+1(W (M, H1, . . . , Hs′ , H))| =
|T1(W (M ′, H))| using memory g(s1 + 1).

M ′ is implicitly defined by a fixed function
F ′(D, H1, . . . , Hs). By Fact 3.7, M ′ entries are poly-
nomially bounded. Thus, by (1) and (2), all assumptions
of Theorem 2.1 are satisfied for M ′. Therefore, there
exists an algorithm that gives an ε-approximation of
|M ′| = |Ts1(W (M, H1, . . . , Hs1))| using memory g(s1).

In particular, there exists an algorithm that for any
H gives an ε-approximation of |T1(W (M, H))| using g(1).
Also, by the second assumption of the theorem, there ex-
ists an algorithm that gives a logk(n)-approximation of
|T0(W (M, H))| = |W (M, H)|. Thus, we can apply Theo-
rem 2.1 for M and obtain an ε-approximation of |M |. The

resulting memory usage will be O(
(

1
ε
log nm

δ

)(30+k)k

).

We use the following lemmas (the proofs can be found in the
full version of our paper [11]).

Lemma 2.3. There exists an algorithm Bk−1 that,
given a data stream D and an access to hash functions
H1, . . . , Hk−1, in one pass obtains an ε-approximation
of |Tk−1(W (MInd, H1, . . . , Hk−1))| using memory
O( 1

ε2
log 1

δ
log nm

εδ
).

Lemma 2.4. There exists an algorithm As1,s2 (for any
0 ≤ s2 ≤ s1 ≤ k) that, given a data stream D and an
access to hash functions H1, . . . , Hs1 , in one pass obtains a
logk n-approximation of |Ts2(W (MInd, H1, . . . , Hs1))| using
memory O(log (nm) log 1

δ
).

Theorem 2.5. Main Theorem Let k ≥ 2 be a constant,
and let D be a stream of k-tuples from [n]k. For any 0 < ε <
1, there exists an algorithm that makes a single pass over D
and returns an (ε, δ)-approximation of the statistical distance
between product and joint distribution (see Definition 1.1 )

using memory O(
(

1
ε
log(nm

δ
)
)(30+k)k

).

Proof. By Lemma 2.3 and Lemma 2.4, the algorithms
required by Theorem 2.2 exist for MInd. Also, by Fact 3.7,
the entries of MInd are polynomially bounded. Thus all
assumptions of Theorem 2.2 are true for MInd. Applying
Theorem 2.2 to MInd, we obtain the main result.

3. PROPERTIES OF TENSORS
We prove the following useful facts about Suffix-Sum and

Prefix-Zero operations.

Fact 3.1. Let M be a t-dimensional tensor and 0 ≤ s ≤
t. Then

W (Ts(M), H) = Ts(W (M, H1 = 1, . . . , Hs = 1, H)).

Proof. Denote by mw (for w ∈ [n]t) the w-th entry of
M . For any i ∈ [n]t−s, denote by ai the entry of Ts(M). By
Definition 1.12:

ai =
∑

j∈[n]s

m(j,i).

Denote by bi the entry of W (Ts(M), H). By Definitions 1.12
and 1.13:

bi = H(i1)ai =
∑

j∈[n]s

m(j,i)H(i1).

Denote by ci the i-th entry of Ts(W (M, H1 = 1, . . . , Hs =
1, H)). By Definitions 1.12 and 1.13:

ci =
∑

j∈[n]s

m(j,i)H(i1).

Thus, for any i, bi = ci and the fact is correct.

Fact 3.2. Let M be a t-dimensional tensor and let 0 ≤
s < t. Then T1(Ts(M)) = Ts+1(M).

Proof. Denote by mw (for w ∈ [n]t) the w-th entry of
M . For j ∈ [n]t−s denote bj to be an entry of Ts(M). By
Definition 1.12:

bj =
∑

u∈[n]s

m(u,j).

For every i ∈ [n]t−s−1, denote by ci the entry of T1(Ts(M)).
By Definition 1.12:

ci =
∑

l∈[n]

b(l,i) =
∑

l∈[n]

∑

u∈[n]s

m(u,(l,i)) =

∑

l∈[n]

∑

u∈[n]s

m((u,l),i) =
∑

v∈[n]s+1

m(v,i).

