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Abstract

Suppose that a weak (polynomial time) device needs to interact over a clear channel

with a strong (in�nitely-powerful) and untrustworthy adversarial device. Assum-

ing the existence of one-way functions, during this interaction (game) the in�nitely-

powerful device can encrypt and (computationally) hide information from the weak

device. However, to keep the game fair, the weak player must hide information from

the in�nitely-powerful player in the information-theoretic sense. Clearly, encryption

in this case is useless, and other means must be used. In this paper, we show that

under a general complexity assumption, this task is always possible to achieve. That

is, we show that the weak player can play any polynomial length partial-information

game (or secure protocol) with the strong player using any one-way function; we

achieve this by implementing oblivious transfer protocol in this model. We also es-

tablish related impossibility results concerning oblivious transfer.

In the proof of our main result, we present an interactive-hashing technique which

forces a polynomial-time player to choose two inputs in the range of a one-way func-

tion, one of which it cannot invert, while perfectly concealing which input is that

one. This technique allows us to reduce the complexity assumptions and to simplify

the cryptographic primitive of general secure computation protocols with information-

theoretic security to one player. We believe that the interactive-hashing is a technique

of independent interest.
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1 Introduction

Perfect security of information is cryptography's ultimate goal. This is especially needed

in interactions of a weak (polynomial time) player with an all-powerful adversary from

whom one needs to hide information to keep the protocols secure and fair. This model

of a weak player communicating with a strong one having unlimited computing power,

represents naturally a variety of settings: the statistical zero-knowledge proof systems of

[GMR], zero-knowledge arguments of [BCC] where the hiding from a veri�er must be perfect

(i.e. in information theoretic sense), computing a function with the help of powerful oracle

while hiding the argument [AFK] and secure circuit computation while keeping one party

perfectly secure [CDV, AF].

So far, all the works requiring information hiding from a strong adversary relied on

assumed hardness of some speci�c algebraic functions, e.g., [BCC, AFK, CDV, AF]. This

is in contrast to various applications where information must be hidden from polynomially-

bounded adversary, such as pseudo-random generators [BM], computational zero-knowledge

proofs [GMR, GMW1] and digital signatures [GMRi] which were shown to be equivalent to

the existence of general one-way functions [ILL, H, N, OW, NY, Ro]. This motivates us to

investigate the weakest possible complexity assumptions needed for information-theoretic

security. We concentrate on general polynomial length partial-information games against

an all-powerful adversary. The obvious need for perfect security makes this task seemingly

hard to do (a strong player, after all, can always invert a general one-way function!). Par-

tial information games [GMW2, Y] can be modeled as computations among parties where

results are functions of private inputs (and possibly random coins as well); the computa-

tion provides correct results to the parties (according to the speci�ed computations) while

keeping the privacy of individual inputs uncompromised. Partial-information games are

also known as \oblivious circuit evaluation". Until recently, one needed to analyze each

individual partial-information game of interest separately. Fortunately, the simple protocol

of Oblivious Transfer (OT) due to Rabin [R] , is su�cient for all two-party secure com-

putations. (This was put forth in [GMW2, Y] and su�ciency was shown in [K].) OT is

a protocol between a sender and a receiver with an input string d. Using the protocol,

the receiver gets d with probability 1/2 (and nothing otherwise) while the sender does not

learn whether d has been received.

This completeness makes OT central in secure protocol designs. Thus, naturally one

asks: what are the weakest complexity-theoretic assumptions needed to implement OT?

When both players are weak, implementing OT using any one-way permutation, in some

technical sense (using black-box reduction), is as di�cult as separating P from NP [IR];

on the other hand trapdoor permutations su�ce [GMW2] (a trapdoor function is, roughly

speaking, a family one-way functions with the additional property that there is a secret

associated with each function, whose possession enables easy inversion of the function

in polynomial-time. In various settings where the players have unequal computational

resources it is also not known how to implement OT (with a strong receiver or sender)
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without the trapdoor property. In this paper, we show (in section 3) a new technique for

implementing the OT from (or to) an all-powerful adversary using any one-way function.

