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ABSTRACT. In their seminal work, Alon, Matias, and Szegedy introduced several sketching techniques, in-
cluding showing that 4-wise independence is sufficient to obtain good approximations of the second frequency
moment. In this work, we show that their sketching technique can be extended to product domains [n]k by
using the product of 4-wise independent functions on [n]. Our work extends that of Indyk and McGregor, who
showed the result for k = 2. Their primary motivation was the problem of identifying correlations in data
streams. In their model, a stream of pairs (i, j) ∈ [n]2 arrive, giving a joint distribution (X,Y ), and they find
approximation algorithms for how close the joint distribution is to the product of the marginal distributions
under various metrics, which naturally corresponds to how close X and Y are to being independent. By using
our technique, we obtain a new result for the problem of approximating the `2 distance between the joint dis-
tribution and the product of the marginal distributions for k-ary vectors, instead of just pairs, in a single pass.
Our analysis gives a randomized algorithm that is a (1± ε) approximation (with probability 1− δ) that requires
space logarithmic in n and m and proportional to 3k.
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1. Introduction
In their seminal work, Alon, Matias and Szegedy [4] presented celebrated sketching techniques and

showed that 4-wise independence is sufficient to obtain good approximations of the second frequency mo-
ment. Indyk and McGregor [14] make use of this technique in their work introduce the problem of measuring
independence in the streaming model. There they give efficient algorithms for approximating pairwise in-
dependence for the `1 and `2 norms. In their model, a stream of pairs (i, j) ∈ [n]2 arrive, giving a joint
distribution (X,Y ), and the notion of approximating pairwise independence corresponds to approximating
the distance between the joint distribution and the product of the marginal distributions for the pairs. Indyk
and McGregor state, as an explicit open question in their paper, the problem of whether one can estimate
k-wise independence on k-tuples for any k > 2. In particular, Indyk and McGregor show that, for the `2
norm, they can make use of the product of 4-wise independent functions on [n] in the sketching method of
Alon, Matias, and Szegedy. We extend their approach to show that on the product domain [n]k, the sketch-
ing method of Alon, Matias, and Szegedy works when using the product of k copies of 4-wise independent
functions on [n]. The cost is that the memory requirements of our approach grow exponentially with k,
proportionally to 3k.

Measuring independence and k-wise independence is a fundamental problem with many applications
(see e.g., Lehmann [16]). Recently, this problem was also addressed in other models by, among others,
Alon, Andoni, Kaufman, Matulef, Rubinfeld and Xie [1]; Batu, Fortnow, Fischer, Kumar, Rubinfeld and
White [5]; Goldreich and Ron [12]; Batu, Kumar and Rubinfeld [6]; Alon, Goldreich and Mansour [3];
and Rubinfeld and Servedio [19]. As a specific example, identifying correlations between columns of a
table is a fundamental problem in relational databases (see, e.g., Ilyas, Markl, Haas, Brown and Aboulnaga
[13]; Haas and Brown [10]; and Poosala and Ioannidis [18]). For queries with predicates over multiple
attributes, estimating selectivity is an important part of constructing effective query plans. If there is no
prior knowledge, then the “statistical independence assumption” is typical. Under this assumption, the
selectivity is estimated by a product of columns’ cardinalities, i.e., assuming that columns are statistically
independent. However, when this assumption is not correct, it may result in suboptimal query plans and
decrease performance significantly (see, e.g., Poosala and Ioannidis [18]). For data warehouse and OLAP
applications, finding correlated columns may optimize schema and thus improve performance significantly
(see e.g., Kimball and Caserta [15]).

Traditional non-parametric methods of testing independence over empirical data usually require space
complexity that is polynomial to either the support size or input size. The scale of contemporary data sets
often prohibits such space complexity. It is therefore natural to ask whether we will be able to design
algorithms to test for independence in streaming model. Interestingly, this specific problem appears not to
have been introduced until the work of Indyk and McGregor. While arguably results for the `1 norm would
be stronger than for the `2 norm in this setting, the problem for `2 norms is interesting in its own right.
The problem for the `1 norm has been recently resolved by Braverman and Ostrovsky in [8]. They gave an
(1 ± ε, δ)-approximation algorithm that makes a single pass over a data stream and uses polylogarithmic
memory.

1.1. Our Results

In this paper we generalize the “sketching of sketches” result of Indyk and McGregor. Our specific
theoretical contributions can be summarized as follows:

Main Theorem.
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Let ~v ∈ R(nk) be a vector with entries ~vp ∈ R for p ∈ [n]k. Let h1, . . . , hk : [n] → {−1, 1} be
independent copies of 4-wise independent hash functions; that is, hi(1), . . . , hi(n) ∈ {−1, 1} are 4-
wise independent hash functions for each i ∈ [k], and h1(·), . . . , hk(·) are mutually independent. Define
H(p) =

∏k
i=1 hj(pj), and the sketch Y =

∑
p∈[n]k ~vpH(p).