For any i ∈ [n]t−s−1 denote by ai the entry of Ts+1(M). By
Definition 1.12:

ai =
∑

v∈[n]s+1

m(v,i).

Thus, for any i, ai = ci and the fact is correct.

Fact 3.3. Let M be a t-dimensional tensor, let s ≤ t and
let H1, . . . , Hs and G1, . . . , Gs be hash functions. Then

W (M, H1G1, . . . , HsGs) = W (W (M, H1, . . . , Hs), G1, . . . , Gs))

Corollary 3.4. Let M be a t-dimensional tensor and let
0 ≤ s < t. Let M ′ = Ts(W (M, H1, . . . , Hs)). Then

W (M ′, H) = Ts(W (M, H1, . . . , Hs, H)).

Proof. Denote M ′′ = W (M, H1, . . . , Hs). Then by Fact
3.1:

W (M ′, H) = W (Ts(M
′′), H) =



Ts(W (M ′′, G1 = 1, . . . , Gk = 1, H)).

Also by Fact 3.3:

W (M ′′, G1, . . . , Gs, H) =

W (W (M, H1, . . . , Hs,1), G1, . . . , Gs, H) =

W (M, H1, . . . , Hs, H).

Corollary 3.5. Let M be a t-dimensional tensor and let
0 ≤ s < t. Let M ′ = Ts(W (M, H1, . . . , Hs)). Then

T1(M
′, H)) = Ts+1(W (M, H1, . . . , Hs, H)).

Proof. By Fact 3.2 and Corollary 3.4:

Ts+1(W (M, H1, . . . , Hs, H)) =

T1(Ts(W (M, H1, . . . , Hs, H))) = T1(W (M ′, H)).

Fact 3.6. Let M be an arbitrary s-dimensional tensor,
let Ml be (1 − ε/2)-significant hyperplane of M , Ml =
Hyperplane(M, l), and let M ′ = T1(M). Then |M ′| is an
ε-approximation of |Ml|.

Proof. We have

|M ′| =
∑

i∈[n]s−1

|
∑

j∈[n]

m(j,i)| ≤

∑

i∈[n]s−1

∑

j∈[n]

|m(j,i)| = |M | ≤ 1

1− ε/2
|Ml| ≤ (1 + ε)|Ml|.

On the other hand,

|M ′| =
∑

i∈[n]s−1

|
∑

j∈[n]

m(j,i)| ≥

∑

i∈[n]s−1

(|m(l,i)| −
∑

j∈[n],j 6=l

|m(j,i)|) = |Ml| − (|M | − |Ml|) =

≥ (2− 1

1− ε/2
)|Ml| ≥ (1− ε)|Ml|.

Fact 3.7.

1. Let M be a s-dimensional tensor with polynomially
bounded (in n and m) entries for s ≤ k. Let M ′ be
a tensor obtained from M by an arbitrary composition
of Prefix-Zero, AbsoluteVector, Hyperplane and Suffix-
Sum operators. Then the entries of M ′ are polynomi-
ally bounded.

2. All entries of MInd are integers with absolute values
bounded by 2mk and thus claim 1 is true for MInd.

Proof. The first claim follows from the fact that the en-
tries of M ′ are sums of disjoint subsets of M and that the
number of entries in M is bounded by nk. The second claim
follows from Definition 1.7.

4. CERTIFYING TOURNAMENTS
Recall that certifying tournaments allow us to distinguish

the case when there exists an extremely significant hyper-
plane and where all hyper-planes are “light” in the implicit
tensors. Furthermore, in case there is heavy hyperplane,
certifying tournaments return a good approximation of the
weight of the heavy hyperplane5. The algorithm is as fol-
lows:

Algorithm 4.1. TensorTournament(D,H, H, ε)

1. Repeat in parallel O(
log 1

δ
p

) times where p = 1 −√
1− ε/2.

(a) Generate 2-wise independent random hash
function Z from [n] to {0, 1} such that Z(i) =
0 w.p. 0.5. Denote Z1 = HZ, Z0 =
H(1− Z).

(b) Compute in a single pass over D for i = 0, 1:
ti = A(D,H, Zi, ε, δ

′), where δ′ = pε

4 log 1
δ

.