Remark: At a �rst glance, the role of trapdoor property seems super
uous since the

strong player can invert a one-way function. That is, if one of the players is in�nitely-

powerful, why do we need a trapdoor, since the strong player can invert a one-way function

for the weak player anyway? The problem arises as the strong player will then have full

information of the inputs he helped to invert the one-way function on. So using the strong

player to invert information does not allow any hiding of information. Thus, the original

problem remains: how the weak player can hide information from the strong one using only

a one-way function?

We also show a duality theorem: an OT between a strong receiver and a weak receiver

is equivalent to an OT between a weak receiver and a strong receiver. (Moreover, we

remark that our reductions between both protocols are polynomial. That is, whatever the

running time of the original protocols, we get the dual protocol with only polynomial in the

security parameter increase in the running time.) We further establish related impossibility

results regarding OT (section 4), we show that non-interactive OT is impossible and that

even when dealing with an all-powerful player, we must make complexity assumptions. We

believe that the tools we design in this work are of an independent interest.

Player's complexity: We explicitly suggest the notion of complexity of the player in a

protocol, by stating bounds on computational power. Given a protocol with an underlying

complexity assumption, the lower bound of a player is the minimal computational power

needed to execute the protocol; similarly, the upper bound of a player is the maximum

power allowed for its security properties to hold. In section 3 we show how an increased

lower bounds on a player's complexity enables a reduction of the protocol's underlying

complexity assumption.

Relation to earlier work: Rabin based his implementation of OT for honest parties on

the intractability of factoring. In [FMR] an implementation of OT based on factoring and

robust against cheaters was given. Various 
avors of OT and their information-theoretic

equivalence was studied [EGL, BCR, C, K, CK]. OT is complete for (two- and multi-

party) secure distributed circuit evaluation (partial information games) among weak players

[K, GMW2], and used to implement bounded-interaction zero-knowledge proof systems for

NP in [KMO]. Yao [Y] used OT to construct secure circuit evaluation, based on factoring,

while in [GMW2] it was based on any trapdoor permutation.

Cryptographic Applications: Our results can be used to reduce the complexity as-

sumptions and to simplify many existing protocol speci�cations, and be applied in cryp-

tographic scenarios. A variation on \two-party secure computation" [Y, GMW2, K] is a
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protocol for \two-party secure computation with one player perfectly (i.e., information-

theoretically) protected". This was de�ned and implemented in [CDV, AF] based on spe-

ci�c algebraic trapdoor assumptions. When we apply our general methods and change the

assumption from \any one-way permutation" to \any trapdoor permutation family" we can

achieve our perfectly secure OT in the cryptographic setting (namely, when both players

are polynomial time). This degree of (perfect) security is justi�ed, if we need to conceal

information for long time regardless of time and technological advances. Thus we assume

we have to protect against a player which is indeed polynomial-time when executing the

protocol, but is willing to perform o�-line computations to later reveal the secret.

2 De�nitions and preliminary results

We use the usual O; o and 1=o(1) (asymptotically tends to 1) notations and the standard

notions of one-way functions and permutations. W.l.o.g. we take our one-way functions to

be length preserving. Let f be polynomial time computable and f(x) = y. An algorithm

I(y) inverts f at y if f(I(y)) = y. f is one-way if every average polynomial time (ran-

domizing) algorithm I fails to invert f on a 1=nO(1) fraction of instances y from f0; 1gn.

We �x some s(n) = n1=o(1) and call it infeasible. We call "(n) = 1=sO(1)(n) negligible and

�(n) = 1=O(nc); c > 0 noticeable. Here n is a security parameter, which we omit when

clear. A strong one-way function is invertible only on negligible fraction of instances. A

permutation is length preserving and one-to-one. B(x; y) denotes the inner-product mod 2

of x and y. We use the following results.

Remark 1 [GL] Let f be one-way, and f(x) = y. Let G(!; y; p) be an algorithm with

internal coin 
ips ! running in polynomial time that guesses B(x; p) with probability

(over p) 1=2 + " . Then there is an algorithm that inverts f at y in polynomial time if

" = 1=O(nc); c > 0 for all but negligible fraction of its coin-
ips.

