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Abstract

We consider several resources relating to zero-knowledge

protocols: The number of envelopes used in the protocol,
the number of oblivious transfers protocols executed dur-

ing the protocol, and the total amount of communication

required by the protocol.

We show that after a pre-processing stage consisting

of O(k) executions of Oblivious Transfer, any polynomial

number of NP-theorems of any poly-size can be proved

non-interactively and in zero-knowledge, based on the ex-

istence of any one-way function, so that the probability

of accepting a false theorem is less then 1

2k
.

1 Minimizing Envelopes

1.1 Envelopes as a resource.

[GMR] puts forward the somewhat paradoxical no-
tion of a zero-knowledge proof, and exempli�es it for
a few special classes of assertions. The introduction of
ideal commitment mechanisms, known as envelopes,
allows us to achieve greater generality. Proofs of any
NP statements can be accomplished in perfect zero-
knowledge, given the existence of envelopes [GMW].
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An envelope may be thought of as a way to commit
to a string s in such a way that the string may be
revealed at a later point in time. Before s is revealed
(but even after s has been committed), no informa-
tion about s is revealed. When s is revealed, it is
guaranteed to be the same as the value that was com-
mitted to.
In practice, one may implement envelopes using

physical means (lead boxes, trusted parties, etc.) or
by using cryptography. In the �rst case, it is ob-
vious that minimizing the number of envelopes is a
good idea. In the second case, there is an exhorbitant
\start up" cost for each envelope. To commit a single
bit requires one to write down a number that is on
the order of k bits, where k is the security parameter.
However, once the start up cost for an envelope has
been paid, the amortized cost for each bit that has
been comitted is very small.
To make this point more concrete, consider com-

mital schemes based on factoring, in which k � 500
is reasonable in the light of current (1989) factoring
technology. To commit 10; 000 bits individually, one
must write down 5; 000; 000 bits. However, one can
commit 10; 000 bits in aggregate with only 11; 000 bits
of communication.
Thus, it is vastly more e�cient to implement zero-

knowledge proof systems that use only a small num-
ber of large envelopes rather than a large number of
small envelopes, all other things being equal.

1.2 How many envelopes do we need?

The early zero-knowledge protocols for NP all used
an unbounded number of envelopes. More recently,
Shamir [S] has found a constant envelope protocol for
a natural variant of KNAPSACK. His protocol was
of the following very simple form:

1. The prover puts down 3 multi-bit envelopes.

2. The veri�er uniformly chooses two of them for
the prover to open.



In other words, the protocol can be implemented us-
ing a single execution of 2 out of 3 oblivious string
transfer (2{3 OT). That is, the prover has three
strings, and the veri�er is allowed to obtain 2 of them,
without the provers knowing which ones were ob-
tained. The veri�er is guaranteed to reject with prob-
ability at least 1

3
if the prover attempts to \prove" an

incorrect theorem. In fact, the above protocols may
be massaged to use only 2 envelopes, given a some-
what more complicated interaction.
While this result is very interesting from a theoret-

ical perspective, it does not always give us the e�-
cient protocols we desire. While one can always re-
duce ones NP theorem to a knapsack problem, these
reductions are not guaranteed to be e�cient. A the-
orem of size n may turn into a KNAPSACK problem
of size n3. The resulting 2-envelope, 2{3 OT protocol
may be vastly less e�cient than simply using a more
direct protocol for the original problem. The advan-
tages given by the simple form of the protocol can be
more than o�set by the ine�ciencies of the problem
transformation. More recently, Levin [L] has found a
3-envelope protocol for graph 3-colorability. However,
this still does not help us with other NP problems.

1.3 A general transformation.

Ideally, one would like to directly and e�ciently
transform ones multi-envelope proof system into a
three envelope proof sytem. We now show how to
do this for a general class of protocols, which we call
subset revealing protocols. A subset revealing proto-
col is one of the following form,

1. The prover commits a set of bits, B = b1; : : : ; bn.
We make no restriction on how these bits are
grouped into envelopes. Without loss of gener-
ality, we may assume that they are committed
individually.

2. The veri�er makes a query, q.

3. Based on q and B, the prover computes a set
I � [1; n]. The prover reveals I along with bi,
for all i 2 I.

The protocols of [GMW], [B], [BCC], [IY], and [S],
among others fall into this class of protocols.
The two key operations in a subset revealing pro-

tocol are committing a set of bits and revealing an
arbitrary subset of these bits. We now show a sim-
ple way to implement these operations using only 2
envelopes. We will in fact lose a little bit of security:
The veri�er will have a substantial, but not absolute,
level of con�dence that the revealed subset is equal

to the originally committed bits. Still, this loss of se-
curity is small compared to the e�ciencies obtained
by using our technique.