(c) Simultaneously (in the same pass), compute
li = B(D,H, Zi, δ

′).

(d) Put ui = max{ li
β

, ti, 0}, i = 0, 1.

(e) Define λ′ = (1 + ε)λ, where λ is the constant

from Fact 4.4, λ = (1 + 2(1−ε)1/4

1−(1−ε)1/4 ).

(f) Compute

U ′ =





u1, if u1 ≥ λ′β2u0,
u0, if u0 ≥ λ′β2u1,
0, otherwise.

2. Output U to be the minimum of all U ′s.

Definition 4.2. Let F be a fixed function that defines
implicit vectors, given a data stream and a fixed randomness
and denote V = F(D,H) as a vector with entries vi. For
α > 0.5, an α-ThresholdMax algorithm for restricted F
is an algorithm that receives as an input a data stream D
and an access to a randomness H and a random function
H : [n] 7→ {0, 1}, and in one pass over D returns U ≥ 0
such that w.p. at least 1− δ:

1. If U > 0 then U is an ε-approximation of |vi| for some
i with H(i) = 1.

2. If 6 |V H| > 0 and there exists i such that H(i) = 1
and |vi| ≥ (1 − α)|V H| then U is an ε-approximation
of |vi|.

Theorem 4.3. Let H be a fixed hash function defined as
above and let ε ≤ 0.1. Let M be a s-dimensional tensor
implicitly defined by a fixed function F , stream D and ran-
domness H, M = F(D,H). Assume that there exist two
algorithms:
5It is important to note that despite superficial similari-
ties, this is different from Hybrid-Major algorithm in [12]
since here we reduce (log n)-approximation of L1 norm to
ε-approximation, while in Hybrid-Major we approximate all
increasing functions with high accuracy using L2 norm.
6Here and henceforth we denote by V H a vector with entries
viH(i), i ∈ [n].



• An algorithm A(D,H, H, δ) that in one pass ob-
tains (β, δ)-approximation of |W (M, H)| using mem-
ory µ1(n, m, ε, δ);

• An algorithm B(D,H, H, ε, δ) that in one pass over
D obtains an (ε, δ)-approximation of |T1(W (M, H))|
using memory µ2(n, m, ε, δ);

and let α = ε
64β2 . Then, the Algorithm

TensorTournament(D,H, H, ε) is an α-ThresholdMax
algorithm for restricted F ′ (see Definition 4.2),
where F ′(D,H) = AbsoluteV ector(F(D,H)). The
algorithm makes a single pass over D and uses
memory O( 1

ε
log 1

δ
(µ1(n, m, ε/3, δε/ log (1/δ)) +

µ2(n, m, ε/3, δε/ log (1/δ)) + log nm).

Proof.
Denote M t = W (M, Zt) for t = 0, 1. Let Mi =
Hyperplane(M, i) for i ∈ [n] and let V ′ to be a vector with
elements |Mi|. By Definition 1.11, V ′ = F ′(D,H). Further,
let V be a vector with entries vi = |Mi|H(i). We prove that
the algorithm satisfies two conditions of Definition 4.2 for
the ThresholdMax algorithm for V and H.

Proof of the first condition of Definition 4.2
We prove the following stronger statements which imply the
first condition of Definition 4.2:

I. If there is no (1− ε)-significant entry vl then, w.p. at
least 1− δ

3
, U = 0.

II. If |V | > 0 and there is a (1 − ε)-significant entry vl

then, w.p. at least 1 − δ
3
, either U = 0 or U is a

3ε-approximation of |vl|.

Proof of statement I
By definitions of B, A, we have w.p. at least 1 − 8δ′ for

t = 0, 1: ut ≥ lt
β
≥ |Mt|

β2 ; and tt ≤ (1 + ε)|T1(M
t, H)| ≤

(1 + ε)|M t|; and lt
β
≤ |M t|. Thus,

|M t|
β2

≤ ut ≤ (1 + ε)|M t|. (3)

Following the terminology of Fact 4.4, we define X = |M1|
and Y = |M0|. We have the following relations:

|V | =
∑

i

vi =
∑

i

H(i)|Mi| =

∑

i∈[n]

H(i)
∑

j′∈[n]s−1

|m(i,j′)| = |W (M, H)|,

X = |M1| =
∑

j∈[n]s

Z(j1)H(j1)|mj| =

∑

i∈[n]