We prove that the sketch Y can be used to give an efficient approximation for ‖~v‖2; our result is stated
formally in Theorem 4.2. Note that H is not 4-wise independent.

As a corollary, the main application of our main theorem is to extend the result of Indyk and McGregor
[14] to detect the dependency of k random variables in streaming model.

Corollary 1.1. For every ε > 0 and δ > 0, there exists a randomized algorithm that computes, given
a sequence a1, . . . , am of k-tuples, in one pass and using O(3kε−2 log 1

δ (logm + log n)) memory bits, a
number Y so that the probability Y deviates from the `2 distance between product and joint distribution by
more than a factor of (1 + ε) is at most δ.

1.2. Techniques and a Historical Remark

This paper is a merge from [7, 11, 9], where the same result was obtained with different proofs. The
proof of [11] generalizes the geometric approach of Indyk and McGregor [14] with new geometric observa-
tions. The proofs of [7, 9] are more combinatorial in nature. These papers offer new insights, but due to the
space limitation, we focus on the proof from [9] in this paper. Original papers are available on line and are
recommended to the interested reader.

2. The Model
We provide the general underlying model. Here we mostly follow the notation of [7, 14].
Let S be a stream of size m with elements a1, . . . , am, where ai ≡ (a1i , . . . , a

k
i ) ∈ [n]k. (When we

have a sequence of elements that are themselves vectors, we denote the sequence number by a subscript and
the vector entry by a superscript when both are needed.) The stream S defines an empirical distribution over
[n]k as follows: the frequency f(ω) of an element ω ∈ [n]k is defined as the number of times it appears in
S, and the empirical distribution is

Pr[ω] =
f(ω)

m
for any ω ∈ [n]k.

Since ω = (ω1, . . . , ωk) is a vector of size k, we may also view the streaming data as defining a joint
distribution over the random variables X1, . . . , Xk corresponding to the values in each dimension. (In the
case of k = 2, we write the random variables as X and Y rather than X1 and X2.) There is a natural way
of defining marginal distribution for the random variable Xi: for ωi ∈ [n], let fi(ωi) be the number of times
ωi appears in the ith coordinate of an element of S, or

fi(ωi) =
∣∣{aj ∈ S : aij = ωi}

∣∣ .
The empirical marginal distribution Pri[·] for the ith coordinate is defined as

Pri[ωi] =
fi(ωi)

m
for any ωi ∈ [n].

Next let ~v be the vector in R[n]k with ~vω = Pr[ω] − ∏
1≤i≤k Pri[ωi] for all ω ∈ [n]k. Our goal is to

approximate the value

‖~v‖ ≡

 ∑

ω∈[n]k

∣∣∣∣∣∣
Pr[ω]−

∏

1≤i≤k

Pri[ωi]

∣∣∣∣∣∣

2


1
2

. (2.1)
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This represent the `2 norm between the tensor of the marginal distributions and the joint distribution, which
we would expect to be close to zero in the case where the Xi were truly independent.

Finally, our algorithms will assume the availability of 4-wise independent hash functions. For more on
4-wise independence, including efficient implementations, see [2, 20]. For the purposes of this paper, the
following simple definition will suffice.

Definition 2.1. (4-wise independence) A family of hash functions H with domain [n] and range {−1, 1} is
4-wise independent if for any distinct values i1, i2, i3, i4 ∈ [n] and any b1, b2, b3, b4 ∈ {−1, 1}, the following
equality holds,

Pr
h←H

[h(i1) = b1, h(i2) = b2, h(i3) = b3, h(i4) = b4] = 1/16.

Remark 2.2. In [14], the family of 4-wise independent hash functions H is called 4-wise independent
random vectors. For consistencies within our paper, we will always view the object H as a hash function
family.

3. The Algorithm and its Analysis for k = 2

We begin by reviewing the approximation algorithm and associated proof for the `2 norm given in [14].
Reviewing this result will allow us to provide the necessary notation and frame the setting for our extension
to general k. Moreover, in our proof, we find that a constant in Lemma 3.1 from [14] that we subsequently
generalize appears incorrect. (Because of this, our proof is slightly different and more detailed than the
original.) Although the error is minor in the context of their paper (it only affects the constant factor in
the order notation), it becomes more important when considering the proper generalization to larger k, and
hence it is useful to correct here.

In the case k = 2, we assume that the sequence (a11, a
2
1), (a

1
2, a

2
2), . . . , (a

1
m, a2m) arrives an item by an

item. Each (a1i , a
2
i ) (for 1 ≤ i ≤ m) is an element in [n]2. The random variables X and Y over [n] can be

expressed as follows:



Pr[i, j] = Pr[X = i, Y = j] = |{` : (a1` , a2`) = (i, j)}|/m
Pr1[i] = Pr[X = i] = |{` : (a1` , a2`) = (i, ·)}|/m
Pr2[j] = Pr[Y = j] = |{` : (a1` , a2`) = (·, j)}|/m.