We get the following as an easy derivation from [VV].

Remark 2 Let the rows hi; i := 1; k of matrix Hk be randomly and independently chosen

from f0; 1gn, non-empty A � f0; 1gn; b 2 f0; 1gk. �Xk = A \ fx : Hkx = bg;Xk = j �Xkj.

Then,

1. E(Xk) = 2�kjAj and V ariance(Xk) = 2�k jAj(1� 2�k). The latter is proved using the

fact that for a random h, the random variables are Yj = B(xj ; h); xj 2 A are pairwise

independent.

2. For large enough n, Prob[ 9k � n such that Xk = 1]= 1=O(1). To see this, let l be the

largest integer such that E(Xl) � 8 if jAj > 8 (l = 0 otherwise). Then, Prob[jXl�E(Xl)j �

3] � 8=9. Now assume that jXlj � 12 and let B � Xl be a linearly independent set of r > 0

vectors. Next, for every c 2 f0; 1gr, a random hl+1 is a solution to Kh = c with probability

2�r, where the matrix K has the elements of B as rows. Taking c to be of Hamming weight

4



1 (or equivalently r� 1) we have the event that hi+1 is orthogonal to all but one vector in

B which it isolates. Now iterating this on Xl[fx : Hx = cg, we will isolate a single vector.

By a weak player we mean a randomizing polynomial time Turing machine and by a

strong player an arbitrary randomizing Turing machine. A standard model for two-party

protocols is a system of communicating Turing machines which have their private tapes as

well as a communication tape [GMR].

Oblivious Transfer (OT) Protocols: Oblivious Transfer protocol (OT) is a two-

party interaction introduced by Rabin [R] in which a sender S has a bit b which he wants

to transfer to a receiver R. Below, the probabilities involved are over sender's coin 
ips and

"(n) is negligible. When S is honest (i.e. follows the protocol) R receives b with probability
1
2 + " and knows whether or not he received it. When R does not get the bit he can predict

sender's bit only with probability 1=2 + " (uncertain transferability requirement). S does

not know whether R got the value (oblivious-ness requirement). An equivalent notion called

1-2-OT (1-out-of-2 OT) [EGL], involves S with two bits b0 and b1 and R has a selection bit

i. After the transfer, R gets only bi, while S does not know the value of i. 1-k-string-OT

(for a constant k) is similar and equivalent to 1-2-OT, but S has k strings, instead of two

bits.

In [Y] the notion of secure (also called oblivious) circuit evaluation (also modeling a

two-player polynomial game) was proposed: as a common input, S and R are given a

polynomial-size circuit C(�; �). S and R have private inputs x and y respectively. At the

end of the protocol, R gets C(x; y), while S has no information about y or C(x; y), and

R gets no information about x (except, obviously, its consistency with C(x; y)). All these


avors of OT are equivalent to each other [C, BCR, K]; i.e., given any one of these protocols,

one can implement any other protocol in such a way that if the protocol we started with is

secure information theoretically, so is the resulting one. We denote by (strong
OT

�!weak)

an OT from a strong sender to a weak receiver; analogously we de�ne (weak
OT

�!strong).

3 Protocols

3.1 OT with perfect security against a Strong sender

In this protocol a strong sender S has a secret random input bit b, to be sent using OT

to a weak receiver R. For clarity, we �rst treat the case of a strong one-way permutation.

Below, x; y; hi 2 f0; 1g
n
and all hi are linearly independent. The following implements a

technique which can be described as gradually \focusing" on a value, while maintaining

5



information-theoretic uncertainty; we call it interactive hashing.

R(0) : R selects x at random and computes y  f(x). Both x and y are secret

from S.

� For i from 1 to (n� 1) do

S(i) : S selects at random hi and sends it to R.
R(i) : R sends ci := B(hi; y) to S.

S(n) : Let fy0; y1g = fz : B(hi; z) = ci; i < ng. S 
ips a random coin j, selects

a random string p, jpj = n and sends to R a triple < p; yj; v >, where

v = b� B(p; f�1(yj)).