Z(i)H(i)
∑

j′∈[n]s−1

|m(i,j′)| =

∑
i

Z(i)H(i)|Mi| =
∑

i

Z(i)vi,

and similarly

Y = |M0| =
∑

i

(1− Z(i))H(i)|Mi| =

= |V | −X = |V | − |M1|.
(4)

By statement I, for all i, vi < (1− ε)|V |. Thus we can apply
Fact 4.4. We have:

P ((|M0| ≥ λ|M1|) ∪ (|M1| ≥ λ|M0|)) =

P ((X ≥ λY ) ∪ (Y ≥ λX)) ≤ √
1− ε.

Let Υ be the event (u0 ≥ λ′β2u1) ∪ (u1 ≥ λ′β2u0). Let Φ

be the event that |Mt|
β2 ≤ ut ≤ (1 + ε)|M t| for both values

of t. We have P (Υ) ≤ P (Υ, Φ) + P (Φ̄). By (3), we have
P (Φ̄) ≤ 8δ′. Also, events u0 ≥ λ′β2u1 and Φ imply that
|M0| ≥ λ|M1|; indeed:

|M0| ≥ u0

(1 + ε)
≥ λ′

1 + ε
β2u1 ≥ λ|M1|.

Thus we have

P (Υ, Φ) ≤ P ((|M0| ≥ λ|M1|) ∪ (|M1| ≥ λ|M0|)) ≤ √
1− ε.

We summarize that if no (1− ε)-significant vi exists, then

P (U ′ 6= 0) ≤ P (Υ) ≤ √
1− ε + O(δ′) ≤

√
1− ε/2.

Recall that the number of repetitions is O( 1
p

log 1/δ), where

p = 1−
√

1− ε/2. Thus P (U 6= 0) ≤ (1− p)
1
p

log 3
δ ≤ δ

3
.

Proof of statement II
Let vl be a (1 − ε)-significant entry of V . Assume,

w.l.o.g., that for one execution of the main cycle of the
Tournament algorithm, Z(l) = 0. Statement II implies
|V | > 0 which implies vl = |Ml|H(l) > 0 which im-
plies (1 − Z(l))H(l) = 1. Thus, |Hyperplane(M0, l)| =
|Hyperplane(W (M, (1 − Z)H), l)| = |Ml| = vl. Therefore
by (4), |Hyperplane(M0, l)| = vl ≥ (1−ε)|V | ≥ (1−ε)|M0|,
i.e., the l-th hyperplane of M0 is (1− ε)-significant. By Fact
3.6, |T (M0)| is an 2ε-approximation of |Ml|. By the as-
sumptions of the theorem, B returns an ε-approximation of
|T (M0)|. Thus, t0 is a 3ε-approximation of |Ml|, w.p. at
least 1− δ′, in which case

u0 ≥ t0 ≥ (1− 3ε)|Ml|.
Also, by the assumption of Theorem 4.3, w.p. at least 1−δ′,
we have l0

β
≤ |M0|. Thus

u0 = max{ l0

β
, t0, 0} ≤ max{|M0|, (1+3ε)|Ml|} ≤ (1+3ε)|Ml|.

On the other hand, w.p. at least 1− 2δ′

u1 = max{ l1

β
, t1, 0} ≤ max{|M1|, (1+ε)|M1|} = (1+ε)|M1|.

But since Zs(l) = 0 we have by (4):

|M1| ≤ |V | − |Hyperplane(M0, l)| = |V | − vl ≤ ε

1− ε
|Ml|.

Combining all of the above computations, we conclude that
w.p. at least 1− 4δ′ (for sufficiently small ε, e.g., ε ≤ 0.1):

u1 ≤ (1+ε)|M1| ≤ ε(1 + ε)

1− ε
|Ml| ≤ ε(1 + ε)

(1− ε)(1− 3ε)
u0 < λ′u0.



Thus, U ′ is equal to either 0 or u0 w.p. at least 1 − 4δ′.
Recall simultaneously u0 is a 3ε-approximation of |Ml| = vl.
The same inequality is true if Z(l) = 1. By union bound,

w.p. at least 1 − Ω(
log 1

δ
p

δ′) = 1 − Ω(δ), U is either 0 or a
3ε-approximation of vl.