We simplify the notation and use pi ≡ Pr[X = i], qj ≡ Pr[Y = j], ri,j = Pr[X = i, Y = j]. and
si,j = Pr[X = i] Pr[Y = j].

Indyk and McGregor’s algorithm proceeds in a similar fashion to the streaming algorithm presented
in [4]. Specifically let s1 = 72ε−2 and s2 = 2 log(1/δ). The algorithm computes s2 random variables
Y1, Y2, . . . , Ys2 and outputs their median. The output is the algorithm’s estimate on the norm of v defined
in Equation 2.1. Each Yi is the average of s1 random variables Yij : 1 ≤ j ≤ s1, where Yij are indepen-
dent, identically distributed random variables. Each of the variables D = Dij can be computed from the
algorithmic routine shown in Figure 1.

2-D APPROXIMATION
(
(a11, a

2
1), . . . , (a

1
m, a2m)

)

1 Independently generate 4-wise independent random functions h1, h2 from [n] to {−1, 1}.
2 for c ← 1 to m
3 do Let the cth item (a1c , a

2
c) = (i, j)

4 t1 ← t1 + h1(i)h2(j), t2 ← t2 + h1(i), t3 ← t3 + h2(j).
5 Return Y = (t1/m− t2t3/m

2)2.

Figure 1: The procedure for generating random variable Y for k = 2.
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Notice that by the end of the process 2-D APPROXIMATION, we have t1/m =
∑

i,j∈[n] h1(i)h2(j)ri,j ,
t2/m =

∑
i∈[n] h1(i)pi, and t3/m =

∑
i∈[n] h2(i)qi. Also, when a vector is in R(n2), its indices can be

represented by (i1, i2) ∈ [n]2. In what follows, we will use a bold letter to represent the index of a high
dimensional vector, e.g., vi ≡ vi1,i2 . The following Lemma shows that the expectation of Y is ‖v‖2 and the
variance of Y is at most 8(E[Y ])2 because E[Y 2] ≤ 9E[Y ]2.

Lemma 3.1. ([14]) Let h1, h2 be two independent instances of 4-wise independent hash functions from [n]

to {−1, 1}. Let v ∈ Rn2
and H(i)(≡ H

(
(i1, i2)

)
= h1(ii) · h2(i2). Let us define Y =

(∑
i∈[n]2 H(i)vi

)2
.

Then E[Y ] =
∑

i∈[n]2 ~v
2
i and E[Y 2] ≤ 9(E[Y ])2, which implies Var[Y ] ≤ 8E2[Y ].

Proof. We have E[Y ] = E[(
∑

iH(i)~vi)
2] =

∑
i ~v

2
i E[H

2(i)] +
∑

i6=j ~vi~vjE[H(i)H(j)]. For all i ∈ [n]2,
we know h2(i) = 1. On the other hand, H(i)H(j) ∈ {−1, 1}. The probability that H(i)H(j) = 1 is
Pr[H(i)H(j) = 1] = Pr[h1(i1)h1(j1)h2(i2)h2(j2) = 1] = 1/16 +

(
4
2

)
1/16 + 1/16 = 1/2. The last

equality holds is because h1(i1)h1(j1)h2(i2)h2(j2) = 1 is equivalent to saying either all these variables
are 1, or exactly two of these variables are -1, or all these variables are -1. Therefore, E[h(i)h(j)] = 0.
Consequently, E[Y ] =

∑
i∈[n]2(~vi)

2.
Now we bound the variance. Recall that Var[Y ] = E[Y 2]− E[Y ]2, we bound

E[Y 2] =
∑

i,j,k,l∈[n]2
E[H(i)H(j)H(k)h(l)]~vi~vj~vk~vl ≤

∑

i,j,k,l∈[n]2
|E[H(i)H(j)H(k)H(l)]| · |~vi~vj~vk~vl|.

Also |E[H(i)H(j)H(k)H(l)]| ∈ {0, 1}. The quantity E[H(i)H(j)H(k)H(l)] 6= 0 if and only if the
following relation holds,

∀s ∈ [2] : ((is = js) ∧ (ks = ls)) ∨ ((is = ks) ∧ (js = ls)) ∨ ((is = ls) ∧ (ks = js)) . (3.1)

Denote the set of 4-tuples (i, j,k, l) that satisfy the above relation by D. We may also view each 4-tuple as
an ordered set that consists of 4 points in [n]2. Consider the unique smallest axes-parallel rectangle in [n]2

that contains a given 4-tuple in D (i.e. contains the four ordered points). Note this could either be a (de-
generate) line segment or a (non-degenerate) rectangle, as we discuss below. Let M : D → {A,B,C,D}
be the function that maps an element σ ∈ D to the smallest rectangle ABCD defined by σ. Since a
rectangle can be uniquely determined by its diagonals, we may write M : D → (χ1, χ2, ϕ1, ϕ2), where
χ1 ≤ χ2 ∈ [n], ϕ1 ≤ ϕ2 ∈ [n] and the corresponding rectangle is understood to be the one with di-
agonal {(χ1, ϕ1), (χ2, ϕ2)}. Also, the inverse function M−1(χ1, χ2, ϕ1, ϕ2) represents the pre-images of
(χ1, χ2, ϕ1, ϕ2) in D. (χ1, χ2, ϕ1, ϕ2) is degenerate if either χ1 = χ2 or ϕ1 = ϕ2, in which case the
rectangle (and its diagonals) correspond to the segment itself, or χ1 = χ2 and ϕ1 = ϕ2, and the rectangle is
just a single point.

