
A Type System Equivalent to Flow Analysis∗

Jens Palsberg† Patrick O’Keefe‡

Abstract

Flow-based safety analysis of higher-order languages has been studied by Shivers, and
Palsberg and Schwartzbach. Open until now is the problem of finding a type system that
accepts exactly the same programs as safety analysis.

In this paper we prove that Amadio and Cardelli’s type system with subtyping and
recursive types accepts the same programs as a certain safety analysis. The proof involves
mappings from types to flow information and back. As a result, we obtain an inference
algorithm for the type system, thereby solving an open problem.

1 Introduction

1.1 Background

Many program analyses for higher-order languages are based on flow analysis, also known
as closure analysis. Examples include the binding-time analyses for Scheme in the partial
evaluators Schism [5] and Similix [3]. Such analyses have the advantage that they can be
applied to untyped languages. This is in contrast to more traditional abstract interpretations
which use types when defining the abstract domains.

Recently, it has become popular to define program analyses for typed languages by an-
notating the types with information about program behavior [10, 2]. This has lead to clear
specifications of a range of analyses, and often such an analysis can be efficiently computed by
a straightforward extension of a known type inference algorithm.

The precision of a type-based analysis depends on the expressiveness of the underlying type
system. Similarly, the precision of a flow-based analysis depends on the expressiveness of the
underlying flow analysis. In this paper we address an instance of the following fundamental
question:

Fundamental question. What type-based analysis computes the same informa-
tion as a given flow-based analysis?

∗ACM Transactions on Programming Languages and Systems, 17(4):576–599, July 1995. Preliminary version
in Proc. POPL’95.

†Computer Science Department, Aarhus University, DK-8000 Aarhus C, Denmark. E-mail:
palsberg@daimi.aau.dk.

‡151 Coolidge Avenue #211, Watertown, MA 02172, USA. E-mail: pmo@world.std.com.

1

We consider the case of flow-based safety analysis, that is, an analysis which collects type
information from for example constants and applications of primitive operations. Such an
analysis was first presented in 1991 by Shivers [18] who called it type recovery. Later, Palsberg
and Schwartzbach [12, 15] proved that on the basis of the collected information, one can define a
predicate which accepts only programs which cannot go wrong. They called this safety analysis.
They also proved that their safety analysis accepts more programs than simple type inference.

In this paper, we consider the following instance of the above question:

Which type system accepts the same programs as safety analysis?

The particular safety analysis we consider is defined in Section 3. It is based on a flow anal-
ysis which in the terminology of Shivers [17] is a 0CFA, that is, a 0-level control-flow analysis.
Intuitively, it is a flow analysis which for each function merges all environment information.

Many program analyses are based on 0CFA-style analyses, see for example [16, 22, 7]. Our
thesis is that the type system that answers the specific question will in many cases also be the
answer to the fundamental question.

Flow-based analyses have the reputation of fitting poorly together with separate compilation
because they deal with program points. In contrast, traditional type systems such as that of
ML fit well together with separate compilation because one can compute a principal type for
each subterm. Our hope is that the type system that answers the specific question above will
lead to a better understanding of how to create program analyses that are both modular and
have the power of flow-based analyses.

1.2 Our result

We prove that a natural type system with subtyping and recursive types accepts the same
programs as safety analysis. The proof involves mappings from types to flow information and
back.

The type system has been studied by Amadio and Cardelli [1], and an O(n2) algorithm
for deciding the subtyping relation has been presented by Kozen, Palsberg, Schwartzbach,
[9]. Open until now is the question of type inference. As a corollary of our result we get a
type inference algorithm which works by first doing safety analysis and then mapping the flow
information to types.

The set of types can be presented by the following grammar:

t ::= t1 → t2 | Int | v | µv.t | > | ⊥

The type system contains the following components: the binary function type constructor →,
the constant type Int, the possibility for creating recursive types, and two more constant types
>, and ⊥. Moreover, there is a subtype relation, written ≤. In contrast, safety analysis uses
an abstract domain containing sets of syntactic occurrences of abstractions and the constant
Int.