Proof of the second condition of Definition 4.2
Finally, consider the case when vl is a (1 − α)-significant

entry of V . Consider the case when Z(l) = 0. Repeating
the arguments from the proof of statement II, we have, w.p.
at least 1− 4δ′, u0 is a 3ε-approximation of vl and

u1 ≤ (1 + ε)|M1| ≤ (1 + ε)
α

(1− α)
vl ≤ 4αvl.

Therefore,

u0 ≥ (1− 3ε)vl ≥ (1− 3ε)

4α
u1 ≥ λ′β2u1.

Thus, w.p. 1− 4δ′, U ′ = u0 = (1± 3ε)vl. The same is true
when Z(l) = 1. Thus, U is a 3ε-approximation of vl w.p. at
least 1− Ω(δ).

Conclusion and memory analysis
Since both conditions of Definition 4.2 are met (substi-

tuting ε with ε/3), we conclude that TensorTournament
is an α-ThresholdMax algorithm for restricted F ′. Let
us count the memory needed for a single iteration of
the main cycle of the algorithm. To generate pair-
wise independent Z, we need O(log n) bits. In addi-
tion, we need µ1 + µ2 for the algorithms B and A and
O(log nm) bits to keep the auxiliary variables. Thus, in to-
tal we need memory O( 1

ε
log 1

δ
(µ1(n, m, ε/3, δε/ log (1/δ)) +

µ2(n, m, ε/3, δε/ log (1/δ)) + log nm). Recall that we do not
count memory required to store H and H.

Fact 4.4. Let V be a n-dimensional vector with non-
negative entries vi ≥ 0, i ∈ [n]. Let Z be 2-wise indepen-
dent random hash functions from [n] to {0, 1}, such that
P (Z(i) = 1) = 0.5. Let X =

∑
i viZ(i), and Y = L1(V ) −

X. If there exists ε > 0 such that for all i vi < (1−ε)L1(V ),

then for λ = λ(ε) ≥ 1 + 2(1−ε)1/4

1−(1−ε)1/4 we have

P ((X ≥ λY ) ∪ (Y ≥ λX)) ≤ √
1− ε.

5. APPROXIMATING L1 NORMS OF IM-
PLICIT VECTORS

Definition 5.1. Let V with vi ≥ 0 be a vector from Rn.
A set U of positive numbers is an ε-cover of V if:

1. All elements of U are ε-approximations of distinct and
positive coordinates from V (i.e., there is a one-to-one
mapping ρ from the set U to a subset S′ ⊆ [n] such
that for all U ∈ U , U is an ε-approximation of vρ(U).)

2. U contains ε-approximations of all ε-significant ele-
ments of V (i.e., for all vi such that vi ≥ ε|V |, it
is true that i ∈ S′.)

The size of the cover is |U|.
Definition 5.2. Let F be a fixed function that implicitly

defines vectors, given a data stream D and a fixed random-
ness H. Denote V = F(D,H). A Cover algorithm for re-
stricted F is an algorithm that receives as an input a data

stream D, an access to a randomness H and a random func-
tion H : [n] 7→ {0, 1} and an ε and δ. The algorithm makes
a single pass over D and w.p. at least 1 − δ, returns an
ε-cover of vector with entries viH(i).

Lemma 5.3. Let F be a fixed function that implicitly de-
fines vectors, given a data stream D and a fixed randomness
H. An existence of α-ThresholdMax algorithm for restricted
F that uses memory µ(n, m, ε, δ) implies an existence of a
Cover algorithm for restricted F for any ε. The Cover algo-
rithm uses memory O( 1

ε2δα
(µ(n, m, ε, δ2ε2α) + log nm)).

Proof. Denote by Lα(D,H, H, ε, δ) the existing α-
ThresholdMax algorithm for restricted F .

Using Lα we construct the following algorithm. Let ε′ =
ε2δ/3 and % = d 1

ε′αe. Let G be a pairwise independent
random hash function from [n] to [%] that is independent of
H and H. For s ∈ [%], define function Fs as Fs(i) = 1G(i)=s

and execute, in parallel for all s, Lα(D,H, HFs, ε, δ/%). Let
Us be the output of s-th ran of Lα. The output of our new
algorithm is a set of all strictly positive Us. We show below
that the output is indeed ε-cover of V with probability at
least 1− δ.