Example 3.2. Let i = (1, 2), j = (3, 2), k = (1, 5), and l = (3, 5). The tuple is in D and its corresponding
bounding rectangle is a non-degenerate rectangle. The function M(i, j,k, l) = (1, 3, 2, 5).

Example 3.3. Let i = j = (1, 4) and k = l = (3, 7). The tuple is also in D and minimal bounding rectangle
formed by these points is an interval {(1, 4), (3, 7)}. The function M(i, j,k, l) = (1, 3, 4, 7).

To start we consider the non-degenerate cases. Fix any (χ1, χ2, ϕ1, ϕ2) with χ1 < χ2 and φ1 < φ2.
There are in total

(
4
2

)2
= 36 tuples (i, j,k, l) in D with M(i, j,k, l) = (χ1, χ2, ϕ1, ϕ2). Twenty-four of

these tuples correspond to the setting where none of i, j,k, l are equal, as there are twenty-four permutations
of the assignment of the labels i, j,k, l to the four points. (This corresponds to the first example). In this case
the four points form a rectangle, and we have |~vi~vj~vk~vl| ≤ 1

2((~vχ1,ϕ1~vχ2,ϕ2)
2+(~vχ1,ϕ2~vχ2,ϕ1)

2). Intuitively,
in these cases, we assign the “weight” of the tuple to the diagonals.

The remaining twelve tuples in M−1(χ1, χ2, ϕ1, ϕ2) correspond to intervals. (This corresponds to the
second example.) In this case two of i, j,k, l correspond to one endpoint of the interval, and the other two
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labels correspond to the other endpoint. Hence we have either |~vi~vj~vk~vl| = (~vχ1,ϕ1~vχ2,ϕ2)
2 or |~vi~vj~vk~vl| =

(~vχ1,ϕ2~vχ2,ϕ1)
2, and there are six tuples for each case.

Therefore for any χ1 < χ2 ∈ [n] and ϕ1 < ϕ2 ∈ [n] we have:
∑

(i,j,k,l)∈
M−1(χ1,χ2,ϕ1,ϕ2)

|vivjvkvl| ≤ 18((vχ1,ϕ1vχ2,ϕ2)
2 + (vχ1,ϕ2 , vχ2,ϕ1)

2).

The analysis is similar for the degenerate cases, where the constant 18 in the bound above is now quite
loose. When exactly one of χ1 = χ2 or ϕ1 = ϕ2 holds, the size of M−1(χ1, χ2, ϕ1, ϕ2) is

(
4
2

)
= 6, and

the resulting intervals correspond to vertical or horizontal lines. When both χ1 = χ2 and ϕ1 = ϕ2, then
|M−1(χ1, χ2, ϕ1, ϕ2)| = 1. In sum, we have
∑

i,j,k,l∈D
|~vi~vj~vk~vl| =

∑
χ1≤χ2
ϕ1≤ϕ2

∑
(i,j,k,l)∈

M−1(χ1,χ2,ϕ1,ϕ2)

|~vi~vj~vk~vl|

≤
∑

χ1<χ2
ϕ1<ϕ2

18((~vχ1,ϕ1~vχ2,ϕ2)
2 + (~vχ1,ϕ2~vχ2,ϕ1)

2) +
∑

χ1=χ2
ϕ1<ϕ2

6((~vχ1,ϕ1~vχ2,ϕ2)
2 + (~vχ1,ϕ2~vχ2,ϕ1)

2)

+
∑

χ1<χ2
ϕ1=ϕ2

6((~vχ1,ϕ1~vχ2,ϕ2)
2 + (~vχ1,ϕ2~vχ2,ϕ1)

2) +
∑

χ1=χ2
ϕ1=ϕ2

(~vχ1,ϕ1~vχ2,ϕ2)
2

≤ 9
∑

i∈[n]2

j∈[n]2

(~vi~vj)
2 = 9E2[Y ].

Finally, we have
∑

i,j,k,l∈[n]2 |E[H(i)H(j)H(k)H(l)]| · |~vi~vj~vk~vl| ≤
∑

i,j,k,l∈D |~vi~vj~vk~vl| ≤ 9E2[Y ]

and Var[Y ] ≤ 8E[Y ]2.