In slogan-form, our result reads:

2

Flow analysis + Safety checks =
Simple types + Recursive types + > + ⊥ + Subtyping

Each component of the type system captures a facet of flow analysis:

• The function type constructor → corresponds to a set of abstractions. Intuitively, a
function type is less concrete than a set of abstractions. Indeed, the other components of
the type system are essential to make it accept the same programs as the safety analysis.

• The constant Int is used for the same purpose in both systems. For simplicity, we do not
consider other base types, or product and sum constructors, etc. Such constructs can be
handled by techniques that are similar to the ones we will present.

• Recursive types are needed in order that safety analysis accepts all programs that do not
contain constants.

• The constant > corresponds to the largest possible set of flow information. This type
is needed for variables which can hold both a function and a base value. Intuitively, a
program with such a variable should be type incorrect. However, the flow-based analysis
may detect that this variable is only passed around but never actually used. For the type
system to have that capability, > is required.

• The constant ⊥ corresponds to the empty set of flow information. This type is needed for
variables which are used both as a function and as a base value. Intuitively, a program
that uses a variable in both these ways should be type incorrect. However, the flow-based
analysis may detect that this part of the program will never be executed. For the type
system to have that capability, ⊥ is required.

• Subtyping is needed to capture flow of information. Intuitively, if information flows from
A to B, then the type of A will be a subtype of the type of B.

Palsberg and Schwartzbach [15, 12] proved that the system without ⊥ accepts at most as many
programs as safety analysis. In this paper we present the type system which accepts exactly the
same programs as safety analysis. This may be seen as a natural culmination of the previous
results.

1.3 Examples

Our example language is a λ-calculus, generated by the following grammar:

E ::= x | λx.E | E1E2 | 0 | succ E

Programs that yield a run-time error include (0 x), succ(λx.x), and (succ 0)(x), because 0

is not a function, succ cannot be applied to functions, and (succ 0) is not a function. These
programs are not typable and they are rejected by safety analysis. Some programs can be typed
in the type system without the use of ⊥ and >, for example

λx.xx : µα.α→ α ,

3

where E : t means “E has type t”. Some programs require the use of >, for example

(λf.(λx.fI)(f0))I : > ,

where I = λx.x. Note that > is the only type of (λf.(λx.fI)(f0))I because f has to be assigned
the type > → >. Some programs require the use of ⊥, for example

λx.x(succ x) : ⊥ → t for any t.

Both type inference and safety analysis can be phrased as solving a system of constraints,
derived from the program text. The definitions of such constraint systems will be given in
Sections 2.3 and 3. We will now present the constraint systems for the last of the above
examples. For notational convenience, we give each of the two occurrences of x a label so that
the λ-term reads λx.x1(succ x2). For brevity, let E = λx.x1(succ x2). The constraint system
for type inference of E looks as follows:

x→ [[x1(succ x2)]] ≤ [[E]]

[[x1]] ≤ [[succ x2]]→ [[x1(succ x2)]]

x ≤ [[x1]]

x ≤ [[x2]]

Int ≤ [[succ x2]]

[[x2]] ≤ Int

Here, the symbols x, [[x1]], [[x2]], [[succ x2]], [[x1(succ x2)]], [[E]] are type variables. Intuitively,
the type variable x is associated with the bound variable x, and the other type variables of
the form [[. . .]] are associated with particular occurrences of subterms. Solving this constraint
system yields that the possible types for the λ-term λx.x(succ x) are > and ⊥ → t for any type
t. Among these, ⊥ → ⊥ is a least type. In general, however, such a constraint system need not
have a least solution. This reflects that in Amadio and Cardelli’s type system, a typable term
need not have a least type. For example, the term λx.x have both of the types ⊥ → ⊥ and
> → >, and these types are incomparable minimal types of λx.x. Thus, before type checking
and separately compiling a module, we may want to explicitly annotate the module boundary
with the types we are interested in. It remains open, however, if modular program analyses
can based on Amadio and Cardelli’s type system.