Let V = F(D,H) be a vector with entries vi and let Vs be
a vector with entries vs,i = v(i)Fs(i). By the union bounds
and by the definition of α-ThresholdMax algorithm, w.p. at
least 1 − δ, every positive Us is an ε approximation of |vis |
for some is with H(is)Fs(is) = 1. But this implies that
Us is an approximation of |vi| with H(vi) = 1. Since G
splits [n] into disjoint subsets, the output of our algorithm
corresponds to ε-approximations of absolute values of a set
of distinct entries of V . I.e., the first condition of ε-cover is
correct.

To show that the second condition is true as well, let
Sε be set of all is such that |viH(i)| ≥ ε|V H| > 0. Con-
sider a fixed i ∈ Sε. Let Xi = |V HFG(i)| − |vi| =∑

j 6=i |vj |H(j)FG(i)(j) ≥ 0. By pairwise independence of G:

E(Xi) =
∑

j 6=i |vj |H(j)P (G(j) = G(i)) ≤ |V H|
%

.

Let Ψi be the event that Xi > ε
%ε′ |V H|; by Markov in-

equality P (Ψl) ≤ ε′
ε
. Note that if Ψi does not happen, then

|V HFG(i)| − |vi| ≤ ε
%ε′ |V H| ≤ 1

%ε′ |vi| ≤ α|vi|, in which case

|vi| ≥ (1−α)|V HFG(i)|. Let Γl be the event that UG(i) is not
an ε-approximation of |vi|. By the properties of algorithm
Lα, P (Γi|Ψ̄i) ≤ δ

%
. Thus

P (Γi) ≤ P (Γi|Ψ̄i) + P (Ψi) ≤ δ

%
+

ε′

ε
.

Finally, let Φi,j be the event where there is a collision be-
tween i and j. By pairwise independence of G, P (Φi,j) = 1

%
,

and thus the probability of collisions for ε-significant entries
is bounded by 1

ε2%
. Thus, the probability that the output of

the algorithm does not meet the second condition of ε-cover

is bounded by P ((∪i∈SεΓi)∪(∪i,j∈SεΦi,j)) ≤ δ
%ε

+ ε′
ε2

+ 1
%ε2

≤
δ.

Definition 5.4. Let F be a fixed function that defines an
implicit vector V = F(D,H), given D and a randomness H,
as in Definition 1.6. An algorithm that receives as an input a
data stream D and an access to a randomness H and in one
pass over D returns an (ε, δ)-approximation of |F(D,H)| is
called an (ε, δ)-approximation algorithm for L1(F).



Finally, we are ready to state our main lemma, which is
a strict generalization of Indyk and Woodruff [22] (for the
proof see our full version [11]):

Lemma 5.5. Let F be a fixed function that defines an
implicit vector V = F(D,H), given D and a random-
ness H. Assume that V has non-negative entries bounded
by poly(n, m). Then the existence of Cover algorithm
Q(D,H, H, ε, δ) for restricted F (see Definition 5.2) that
uses memory µ(n, m, ε, δ) implies an existence of an (ε, 2/3)-
approximation algorithm for L1(F) (Definition 5.4) that
uses memory

O

(
1

ε
log(n)µ(n, m,

ε7

log3(nm)
,

ε

log(nm)
) +

1

ε2
log2(nm)

)
.
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[3] N. Alon, Y. Matias, M.Szegedy, “The space complexity
of approximating the frequency moments”. Proceedings
of the twenty-eighth annual ACM symposium on
Theory of computing, pp.20-29, 1996.

[4] T. Batu, L. Fortnow, E. Fischer, R. Kumar, R.
Rubinfeld, P. White, “Testing random variables for
independence and identity,” FOCS, 2001, pp.
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[21] P. Indyk, A. McGregor, “Declaring Independence via
the Sketching of Sketches,” ACM-SIAM Symposium on
Discrete Algorithms, 2008.

[22] P. Indyk, D. P. Woodruff, “Optimal approximations of
the frequency moments of data streams,” in
ACMSymposium on Theory of Computing, 2005, pp.
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