We emphasize the geometric interpretation of the above proof as follows. The goal is to bound the
variance by a constant times E2[Y ] =

∑
i,j∈[n]2

(~vivj)
2, where the index set is the set of all possible lines in

plane [n]2 (each line appears twice). We first show that Var[Y ] ≤ ∑
i,j,k,l∈D |~vi~vj~vk~vl|, where the 4-tuple

index set corresponds to a set of rectangles in a natural way. The main idea of Indyk and McGregor is to
use inequalities of the form |~vi~vj~vk~vl| ≤ 1

2((~vχ1,ϕ1~vχ2,ϕ2)
2 + (~vχ1,ϕ2~vχ2,ϕ1)

2) to assign the “weight” of
each 4-tuple to the diagonals of the corresponding rectangle. The above analysis shows that 18 copies of all
lines are sufficient to accommodate all 4-tuples. While similar inequalities could also assign the weight of a
4-tuple to the vertical or horizontal edges of the corresponding rectangle, using vertical or horizontal edges
is problematic. The reason is that there are Ω(n4) 4-tuples but only O(n3) vertical or horizontal edges, so
some lines would receive Ω(n) weight, requiring Ω(n) copies. This problem is already noted in [7].

Our bound here is E[Y 2] ≤ 9E2[Y ], while in [14] the bound obtained is E[Y 2] ≤ 3E2[Y ]. There
appears to have been an error in the derivation in [14]; some intuition comes from the following example.
We note that |D| is at least

(
4
2

)2 · (n2
)2

= 9n4 − 9n2. (This counts the number of non-degenerate 4-tuples.)
Now if we set vi = 1 for all 1 ≤ i ≤ n2, we have E[Y 2] ≥ |D| = 9n4 − 9n2 ∼ 9E2(D), which suggests
Var[D] > 3E2[D]. Again, we emphasize this discrepancy is of little importance to [14]; the point there is
that the variance is bounded by a constant factor times the square of the expectation. It is here, where we
are generalizing to k ≥ 3, that the exact constant factor is of some importance.

Given the bounds on the expectation and variance for the Di,j , standard techniques yield a bound on
the performance of our algorithm.

Theorem 3.4. For every ε > 0 and δ > 0, there exists a randomized algorithm that computes, given a
sequence (a11, a

2
1), . . . , (a

1
m, a2m), in one pass and using O(ε−2 log 1

δ (logm+logn)) memory bits, a number
Med so that the probability Med deviates from ‖v‖2 by more than ε is at most δ.
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Proof. Recall the algorithm described in the beginning of Section 3: let s1 = 72ε−2 and s2 = 2 log δ.
We first computes s2 random variables Y1, Y2, . . . , Ys2 and outputs their median Med, where each Yi is the
average of s1 random variables Yij : 1 ≤ j ≤ s1 and Yij are independent, identically distributed random
variables computed by Figure 1. By Chebyshev’s inequality, we know that for any fixed i,

Pr
(∣∣Yi − ‖~v‖∣∣) ≥ ε‖~v‖] ≤ Var(Yi)

ε2‖~v‖2 =
(1/s1)Var[Y ]

ε2‖~v‖2 =
(9ε2/72)‖~v‖2

ε2‖~v‖2 =
1

8
.

Finally, by standard Chernoff bound arguments (see for example Chapter 4 of [17]), the probability that
more than s2/2 of the variables Yi deviate by more than ε‖~v‖ from ‖~v‖ is at most δ. In case this does not
happen, the median Med supplies a good estimate to the required quantity ‖~v‖ as needed.

4. The General Case k ≥ 3

Now let us move to the general case where k ≥ 3. Recall that ~v is a vector in Rnk
that maintains certain

statistics of a data stream, and we are interested in estimating its `2 norm ‖~v‖. There is a natural generaliza-
tion for Indyk and McGregor’s method for k = 2 to construct an estimator for ‖~v‖: let h1, . . . , hk : [n] →
{−1, 1} be independent copies of 4-wise independent hash functions (namely, hi(1), . . . , hi(n) ∈ {−1, 1}
are 4-wise independent hash functions for each i ∈ [k], and h1(·), . . . , hk(·) are mutually independent.). Let

H(p) =
∏k

i=1 hj(pj). The estimator Y is defined as Y ≡
(∑

p∈[n]k ~vpH(p)
)2

.

Our goal is to show that E[Y ] = ‖~v‖2 and Var[Y ] is reasonably small so that a streaming algorithm
maintaining multiple independent instances of estimator Y will be able to output an approximately correct
estimation of ‖~v‖ with high probability. Notice that when ‖~v‖ represents the `2 distance between the joint
distribution and the tensors of the marginal distributions, the estimator can be computed efficiently in a
streaming model similarly to as in Figure 1. We stress that our result is applicable to a broader class of `2-
norm estimation problems, as long as the vector ~v to be estimated has a corresponding efficiently computable
estimator Y in an appropriate streaming model. Formally, we shall prove the following main lemma in the
next subsection.