Committing a set of bits.

To commit a set of bits, B = b1; : : : ; bn, the prover
uniformly chooses a set of bits, R = r1; : : : ; rn. The
prover makes one envelope, containing R, and an-
other envelope, containing B � R, where � denotes
componentwise exclusive-or.

Decommitting an arbitrary subset.

To decommit a subset I of B, the prover reveals I,
and for each i 2 I, reveals ri and xi� ri. The veri�er
then either asks the prover to reveal R, or asks him
to reveal B � R. The veri�er rejects if the revealed
values are are not equal to the corresponding stated
values. Otherwise, he computes bi for i 2 I.
Using this technique, we obtain the following the-

orem.

Theorem 1 Let (P; V ) be a subset revealing proto-
col for L that achieves perfect zero-knowledge in the
ideal envelope model, where C(jxj) bits are commit-
ted for an input x 2 L. Then there exists a 2 en-
velope protocol, (P 0

; V
0) for L that achieves perfect

zero-knowledge in the ideal envelope model, and com-
mits O(C(jxj) bits. For x 2 L, (P 0

; V
0) is as likely to

accept as (P; V ). For x 62 L, the probability that V 0

will reject is at least one half of the probability that
V will reject.

2 Minimizing Oblivious

Transfers

We have seen in the previous section that subset re-
vealing zero-knowledge proofs can be e�ciently trans-
formed into zero-knowledge interactive proofs that
use only two envelopes. The transformation preserves
the probability of error and the number of transmit-
ted bits, up to small constant factors. In this section
we want to replace each envelope with a constant
number of executions of Oblivious Transfer (OT).
One obvious advantage of OT over envelopes is that
it can be executed interactively at a distance.

A useful class of ZK proofs.

Our transformation will work with a special type
of ZK proofs called simple subset revealing protocols.
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In a single run of such a proof, the prover puts down
a given number of envelopes and the veri�er selects
either to see the contents of all of them, or to have the
prover choose and open a subset of them. Typically,
each run allows the veri�er to catch an error with
probability 1/2.
Essentially, the value of q allowed to the veri�er

is binary. Furthermore, the set I used for q = 0
is always required to be the entire set of committed
bits, which we denote by B.
ZK proofs of this sort not only exist, but are not

\restrictive." The �rst such a proof was infact de-
viced by [B] for the NP-complete problem of Graph
Hamiltonicity. Later, [BCC] and [IY] developed e�-
cient simple subset revealing protocols for the circuit
satis�ability problem.

OT, 1{2 OT, and 2{3 OT.

The notion of an OT was introduced in [R], where
it was implemented, based on the di�culty of factor-
ing integers, so to handle moderatly cheating parties.
This protocol was strenghened by [FiMiRa] to handle
totally cheating parties.
In this paper, we consider oblivious transfers on

strings, rather than on single bits. The equivalance
between the bitwise and the stringwise versions of
various forms of oblivious transfer are established in
[BCR] and [C].
Here we use a more powerful notion of an OT,

known as 1{2 OT, due to [EGL]. 1{2 OT is a proto-
col for two players, called, respectively S (for Sender)
and R (for Receiver). S has two secret strings m0

and m1. R secretly decides on a bit i, which indi-
cates which strings (m0 or m1) she would like to get.
After the execution of the protocol, the following is
true: R learns the value of mi, but obtains no new
information about the other string m1�i, no matter
how much she cheats; and S obtains no new informa-
tion about i, no matter how much he cheats.
It is easy to see that with a constant number of

executions of OT, one can build a 2-out-of-3 OT (2-3
OT for short). That is, the prover has three strings,
and the veri�er is allowed to obtain two of them of

his choice, so that he will have no idea about the
third one and the Sender will have no idea which two
strings the veri�er received.

2.1 ZK Proofs with 2-3 OT

As a result of Theorem 1, we can execute each run
of a subset revealing ZK proof using only 2 envelopes
as outlined in subsection 1.3. There, however, the
prover needed to hear a message q from the veri�er for

computing the subset Iq . In a simple subset revealing
ZK proof, however, the subset is chosen by the prover.
In the case of a simple subset revealing protocol,

the transformed protocol is of the following simple
form.

(computation stage)

1. Denote the set of committed bits by B =
b1; : : : ; bn.

2. The prover uniformly chooses R = r1; : : : ; rn,
and sets S1 = R, and S2 = B � R. In other
words, the prover follows the standard transfor-
mation, and set S1 and S2 to be equal to the
contents of the two envelopes.

3. Finally, the prover computes I, the subset he
would use if q = 1, and sets S3 to be equal to
I, along with ri and bi � ri for all i 2 I.