R(n) : If y = yj , R computes b0 = v � B(p; x) as the resulting bit he gets from S

via an \OT" protocol.

Figure 1

Theorem 1 The above protocol implements OT from an all-powerful (at least probabilis-

tic NP or stronger) player to a probabilistic polynomial-time player, using any one-way

permutation.

Proof: Let !S denote the coin
ips of the sender; below j"(n)j is negligible and j�(n)j is

noticeable. Clearly, R gets b with probability 1=2+ " and S does not have any information

if R got it.

In the other direction, assume some dishonest R00 not following the protocol can predict

a honest S's input bit b, for 1=2 + � fraction of !S ; i.e. R
00 can predict the inner product of

B(f�1(yj); p), given v; p; yj on 1=2+� fraction of p's. By the result of [GL] this is equivalent

to the existence of a polynomial time algorithm R0. inverting f on both y0; y1.

The following expected (over its internal coin
ips) polynomial time algorithm I(!; y)

inverts f on a noticeable fraction of y's using the above algorithm R0; this yields a contra-

diction since I inverts strong one-way f on a noticeable fraction. Below we �x the random

tape of R0 with a random string. Put k = (4c+1) log n, where c is a constant de�ned later

depending on R0.

1. abort:=0;

2. For i := 1 to n � 1 do:

Step(i): Record the current con�guration of R0. Randomly choose the vector hi and

send it to R0.

If i � n � k, and if ci 6= B(y; hi) (mismatch), discard hi, reset R
0 to a con-

�guration before sending hi and choose a new random hi and repeat until
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ci = B(y; hi) (match) or more than n trials have been made.

If last trial is a mismatch set abort:=1;

3. If abort=1 exit the protocol and halt; Otherwise, using R0 try to invert f at y.

If it fails, go to the For loop, else I outputs the inverse.

The executions of R0 with its random tape �xed can be described by a tree: a node at

level i has a child for every possible choice of queries hi and the replies ci. We say that a

string y is consistent with a node u if it satis�es all the linear constraints speci�ed by the

path from the root to u. By a leaf we mean a node v at level n� 1 and it corresponds to

two points that are consistent with v. By assumption at least " = 1=nc (w.l.o.g. c > 1)

fraction of the nodes at level n � k have " fraction of good leaves (where inverses of both

points in the leaf are output) below them. To amplify the probability of success, we may

sample polynomially many strings for random tape of R0.

Below we de�ne a set G � f0; 1gn with its complement G0 containing � 2n=n2c strings.

We call a leaf reachable if at least one point in it is in G. We claim that the fraction of

leaves that are reachable is � 1 � 1=�(n2c). To prove the claim, note that hyperplanes

chosen by R0 are uniform and linearly independent. The number of elements in G0 that are

consistent with a leaf has expectation jGj=2n�1 � 2=n2c and from Markov inequality we get

the claim. From the above we can assume that � 1=�(nc) fraction of such leaves are both

good and reachable.

Let y be random and j � n � k. Note that for distinct h0; h00 the random variables

B(y; h0) and B(y; h00) are pairwise independent. At level j the number of Xj of hi's that

result in an answer agreeing with y has expectation 2n�j�1 and variance 2n�j�2. Hence by

Chebyche� inequality, the Proby [jXj �E(Xj)=2
n�j

j � 1=nc] � 1=n2c+1. Let the set of y's

for which the condition on Xj is satis�ed for all j � n � k be G. Summing up, we get

Prob[G0] < n=n2c+1 = 1=n2c.

Let node u be randomly chosen at level n � k and Y be the number of elements from

G0 that are consistent with u. Then E(Y ) � 2k=�(n2c) and V ar(Y ) � E(Y ). Let N be

the set of nodes u having the property that at least 1 � 1=�(n2c) fraction of y's that are

consistent with u are from G. Chebyche� inequality yields prob[N ] � 1 � 1=n2c and this

tells us that at least 1=�(nc) fraction of nodes u are in N and have � " fraction of good

and reachable leaves.