Lemma 4.1. Let ~v be a vector in Rnk
, and h1, . . . , hk : [n] → {−1, 1} be independent copies of 4-

wise independent hash functions. Define H(p) =
∏k

i=1 hj(pj), and Y ≡
(∑

p∈[n]k ~vpH(p)
)2

. We have

E[Y ] = ||~v|| and Var[Y ] ≤ 3kE[Y ]2.

We remark that the bound on the variance in the above lemma is tight. One can verify that when the
vector ~v is a uniform vector (i.e., all entries of ~v are the same), the variance of Y is Ω(3kE[Y ]2). With the
above lemma, the following main theorem mentioned in the introduction immediately follows by a standard
argument presented in the proof of Theorem 3.4 in the previous section.

Theorem 4.2. Let ~v be a vector in R[n]k that maintains an arbitrary statistics in a data stream of size m, in
which every item is from [n]k. Let ε, δ ∈ (0, 1) be real numbers. If there exists an algorithm that maintains
an instance of Y using O(µ(n,m, k, ε, δ)) memory bits, then there exists an algorithm Λ such that:

(1) With probability ≥ 1− δ the algorithm Λ outputs a value between [(1− ε)‖~v‖2, (1 + ε)‖~v|2] and
(2) the space complexity of Λ is O(3k 1

ε2
log 1

δµ(n,m, k, ε, δ)).

As discussed above, an immediate corollary is the existence of a one-pass space efficient streaming
algorithm to detect the dependency of k random variables in `2-norm:

Corollary 4.3. For every ε > 0 and δ > 0, there exists a randomized algorithm that computes, given
a sequence a1, . . . , am of k-tuples, in one pass and using O(3kε−2 log 1

δ (logm + log n)) memory bits, a
number Y so that the probability Y deviates from the square of the `2 distance between product and joint
distribution by more than a factor of (1 + ε) is at most δ.
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4.1. Analysis of the Sketch Y

This section is devoted to prove Lemma 4.1, where the main challenge is to bound the variance of Y .
The geometric approach of Indyk and McGregor [14] presented in Section 3 for the case of k = 2 can be
extended to analyze the general case. However, we remark that the generalization requires new ideas. In
particular, instead of performing “local analysis” that maps each rectangle to its diagonals, a more complex
“global analysis” is needed in higher dimensions to achieve the desired bounds. The alternative proof we
present here utilizes similar ideas, but relies on a more combinatorial rather than geometric approach.

For the expectation of Y , we have

E[Y ] = E


 ∑

p,q∈[n]k
~vp · ~vq ·H(p) ·H(q)




=
∑

p∈[n]k
~v2p · E [

H(p)2
]
+

∑

p6=q∈[n]k
~vp · ~vq · E [H(p)H(q)]

=
∑

p∈[n]k
~v2p = ||~v||2,

where the last equality follows by H(p)2 = 1, and E [H(p)H(q)] = 0 for p 6= q.
Now, let us start to prove Var[Y ] ≤ 3kE[Y ]2. By definition, Var[Y ] = E[(Y − E[Y ])2], so we need to

understand the following random variable:

Err ≡ Y − E[Y ] =
∑

p6=q∈[n]k
H(p)H(q)~vp~vq. (4.1)

The random variable Err is a sum of terms indexed by pairs (p,q) ∈ [n]k× [n]k with p 6= q. At a very high
level, our analysis consists of two steps. In the first step, we group the terms in Err properly and simplify
the summation in each group. In the second step, we expand the square of the sum in Var[Y ] = E[Err2]
according to the groups and apply Cauchy-Schwartz inequality three times to bound the variance.

We shall now gradually introduce the necessary notation for grouping the terms in Err and simplifying
the summation. We remind the reader that vectors over the reals (e.g., ~v ∈ Rnk

) are denoted by ~v, ~w,~r,
and vectors over [n] are denoted by p,q,a,b, c,d and referred as index vectors. We use S ⊆ [k] to denote
a subset of [k], and let S̄ = [k]\S. We use Ham(p,q) to denote the Hamming distance of index vectors
p,q ∈ [n]k, i.e., the number of coordinates where p and q are different.

Definition 4.4. (Projection and inverse projection) Let c ∈ [n]k be an index vector and S ⊆ [k] a subset.
We define the projection of c to S, denoted by ΦS(c) ∈ [n]|S|, to be the vector c restricted to the coordinates
in S. Also, let a ∈ [n]|S| and b ∈ [n]k−|S| be index vectors. We define the inverse projection of a and b
with respect to S, denoted by Φ−1

S (a,b) ∈ [n]k, as the index vector c ∈ [n]k such that ΦS(c) = a and
ΦS̄(c) = b.

We next define pair groups and use the definition to group the terms in Err.