The constraint system for safety analysis of E looks as follows:

{E} ⊆ [[E]]

[[x1]] ⊆ {E}

x ⊆ [[x1]]

x ⊆ [[x2]]

{E} ⊆ [[x1]] ⇒ [[succ x2]] ⊆ x

{E} ⊆ [[x1]] ⇒ [[x1(succ x2)]] ⊆ [[x1(succ x2)]]

{Int} ⊆ [[succ x2]]

[[x2]] ⊆ {Int}

4

This constraint system uses the same variables as the one above, but now the type variables
range over finite sets of occurrences of abstractions and the constant Int.

If such a constraint system is solvable, then it has a least solution. This particular constraint
system is indeed solvable, and the least solution is the mapping ϕ, where

ϕ([[E]]) = {E}

ϕ([[succ x2]]) = {Int}

ϕ([[x1(succ x2)]]) = ϕ(x) = ϕ([[x1]]) = ϕ([[x2]]) = ∅

This example will be treated in much further detail in Section 5.1.
In the following two sections we present the type system and the safety analysis, and in

Section 4 we prove that they accept the same programs. In Section 5 we present two examples,
in Section 6 we discuss various extensions, and in Section 7 we outline directions for further
work. The reader is encouraged to refer to the examples while reading the other sections.

2 The type system

2.1 Types

We now define the notions of type, term, and term automaton. The idea is that a type is
represented by a term which in turn is represented by a term automaton.

Definition 1 Let Σ = {→, Int,⊥,>} be the ranked alphabet where → is binary and Int,⊥,>
are nullary. A type is a regular tree over Σ. A path from the root of such a tree is a string over
{0, 1}, where 0 indicates “left subtree” and 1 indicates “right subtree”. 2

Definition 2 We represent a type by a term, that is, a partial function

t : {0, 1}∗ → Σ

with domain D(t) where t maps each path from the root of the type to the symbol at the end
of the path. The set of all such terms is denoted TΣ. 2

Following [9], we finitely represent a term by a so-called term automaton, as follows.

Definition 3 A term automaton over Σ is a tuple

M = (Q, Σ, q0, δ, `)

where:

• Q is a finite set of states,

• q0 ∈ Q is the start state,

• δ : Q× {0, 1} → Q is a partial function called the transition function, and

5

• ` : Q→ Σ is a (total) labeling function,

such that for any state q ∈ Q, if `(q) ∈ {→} then

{i | δ(q, i) is defined} = {0, 1}

and if `(q) ∈ {Int,⊥,>} then

{i | δ(q, i) is defined} = ∅ .

The partial function δ extends naturally to a partial function

δ̂ : Q× {0, 1}∗ → Q

inductively as follows:

δ̂(q, ε) = q

δ̂(q, αi) = δ(δ̂(q, α), i) , for i ∈ {0, 1}.

The term represented byM is the term

tM = λα.`(δ̂(q0, α)) .

2

Intuitively, tM(α) is determined by starting in the start state q0 and scanning the input α,
following transitions ofM as far as possible. If it is not possible to scan all of α because some
i-transition along the way does not exist, then tM(α) is undefined. If on the other hand M
scans the entire input α and ends up in state q, then tM(α) = `(q).

For example, consider the type

→
� @
→

� @
⊥

⊥...

which can be understood as a representation of µv.(v → ⊥). We represent this type by the
term t where the domain of t is the infinite regular set 0∗ + 0∗1 and where t(0n) =→ and
t(0n1) = ⊥ for all n ≥ 0. The corresponding term automaton is

s s-&%
'$

�
-0

1
→v

⊥

Thus, infinite paths in a type yield cycles in the corresponding term automaton.
Types are ordered by the subtype relation ≤, as follows.