We now begin to analyze the behavior of I. Consider the ratio r(u) of the probability

that I reaches a node u at level n�k to that of R0 reaching u when u 2 N . The distribution

of hyperplanes chosen by I is uniform over the ones which yield replies consistent with y.

So given a random y 2 G the probability that I chooses hi is � 1=(1=2 + 1=nc)2n�i, while

R0 chooses hi with probability 1=2n�i and the probability that a random y is consistent

with u is 1=2n�k . From this we get r(u) � 1 � o(1). Note that u is in N , the algorithm

succeeds in inversion if the y is equal to a point in a good and reachable leaf reached by

I. The probability (over y) of that is polynomial since there are only 2k = nO(1) possible

values for a y given that it is consistent with u.
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This shows that with polynomial probability (over y; hi) I inverts. So on a polynomial

fraction of y's it inverts f , which is the needed contradiction.

Theorem 2 There exists an implementation of OT protocol from an all-powerful (at least

probabilistic P#P
or stronger) player to a probabilistic polynomial-time player, given any

one-way function.

Proof: We modify the above protocol as follows:

R(0) : R selects x at random and computes y = f(x). Both x and y are secret

from S.

� m := 0

� Repeat

S(i) : S selects at random hi and sends it to R.
R(i) : R sends ci := B(hi; y) to S. m := m+ 1

� until S sends a \stop" message.

P : S proves to R in zero-knowledge that the stopping condition satis�es

9y0; y1fy0; y1g = fz : 9x; f(x) = z and B(hi; z) = ci; i < ng. Next, by

exchanging hij ; c
i
j ; j := 1; mi again as above S isolates a unique xi as the

inverse of yi, i := 0; 1 and proves this uniqueness in zero-knowledge.

S(n) : S 
ips a random coin j, selects a random string p, jpj = n and sends to R

a triple < p; yj; v >, where v = b� B(p; xi)).

R(n) : If y = yj , R computes b0 = v � B(p; x) as the resulting bit he gets from S

via an \OT" protocol.

Figure 2

In the above protocol the strong sender determines the values of m;mi; i := 0; 1. With

probability 1=O(1) in step (P) (isolating domain elements) a sequence of hi; i � mi result

in a unique xi if the range of jf�1(yi)j < 2mi (See Remark 2). Similarly the probability of

success in the repeat loop (isolating range elements) is 1=O(1) as well. We need to show

that revealing mi the inner product values B(xi; h
i
j) and ck; k � m preserves the security

of one-way function f . Note that revealing �m := blog jf(f0; 1gn)jc preserves the security of

f , since this could be randomly guessed with probability 1=n.

The following known observation shows that we may specify enough hash values of

a pre-image x 2 f�1(y) to uniquely identify it in f�1(y), while preserving the security.

Consider F (x;A; k) = y � A � b, where A is a k � n random matrix, y = f(x); b = Ax and

jbj = k � n. Put ky = blog2 jf
�1(y)jc and let I 0 be an inverter for F .
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Let y be given and w.o.l.g. assume ky > 2 log n. Fix any b0; jb0j = ky� log n and choose a

jb0j�n matrix A at random. Then the numberX of inverses x satisfying Ax = b0; f(x) = b0

has E(X) = 2logn and E(X)2 � E(X2). From Prob[X = 0] = E(X2)=E(X)2 � 1, we get

Prob [X > 0] � 1. So we can guess the �rst jb0j bits of b at random. The remainingO(log n)

bits of b, can be found using exhaustive search; then we can use I 0 and get an inverter for f .

It is easy to see from this that if I 0 inverts F on those fraction y;A; bwith jbj = ky+O(log n),

we can invert f on these y as well. Finally, let x 2 B = fz : Az = b0; f(z) = yg, A0 be a

random 2 log n�n matrix and c := A0x. Now the number of other elements in B satisfying

A0z = c has expectation < 2=n and hence is zero with probability � 1 � 2
n
(when F is

one-to-one as well).

Notice, that since the sender can perform P#P computations, he can convince the

receiver of any statement in P#P [LFKN] (also [S] but the prover needs PSPACE power).