Definition 4.5. (Pair Group) Let S ⊆ [k] be a subset of size |S| = t. Let c,d ∈ [n]t be a pair of index
vectors with Ham(c,d) = t (i.e., all coordinates of c and d are distinct.). The pair group σS(c,d) is the
set of pairs (p,q) ∈ [n]k × [n]k such that (i) on coordinate S, ΦS(p) = c and ΦS(q) = d, and (ii) on
coordinate S̄, p and q are the same, i.e., ΦS̄(p) = ΦS̄(q). Namely,

σS(c,d) =
{
(p,q) ∈ [n]k × [n]k :

(
c = ΦS(p)

)
∧
(
d = ΦS(q)

)
∧
(
ΦS̄(p) = ΦS̄(q)

)}
. (4.2)

To give some intuition for the above definitions, we note that for every a ∈ [n]|S̄|, there is a unique pair
(p,q) ∈ σS(c,d) with a = ΦS̄(p) = ΦS̄(q), and so |σS(c,d)| = n|S̄|. On the other hand, for every pair
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(p,q) ∈ [n]k × [n]k with p 6= q, there is a unique non-emtpy S ⊆ [k] such that p and q are distinct on
exactly coordinates in S. Therefore, (p,q) belongs to exactly one pair group σS(c,d). It follows that we
can partition the summation in Err according to the pair groups:

Err =
∑

S⊆[k]
S 6=∅

∑

c,d∈[n]|S|,
Ham(c,d)=|S|

∑

(p,q)∈
σS(c,d)

H(p)H(q)~vp~vq. (4.3)

We next observe that for any pair (p,q) ∈ σS(c,d), since p and q agree on coordinates in S̄, the value
of the product H(p)H(q) depends only on S, c and d. More precisely,

H(p)H(q) =
∏

i∈[k]
hi(pi)hi(qi) =

(∏

i∈S
hi(pi)hi(qi)

)
·

∏

i∈S̄
hi(pi)

2


 =

∏

i∈S
hi(pi)hi(qi),

which depends only on S, c and d since ΦS(p) = c and ΦS(q) = d. This motivates the definition of
projected hashing.

Definition 4.6. (Projected hashing) Let S = {s1, s2, . . . , st} be a subset of [k], where s1 < s2 < · · · < sj .
Let c ∈ [n]t. We define the projected hashing HS(c) =

∏
i≤t hsi(ci).

We can now translate the random variable Err as follows:

Err =
∑

S⊆[k]
S 6=∅

∑

c,d∈[n]|S|,
Ham(c,d)=|S|


HS(c)HS(d)

∑

(p,q)∈
σS(c,d)

~vp~vq


 . (4.4)

Fix a pair group σS(c,d), we next consider the sum
∑

(p,q)∈σS(c,d)
~vp~vq. Recall that for every a ∈

[n]|S̄|, there is a unique pair (p,q) ∈ σS(c,d) with a = ΦS̄(p) = ΦS̄(q). The sum can be viewed as
the inner product of two vectors of dimension n|S̄| with entries indexed by a ∈ [n]|S̄|. To formalize this
observation, we introduce the definition of hyper-projection as follows.

Definition 4.7. (Hyper-projection) Let ~v ∈ Rnk
, S ⊆ [k], and c ∈ [n]|S|. The hyper-projection ΥS,c(~v) of ~v

(with respect to S and c) is a vector ~w = ΥS,c(~v) in R[n]k−|S|
such that ~wd = ~vΦ−1

S (c,d) for all d ∈ [n]k−|S|.

Using the above definition, we continue to rewrite the Err as

Err =
∑

S⊆[k]
S 6=∅

∑

c,d∈[n]|S|,
Ham(c,d)=|S|

HS(c)HS(d) · 〈ΥS,c(~v),ΥS,d(~v)〉. (4.5)

Finally, we consider the product HS(c)HS(d) again and introduce the following definition to further
simplify the Err.

Definition 4.8. (Similarity and dominance) Let t be a positive integer.
• Two pairs of index vectors (c,d) ∈ [n]t × [n]t and (a,b) ∈ [n]t × [n]t are similar if for all i ∈ [t],

the two sets {ci, di} and {ai, bi} are equal. We denote this as (a,b) ∼ (c,d).
• Let c and d ∈ [n]t be two index vectors. We say c is dominated by d if ci < di for all i ∈ [t]. We

denote this as c ≺ d. Note that c ≺ d ⇒ Ham(c,d) = t.

Now, note that if (a,b) ∼ (c,d), then HS(a)HS(b) = HS(c)HS(d) since the value of the product
HS(c)HS(d) depends on the values {ci, di} only as a set. It is also not hard to see that ∼ is an equivalence
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relation, and for every equivalent class [(a,b)], there is a unique (c,d) ∈ [(a,b)] with c ≺ d. Therefore,
we can further rewrite the Err as

Err =
∑

S⊆[k]
S 6=∅

∑

c≺d∈[n]|S|
HS(c)HS(d) ·


 ∑

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉

 . (4.6)

We are ready to bound the term E[Err2] by expanding the square of the sum according to Equation
(4.6). We first show in Lemma 4.9 below that all the cross terms in the following expansion vanish.