6

Definition 4 The parity of α ∈ {0, 1}∗ is the number mod 2 of 0’s in α. The parity of α is
denoted πα. A string α is said to be even if πα = 0 and odd if πα = 1. Let ≤0 be the partial
order on Σ given by

⊥ ≤0 → and → ≤0 > and
⊥ ≤0 Int and Int≤0 >

and let ≤1 be its reverse

> ≤1 → and → ≤1 ⊥ and
> ≤1 Int and Int≤1 ⊥

For s, t ∈ TΣ, define s ≤ t if s(α) ≤πα t(α) for all α ∈ D(s) ∩ D(t). 2

Kozen, Palsberg, and Schwartzbach [9] showed that the relation ≤ is equivalent to the order
defined by Amadio and Cardelli [1]. The relation ≤ is a partial order, and if s → t ≤ s′ → t′,
then s′ ≤ s and t ≤ t′ [1, 9].

2.2 Type rules

If E is a λ-term, t is a type, and A is a type environment, i.e. a partial function assigning types
to variables, then the judgement

A ` E : t

means that E has the type t in the environment A. Formally, this holds when the judgement
is derivable using the following six rules:

A ` 0 : Int (1)

A ` E : Int

A ` succ E : Int
(2)

A ` x : t (provided A(x) = t) (3)

A[x← s] ` E : t

A ` λx.E : s→ t
(4)

A ` E : s→ t A ` F : s

A ` EF : t
(5)

A ` E : s s ≤ t

A ` E : t
(6)

The first five rules are the usual rules for simple types and the last rule is the rule of subsumption.
The type system has the subject reduction property, that is, if A ` E : t is derivable and E

β-reduces to E ′, then A ` E ′ : t is derivable. This is proved by straightforward induction on
the structure of the derivation of A ` E : t.

7

2.3 Constraints

Given a λ-term E, the type inference problem can be rephrased in terms of solving a system of
type constraints. Assume that E has been α-converted so that all bound variables are distinct.
Let XE be the set of λ-variables x occurring in E, and let YE be a set of variables disjoint from
XE consisting of one variable [[F]] for each occurrence of a subterm F of E. (The notation
[[F]] is ambiguous because there may be more than one occurrence of F in E. However, it will
always be clear from context which occurrence is meant.) We generate the following system of
inequalities over XE ∪ YE. Each inequality is of the form W ≤ W ′ where W is of the forms V ,
Int, or (V → V ′)λx.F , and where W ′ is of the form V , Int, or (V → V ′)GH , for V, V ′ ∈ XE ∪ YE.

• for every occurrence in E of a subterm of the form 0, the inequality

Int ≤ [[0]] ;

• for every occurrence in E of a subterm of the form succ F , the two inequalities

Int ≤ [[succ F]]

[[F]] ≤ Int ;

• for every occurrence in E of a subterm of the form λx.F , the inequality

(x→ [[F]])λx.F ≤ [[λx.F]] ;

• for every occurrence in E of a subterm of the form GH, the inequality

[[G]] ≤ ([[H]]→ [[GH]])GH ;

• for every occurrence in E of a λ-variable x, the inequality

x ≤ [[x]] .

The subscripts are present to ease notation in Section 4.1; they have no semantic impact and
will be explicitly written only in Section 4.1.

Denote by T (E) the system of constraints generated from E in this fashion. For every
λ-term E, let Tmap(E) be the set of total functions from XE ∪ YE to TΣ. The function
ψ ∈ Tmap(E) is a solution of T (E), if it is a solution of each constraint in T (E). Specifically,
for V, V ′, V ′′ ∈ XE ∪ YE, and occurrences of subterms λx.F and GH in E:

The constraint: has solution ψ if:
Int ≤ V Int ≤ ψ(V)
V ≤ Int ψ(V) ≤ Int

(V → V ′)λx.F ≤ V ′′ ψ(V)→ ψ(V ′) ≤ ψ(V ′′)
V ≤ (V ′ → V ′′)GH ψ(V) ≤ ψ(V ′)→ ψ(V ′′)

V ≤ V ′ ψ(V) ≤ ψ(V ′)

8

The solutions of T (E) correspond to the possible type annotations of E in a sense made
precise by Theorem 5.