Moreover, any interactive proof can be turned into a zero-knowledge one, assuming the

existence of one-way functions [IY] (using bit commitment [N]). Let eSj; j := 0; 1 be the

simulator for such a P#P protocol for proving the stopping condition for the repeat loop

and the uniqueness of xi respectively in step (P) above (the simulators get a guess of

the number of iteration parameters m;m0;m1, and generate an interaction which is \zero-

additioal-knowledge" [GMR, GHY]).

Let k; c be as in theorem 1 and assume that some R0 inverts f on both points in the

range after m rounds with the inverses satisfying the linear constraints speci�ed in step (P)

above. Then, following expected (over its internal coin
ips ) polynomial time procedure

I(!; y) to invert f on a noticeable fraction of y's using such R0.

1. start :

2. abort:=0; Randomly guess m;m0;m1 in the range [1; n].

3. For i := 1 to m do:

Step(i): Record the current con�guration of R0. Randomly choose the vector hi and

send it to R0. If i � n � k, and if ci 6= B(y; hi) (mismatch), discard hi, reset

the R0 to a con�guration before sending hi and choose a new random hi and

repeat until ci = B(y; hi) (match) or more than n trials have been made. If

the last trial was a mismatch set abort:=1;

4. Run the simulator fS0.

5. Send random hij ; j := 1;mi. Let cij be the replies from R0. Run the zero-knowledge

simulator fS1.

6. If abort=1 exit the protocol and halt; Otherwise, using R0 try to invert f at y. If it

fails (i.e. run time bounds are exceeded) go to start. Else I outputs the inverse.

Each random guess for the �nal values of m;m0 and m1 in the protocol by I is correct

with probability 1=n.
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We now assume that the guesses are correct (or given, a fact which, as shown above,

still maintains the function strong one-way-ness and the intractability of inversion).

Next we exploit the fact that since the proofs are zero-knowledge and the inverting

algorithm I executes zero-knowledge simulators eS, R0 can not distinguish the distributions

on conversations resulting from \interactions" with I from that of actual interacting with

a strong sender S.

We consider the following three cases (probability distribution ensembles). First, assume

(1) an actual protocol executions with true zero-knowledge proofs, then (2) the inversion

algorithm I execution, but with true zero-knowledge proofs as a hybrid, and �nally (3) I

(inversion algorithm with simulated proofs).

By a proof almost identical to theorem 1 (where cheating probability was translated to

inversion probability), we can show that running I's program, but with actual interactive

proofs, inverts with polynomial probability in case (2), based on the noticeable cheating

probability in case (1). (The interactive proofs assure the properties required by the func-

tion and the tree construction, otherwise the same arguments are used). Next, replace real

zero-knowledge proofs (case (2)) by a simulation step (which is polynomial-time) as in (3)

and assuming the guesses are given correctly (which gives the inversion algorithm I above,

which is polynomial-time), in which case the algorithm may change its behavior. But, in

case it leads to a noticeable di�erence in inversion probability, we may turn this di�er-

ence (by, by now a standard arguments) into a distinguisher which can tell with noticeable

probability whether its input is a simulation of a proof or a real proof, thus contradicting

the zero-knowledge property of the proofs in steps 4 and 5. Thus, when guesses for mi are

correct, the inversion (in case (3)) succeeds in polynomial-timewith polynomial probability.

To complete the proof notice that when the inversion algorithm takes time exceeding

a �xed polynomial time bound, the protocol is aborted and restarted after resetting R0.

(Alternatively, polynomially-many (n4, say) parallel versions can be run a step at a time).

This iterative (or multiple) application of I yields an expected polynomial-time inversion

algorithm for a noticeable fraction of y's, and a contradiction to the strong one-way-ness

of f .

3.2 OT with perfect security against Receiver

Here, we present the dual notion of the perfect security of OT against the Receiver. We

prove a more general result that perfect security (for one of the players) can be reversed ,

independent of the power of the players:

Theorem 3 (Duality Theorem for OT): Given an OT protocol with perfect security for

one of the players, there exists an OT protocol with perfect security for the other player.

Proof: We show one direction. The other is similar.