Var[Y ] =
∑

S,S′⊆[k]
S,S′ 6=∅

∑

c≺d∈[n]|S|

c′≺d′∈[n]|S|′

E[HS(c)HS(d)HS′(c′)HS′(d′)]·




 ∑

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉




 ∑

(a′,b′)∼(c′,d′)

〈ΥS′,a′(~v),ΥS′,b′(~v)〉



 . (4.7)

Lemma 4.9. Let S and S′ be subsets of [k], and c ≺ d ∈ [n]|S| and c′ ≺ d′ ∈ [n]|S′| index vectors. We have
E[HS(c)HS(d)HS′(c′)HS′(d′)] ∈ {0, 1}. Furthermore, we have E[HS(c)HS(d)HS′(c′)HS′(d′)] = 1 iff
(S = S′) ∧ (c = c′) ∧ (d = d′).

Proof. Recall that h1, . . . , hk are independent copies of 4-wise independent uniform random variables over
{−1, 1}. Namely, for every i ∈ [k], hi(1), . . . , hi(n) are 4-wise independent, and h1(·), . . . , hk(·) are
mutually independent. Observe that for every i ∈ [k], there are at most 4 terms out of hi(1), . . . , hi(n)
appearing in the product HS(c)HS(d)HS′(c′)HS′(d′). It follows that all distinct terms appearing in
HS(c)HS(d)HS′(c′)HS′(d′) are mutually independent uniform random variable over {−1, 1}. Therefore,
the expectation is either 0, if there is some hi(j) that appears an odd number of times, or 1, if all hi(j) appear
an even number of times. By inspection, the latter case happens if and only if (S = S′)∧(c = c′)∧(d = d′).

By the above lemma, Equation (4.7) is simplified to

Var[Y ] =
∑

S⊆[k]
S 6=∅

∑

c≺d∈[n]|S|


 ∑

(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉



2

. (4.8)

We next apply the Cauchy-Schwartz inequality three times to bound the above formula. Consider
a subset S ⊆ [k] and a pair c ≺ d ∈ [n]|S|. Note that there are precisely 2|S| pairs (a,b) such that
(a,b) ∼ (c,d). Thus, by the Cauchy-Schwartz inequality:




∑

(a,b)∈[n]|S|
(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉




2

≤ 2|S|
∑

(a,b)∈[n]|S|
(a,b)∼(c,d)

(〈ΥS,a,ΥS,b〉)2

≤ 2|S|
∑

(a,b)∈[n]|S|
(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,a(~v)〉 · 〈ΥS,b,ΥS,b(~v)〉.

Notice that in the second inequality, we applied Cauchy-Schwartz in a component-wise manner. Next, for a
subset S ⊆ [k], we can apply the Cauchy-Schwartz inequality a third time (from the third line to the fourth
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line) as follows:

∑

c≺d∈[n]|S|




∑

(a,b)∈[n]|S|
(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,b(~v)〉




2

≤ 2|S|
∑

c≺d∈[n]|S|

∑

(a,b)∈[n]|S|
(a,b)∼(c,d)

〈ΥS,a(~v),ΥS,a(~v)〉 · 〈ΥS,b(~v),ΥS,b(~v)〉

= 2|S|
∑

c,d∈[n]|S|
Ham(c,d)=|S|

〈ΥS,c(~v),ΥS,c(~v)〉 · 〈ΥS,d(~v),ΥS,d(~v)〉

≤ 2|S|
∑

c,d∈[n]|S|
〈ΥS,c(~v),ΥS,c(~v)〉 · 〈ΥS,d(~v),ΥS,d(~v)〉

= 2|S|


 ∑

c∈[n]|S|
〈ΥS,c(~v),ΥS,c(~v)〉




2

.

Finally, we note that by definition, we have
∑

c∈[n]|S|〈ΥS,c(~v),ΥS,c(~v)〉 = ||~v||2, which equals to
E[Y ]. It follows that the variance in Equation (4.8) can be bounded by

Var[Y ] ≤
∑

S⊆[k],S 6=∅
2|S| · E[Y ]2 = E[Y ]2

k∑

i=1

(
k

i

)
2i = (3k − 1)E[Y ]2,

which finishes the proof of Lemma 4.1.

5. Conclusion
There remain several open questions left in this space. Lower bounds, particularly bounds that depend

non-trivially on the dimension k, would be useful. There may still be room for better algorithms for testing k-
wise independence in this manner using the `2 norm. A natural generalization would be to find a particularly
efficient algorithm for testing k-out-of-s-wise independence (other than handling each set of k variable
separately). More generally, a question given in [14], to identify random variables whose correlation exceeds
some threshold according to some measure, remains widely open.
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