Let A be a type environment assigning a type to each λ-variable occurring freely in E. If ψ
is a function assigning a type to each variable in XE ∪ YE, we say that ψ extends A if A and ψ
agree on the domain of A.

Theorem 5 The judgement A ` E : t is derivable if and only if there exists a solution ψ of

T (E) extending A such that ψ([[E]]) = t. In particular, if E is closed, then E is typable with

type t if and only if there exists a solution ψ of T (E) such that ψ([[E]]) = t.

Proof. Similar to the proof of Theorem 2.1 in the journal version of [8], in outline as follows.
Given a solution of the constraint system, it is straightforward to construct a derivation of
A ` E: t. Conversely, observe that if A ` E: t is derivable, then there exists a derivation of
A ` E: t such that each use of one of the ordinary rules is followed by exactly one use of the
subsumption rule. The approach in for example [21, 12] then gives a set of inequalities of the
desired form. 2

9

3 The safety analysis

Following [15, 12], we will use a flow analysis as a basis for a safety analysis. Given a λ-term E,
assume that E has been α-converted so that all bound variables are distinct. The set Abs(E)
is the set of occurrences of subterms of E of the form λx.F . The set Cl(E) is the powerset of
Abs(E) ∪ {Int}. Safety analysis of a λ-term E can be phrased as solving the following system
of constraints over XE ∪ YE where type variables range over Cl(E).

• For every occurrence in E of a subterm of the form 0, the constraint

{Int} ⊆ [[0]] ;

• for every occurrence in E of a subterm of the form succ F , the two constraints

{Int} ⊆ [[succ F]]

[[F]] ⊆ {Int}

where the latter provides a safety check;

• for every occurrence in E of a subterm of the form λx.F , the constraint

({λx.F})λx.F ⊆ [[λx.F]] ;

• for every occurrence in E of a subterm of the form GH, the constraint

[[G]] ⊆ (Abs(E))GH ;

which provides a safety check;

• for every occurrence in E of a λ-variable x, the constraint

x ⊆ [[x]] ;

• for every occurrence in E of a subterm of the form λx.F , and for every occurrence in E

of a subterm of the form GH, the constraints

({λx.F})λx.F ⊆ [[G]] ⇒ [[H]] ⊆ x

({λx.F})λx.F ⊆ [[G]] ⇒ [[F]] ⊆ [[GH]] .

10

Again, the subscripts are present to ease notation in Section 4.1; they have no semantic impact
and will be explicitly written only in Section 4.1.

The constraints in the fourth and sixth items reflect some of the significant differences
between the type system and the safety analysis. Intuitively, a constraint of the form [[G]] ⊆
(Abs(E))GH ensures that G does not evaluate to an integer. This is by the type constraints
ensured by the constraint [[G]] ≤ ([[H]] → [[GH]])GH because the type Int is not a subtype of
any function type. The constraints of the forms

({λx.F})λx.F ⊆ [[G]] ⇒ [[H]] ⊆ x

({λx.F})λx.F ⊆ [[G]] ⇒ [[F]] ⊆ [[GH]]

creates a connection between the caller GH and the potential callee λx.F . Intuitively, if G
evaluates to λx.F , then the argument H is bound to x, and the result of evaluating the body
F becomes the result of whole application GH.

Denote by C(E) the system of constraints generated from E in this fashion. For every
λ-term E, let Cmap(E) be the set of total functions from XE ∪ YE to Cl(E). The function
ϕ ∈ Cmap(E) is a solution of C(E), if it is a solution of each constraint in C(E). Specifically,
for V, V ′, V ′′ ∈ XE ∪ YE, and occurrences of subterms λx.F and GH in E:

The constraint: has solution ϕ if:
{Int} ⊆ V {Int} ⊆ ϕ(V)
V ⊆ {Int} ϕ(V) ⊆ {Int}

({λx.F})λx.F ⊆ V {λx.F} ⊆ ϕ(V)
V ⊆ (Abs(E))GH ϕ(V) ⊆ Abs(E)