Assuming (strong
OT

�!weak), the strong player can commit a bit by putting its value in

a secure envelope: The receiver can guess the contents of the envelope only with probability

1=2+", and except for " fraction of his coin 
ips the sender can not \open" the envelope to
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reveal two di�erent contents; also, the sender can prove the properties below of the contents

of the envelopes in zero-knowledge [K].

We now construct a 1-2-OT (weak
OT

�!strong) protocol. Let the weak player have

input random bits b0 and b1. The strong player makes pairs of envelopes P0 = fe1; e2g and

P1 = fe3; e4g satisfying the following: the contents of the envelopes in a pair Pb is identical

while the contents of the envelopes in P1�b are di�erent for some b 2 f0; 1g. Further there

is a label l(ei) 2 f0; 1g such that it is distinct for each envelope within a pair. The weak

player using (1-2-string strong
OT

�!weak) chooses the contents cj of the envelope ei 2 Pj

with l(ei) = bj; j := 0; 1. Then the weak player sends c0; c1 which for the pair Pi containing

equivalent bits reveals no information about the weak player's selection bit. Also, the weak

player not knowing which pair contains equivalent bits, gains no information as to which

bit the strong player received via 1-2-OT.

Remark: Many practical OT applications need prefect security for the sender. From any

practical protocol that is information-theoretically secure for the Receiver, (see [GMW2], for

example), the above yields an e�cient OT protocol which is perfectly secure for the sender |

under a general complexity assumption. A similar result, achieved independently, was reported

to us by Cr�epeau and Santha, also L. Cowen and Y. Aumann have reported previous interest in

the question.

4 Impossibility results

First, we show that OT is inherently interactive:

Theorem 4 It is impossible to implement a non-interactive cryptographic OT protocol

(and 1-2-OT protocol).

Proof: Assume �rst both the sender S and the receiver R are weak. In this case, we prove

the result by showing that Blum's coin-
ipping protocol [B] needs at least three messages

and is reducible to 1-2-OT plus one additional message. Similar result holds for plain OT

(when B's win of the 
ip is rede�ned to mean \B successfully gets the input string" ).

Coin-
ipping over the phone: Two parties A and B send each other messagesM2i�1 and

M2i; i � 1 respectively; at the end they agree on head or tail, each with probability (over

their coin tosses) 1=2 + ". If " is negligible then the protocol is fair; else it is unfair. For

coin-
ipping, one message is clearly not enough, since A could sample the message space

and choose M1 to make the protocol unfair. In the case of two messages, A can not bias

the outcome and hence B can sample and choose M2 regardless of M1 making the protocol

unfair.

The reduction: A chooses two strings xi 2 f0; 1gk; i 2 f0; 1g of di�erent parity and

executes a 1-2-string-OT to B. Along with the �rst message message of the OT, A sends a

guess b for the parity of the string received by B. After this transfer, B sends A the string
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he got, and both parties agree the result is head if B received xi with parity b, and tail

otherwise. Clearly, this implements a fair coin-
ipping.

Now we extend the proof for the case when players have unequal power. Assume a

one-message 1-2-OT from weak S to strong R exists. S sends one messageM based on its

internal state I which encodes two strings: s0; s1. R should get only one of them (say s0)

with probability at least 1=2� " and at most 1=2+ ", and get s1 with negligible probability

(at most "). A strong R can always compute, given M and S0, all S's internal states I
0

consistent with M and a fraction of at least 1=2 � " of them should result in calculating

the other string s1, (which is the only one which can give such a high probability), a

contradiction. Now assume a one-message 1-2-OT from strong S to weak R is possible.

A coin-
ip which starts by S moving �rst requires three rounds, otherwise, after the �rst

round S should not be able to determine the outcome; similarly, after the second round R

who samples the message space should not know the outcome. Thus, a third message is

needed. However, the reduction above holds, a contradiction.

When both players are weak, existence of OT protocol yields a one-way function [IL,

BCG]; we next show explicitly that complexity assumptions (and a weak player) are needed

for OT (related ideas have appeared in [K], another related more recent result is in [K2]).

Theorem 5 It is impossible to implement an information-theoretic OT protocol.