(interactive stage)

4. The prover and the veri�er then run a 2{3 OT
protocol on the three strings. The veri�er uni-
formly chooses two of the three envelopes for
the prover to reveal. If envelopes 1 and 2 are
opened, the veri�er reconstructs B, and accepts
i� he would have accepted in the original proto-
col. If envelopes 1 and 3 or 2 and 3 are opened,
the veri�er rejects if he detects an inconsistency,
as above. Otherwise, he reconstructs I and bi for
i 2 I, and accepts i� he would have accepted in
the original protocol.

Thus, the transformed protocol is turned into a sim-
ple execution of 2{3 OT.
Using this technique, we obtain the following the-

orem.

Theorem 2 Let (P; V ) be a simple subset revealing
protocol for L that achieves perfect zero-knowledge
in the ideal envelope model, where C(jxj) bits are
committed for an input x 2 L. Then there exists a
2{3 OT protocol, (P 0

; V
0) for L that achieves perfect

zero-knowledge in the ideal oblivious transfer model,
and in which the total number of bits transferred is
O(C(jxj). If for x 2 L, (P; V ) always accepts, then
(P; V ) will always accept. For x 62 L, V 0 will re-
ject with probability at least one-third the probability
that V will reject.

Note that we use the fact that the when the veri�er re-
quests strings i and j, he knows which of the two strings

he receives Si and which string is Sj . Otherwise, the prover
can cheat in our scheme (though this problem may be easily
remedied).
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In fact, for the transformed versions of the pro-
tocols of [B], [BCC], and [IY], the probability that
the veri�er will reject an incorrect theorem can be
made to be 1

3
. Thus, an average of � 1:7 rounds of

the transformed protocol are needed to give the same
transfer of con�dence as one round of the original
protocol.

3 Bounding Interaction

3.1 Introduction

\Classical" proofs do not hide knowledge, but they
have a simple mechanics: the prover sends a single
message to the veri�er (the proof) who does not need
to respond. By contrast, what makes zero-knowledge
proofs work is the fact that they are interactive. That
is, the prover and the veri�er exchange messages back
and forth during the proving process.

Unfortunately, interaction is a very expensive re-
source, and not always available. This motivates the
study of how to bound the interaction required by
an zero-knowledge proof as much as possible. Such
savings will immediately translate into increased e�-
ciencies for a large number of protocols (both in cryp-
tography and in fault-tolerant computation) that use
zero-knowledge proofs as subroutines.

We now show how to squeeze all of the interac-
tions required for zero-knowledge proofs into a small
initial preprocessing stage. This interactive prepro-
cessing stage may occur even before the prover has
decided which theorems he is to prove. After the pre-
processing stage has been completed, the prover can
prove polynomiallymany theorems of any polynomial
size. To do this, we show how to appropriately modify
protocols of the form given in Section 2.

3.2 Performing OT's \in advance."

The interaction in the protocols given in Section 2 is
squeezed into executions of 2{3 OT. However, to im-
plement 2{3 OT seems inherently interactive, since
the veri�er must choose which strings he is to re-
ceive. However, in these transformed protocols, the
veri�er chooses its two strings completely at random.
This random choice might as well be made during
an initial preprocessing stage (which may occur even
before the theorems to be proven are known to the
prover). However, in our applications, the prover may
not know which strings it wishes to transfer until long
after the end of the preprocessing stage.

Our �rst solution uses one-time pads. During the
preprocessing stage, the prover chooses three random

bit strings, R1; R2 and R3. The prover and the ver-
i�er run 2{3 OT on these strings, with the veri�er
uniformly choosing which two it will receive. Later,
when the prover and the veri�er wish to perform 2{3
OT on strings S1; S2 and S3, the prover simply sends
the veri�er S1 � R1; S2 � R2; and S3 � R3, where �
denotes bitwise exclusive-or. If the veri�er received
Ri during the preprocessing stage, it can trivially
compute Si. If the veri�er learned nothing about Ri

during the preprocessing stage, then it cannot learn
anything about Si from seeing Si � Ri.
Using this technique, arbitrarily many arbitrarily

sized theorems may be proven. Note, however, that
the random strings, Ri, must be large enough to ac-
comodate all of the strings that will be transferred.
Therefore, with this solution, one needs to know in
advance an upper bound on the size and number of
the theorems to be proven. The number of bits trans-
ferred in the preprocessing stage will grow polynomi-
ally with the size of the theorem that we wish to
prove. The number of string transfers, however, de-
pends solely on the probability of error. After only
O(k) transfers, the veri�er will catch the prover with
probability 1 � 1=2k if he attempts to prove a false
statement. This improves the result of [K], in which
the number of oblivious transfers grows polynomially
with the size of the theorem as well as with the prob-
ability of error.

3.3 Using pseudo-

random generators to shorten the

preprocessing phase.

A di�culty of the method so far is that the ran-
dom strings transferred during the preprocessng stage
grows with the size and number of theorems to be
proved. We now show how to make do with small ran-
dom strings, assuming the existence of cryptographi-
cally secure bit generators (CSBG) [BM,Y]. This as-
sumption is equivalent to the existence of one-way
functions [ILL].
Instead of making our one-time pads truly random,

we use the output of a CSBG, G. Given an n-bit in-
put, s, G(s) produces an in�nite sequence, gs

1
; g

s

2
; : : : ;

that is indistinguishable from a random string by any
polynomially bounded judge. That is, for any con-
stants c1; c2; c3, no probabilistic Turing machine M ,
which runs in time nc1 , can distinguish

g
s

1
; : : : ; g

s

nc2

from a truly random string of the same length with
probability greater than,

1

2
+

1

nc3
:
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After performing 2{3 OT on strings, R1; R2; R3, we
simply use them as seeds to our generator, G, thus
implicitly de�ning 3 one-time pads of arbitrary size.
To a polynomially bounded veri�er, these pads are as
secure as truly random one-time pads.

3.4 Independence

It should be noticed that while the probability of
proving a single false theorem can be made to be less
than 1

2k
, the probability of successfully proving two

false theorems is still 2�k, rather then 2�2k. In fact,
if the Prover is extremely lucky in guessing exactly
which seeds the veri�er has received by initial Obliv-
ious Transfer, he can prove essentially as many false
theorems as he wants. In practice, this is not a worry,
since for even moderately large k, 2�k is such a low
probability that one need not to care about what may
happen with that probability.
The non-independence of our random choices my

open other concerns in some scenarioes. That is, the
prover may, on purpose, \xor" some \garbage" infor-
mation with some of the pads. If the veri�er accepts
the proof none-the-less, the prover will know that the
veri�er did not receive the correposing seed in the pre-
processing stage. This may be a worry in some appli-
cations, but not in the context of proving theorems.
In fact, in our framework, the prover has no incentive
to cheat. If he cheats a little he may be undetected,
but that will not allow him to prove even a single
false theorem. If he cheats enough to do that, he is
caught almost certainly and not believed ever since.
Presumably, it is in the prover's interest being able
to send non-interactive zero-knowledge proofs. After
all, he is the one who initiates the proving monologue!

4 Comparisons with Previous

Work.

A model analogous to the one given in Section 3 was
�rst presented in [DMP1]. [DMP1] show that after
an interactive step of size n (i.e. one in which n bits
are exchanged), a single theorem of size 3

p
n can be

proved. Thus, the length of the interaction in the pre-
processing stage constitutes a severe upper bound on
the length of the theorem that can be proved. In our
framework, we are able to prove polynomially many
(in the security parameter) polynomially sized the-
orems. Note however, that the scheme proposed in
[DMP1] is based solely on the existence of one-way
functions, whereas we need the additional assump-
tion of oblivious transfer (which is implemented using
trapdoor permutations [GMW1]).

The results of Section 3 should also be contrasted
with the common random stringmodel, �rst put forth
in [BFM] (see also [DMP2]). In the common random
string model, the prover and the veri�er are assumed
to both have access to the same sequence of fair coin
tosses (a common random string). Using this com-
mon random string, the prover gives zero-knowledge
proofs using the same mechanics as in classical proofs.
That is, he sends a string to the veri�er who can then
check its correctness, but cannot use it to extract any
additional knowledge other then the validity of the
theorem.

How \non-interactive" is this model? While the
proving stage is non-interactive, it is hard to conceive
that prover and veri�er have agreed to a common
random string without any prior interaction. Thus,
one can depict the common random string model as
a zero-knowledge proof system in which interaction
takes place only in the beginning. This small amount
of interaction is only devoted to generate the common
random string.

The weakest known assumption for implementing
the common random string model is that deciding
quadratic residuosity modulo Blum integers (whose
factorization is not known) is hard. In contrast, our
protocols can be based on any trapdoor permutation.

It should also be pointed out that proofs and proto-
cols in the common random string model were quite
complex. For instance, the proof of the "many-
theorems" result in the earlier versions of [BFM]
and [DMP2] contained a subtke gap: it required,
over than the stated number theoretic assumptions,
a stronger property about pseudo-random generators.
This stronger property is not needed in the �nal pa-
per [BDFMP]. Another advantage of our result is its
simplicity, both in the protocol and its proof.
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