Proof: The following Mental Poker is shown impossible in [SRA]: given two honest (but

curious) players A and B, deal each one card from a deck of three cards fx; y; zg. The

hands should be drawn uniformly at random and be disjoint.

We show that if information theoretically secure OT were feasible then so is Mental

Poker, deriving a contradiction. First, recall that OT is equivalent to 1-3-OT and 1-2-OT

protocols. A transfers one card to B using 1-3-OT. Since A presents the three (arbitrary

encoded) cards in random order during 1-3-OT, the card is random and secure from A.

Similarly B transfers by 1-2-OT one of the remaining cards to A. This implements Mental

Poker.

5 Discussion and Conclusion

As explained earlier in the introduction and section 2, the notion of partial-information

games was considered in [Y, GMW2]. They de�ned what is a playable game (secretly

executable by the parties themeselves, without invoking any trusted parties.) In [GMW2],

it was shown (by modeling a game as an \oblivious circuit evaluation") that if both players

are polynomially bounded algorithms, then all such games of polynomial size are playable,

given a trapdoor permutation. Moreover, OT was shown to be complete for all two-party

partial-information games [Y, GMW2, K], independent of the power of the players (i.e., via

information-theoretic reductions [K]). That is, given an OT protocol (realization), then any

game which is computable in random polynomial-time and which involves the private inputs
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of participants, can be realized correctly giving results to the players without compromising

the privacy of inputs (i.e., giving no computational advantage in guessing the other player's

input beyond what is semantically implied by the known outputs and the knowledge of one's

own input); further, notice that OT itself is such a game and given a protocol (realization)

for partial information games implies a realization of OT itself.

In this paper, for players with di�erent computing power, we presented implementation

of OT (in both directions) based on any one-way function. This fact, jointly with work of

[Y, GMW2, K] imply that if one-way functions exist, then all polynomial-length partial-

information games between a polynomially bounded player and an all-powerful player are

playable. Similarly, given any trapdoor permutation family, polynomial-time players (as in

the cryptographic setting) can take part in any such game with one player being protected in

the information-theoretic sense; as mentioned in the introduction, previously this was only

known under speci�c algebraic trapdoor assumptions [CDV, AF]. The player who simulates

the strong player �rst presents a trapdoor permutation and certi�es in zero-knowledge the

validity of this property (see [BY] for the need for certi�cation in this case). Then, the

players can use OT in both directions, and can use the availability of OT to further validate

their actions; all these activities can be done while one user's input remains information-

theoretically secure.

Note that as the player complexity of the sender grows, the underlying complexity

assumption for the OT protocol becomes weaker (more general) (by following the cases in

the above discussion, and in Theorems 1 and 2).

More generally, we present an e�cient technique to force a polynomial-time player to

choose two inputs y0; y1, so that on one of them (say yb) the player can not invert a one-

way function, while keeping the value of b perfectly secure. Such techniques seems to

combine with other method and to yield various implications of which we list the following

examples. The technique was employed in characterizing instance-hiding zero-knowledge

proof systems [FO]. It was also used in implementing bit commitment protocols with players

of unequal power [OVY2]. It can also have applications to zero-knowledge proofs, showing

that any zero-knowledge proof protocol designed for a honest veri�er can be compiled

into a zero-knowledge proof protocol for any (even cheating) veri�er [OVY3] based on

general complexity assumptions (this was originally based on algebraic assumptions, e.g.

for statistical zero-knowledge proofs the discrete logarithm was used in [BMO]). Another

important implication is implementing perfectly secure zero-knowledge arguments (de�ned

in [BCC]) based on general complexity assumptions in [NOVY].

To summerize, the general paradigm of \information-theoretic security based on in-

tractability of cryptographic tools", was developed and applied extensively in the last

decade (e.g., [BCC, CDV, AFK, AF]). However, this valuable paradigm was always con-

nected to some specialized property of one of various algebraic functions. It seems that

the interactive hashing technique �nally provides for a better understanding of and a wider

cryptographic base for this general paradigm, since it enables us, when combined with other

tools, to design its various primitives based on general complexity assumptions.
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