V ⊆ V ′ ϕ(V) ⊆ ϕ(V ′)
({λx.F})λx.F ⊆ V ⇒ V ′ ⊆ V ′′ {λx.F} ⊆ ϕ(V)⇒ ϕ(V ′) ⊆ ϕ(V ′′)

Solutions are ordered by variable-wise set inclusion. See [15, 14] for a cubic time algorithm
that given E computes the least solution of C(E) or decides that none exists. See [11] for a
proof technique that enables a proof of the following subject reduction property. If E β-reduces
to E ′, and C(E) is solvable, then C(E ′) is also solvable.

4 Equivalence

4.1 Deductive Closures

We now introduce two auxiliary constraint systems called C(E) and T (E). They may be
thought of as “deductive closures” of C(E) and T (E). We then show that they are isomorphic
(Theorem 9). For examples of deductive closures, see Section 5.

Definition 6 For every λ-term E, define C(E) to be the smallest set such that:

• The non-conditional constraints of C(E) are members of C(E).

• If a constraint c⇒ K is in C(E) and c is in C(E), then K is in C(E).

11

• For s ∈ XE ∪ YE, if r ⊆ s and s ⊆ t both are in C(E), then r ⊆ t is in C(E).

Notice that every constraint in C(E) is of the form W ⊆ W ′, where W is of the forms V , {Int},
or ({λx.F})λx.F , and where W ′ is of the forms V , {Int}, or (Abs(E))GH , for V ∈ XE ∪ YE.

For every λ-term E, define also the series Cn(E), for n ≥ 0, of subsets of C(E).

• C0(E) is the set of non-conditional constraint in C(E).

• For n ≥ 0, C2n+2(E) is the smallest set such that C2n+2(E) ⊇ C2n+1(E) and such that if
a constraint c⇒ K is in C(E) and c is in C2n+1(E), then K is in C2n+2(E).

• For n ≥ 0, C2n+1(E) is the smallest set such that C2n+1(E) ⊇ C2n(E) and such that for
s ∈ XE ∪ YE, if r ≤ s and s ≤ t both are in C2n(E), then r ≤ t is in C2n+1(E).

Notice that Ci(E) ⊆ Cj(E) for 0 ≤ i ≤ j. Clearly, there exists N ≥ 0 such that for all n ≥ N ,
Cn(E) = C(E). 2

Definition 7 For every λ-term E, define T (E) to be the smallest set such that:

• T (E) ⊆ T (E).

• If (s→ t)λx.F ≤ (s′ → t′)GH is in T (E), then s′ ≤ s and t ≤ t′ are in T (E).

• For s ∈ XE ∪ YE, if r ≤ s and s ≤ t both are in T (E), then r ≤ t is in T (E).

Notice that every constraint in T (E) is of the form W ≤ W ′ where W is of the forms V , Int,
or (V → V ′)λx.F , and where W ′ is of the form V , Int, or (V → V ′)GH , for V, V ′ ∈ XE ∪ YE.

For every λ-term E, define also the series Tn(E), for n ≥ 0, of subsets of T (E).

• T0(E) = T (E).

• For n ≥ 0, T2n+2(E) is the smallest set such that T2n+2(E) ⊇ T2n+1(E) and such that if
(s→ t)λx.F ≤ (s′ → t′)GH is in T2n+1(E), then s′ ≤ s and t ≤ t′ are in T2n+2(E).

• For n ≥ 0, T2n+1(E) is the smallest set such that T2n+1(E) ⊇ T2n(E) and such that for
s ∈ XE ∪ YE, if r ≤ s and s ≤ t both are in T2n(E), then r ≤ t is in T2n+1(E).

Notice that Ti(E) ⊆ Tj(E) for 0 ≤ i ≤ j. Clearly, there exists N ≥ 0 such that for all n ≥ N ,
Tn(E) = T (E). 2

We will now present the definition of two functions I and J , one from C(E) to T (E) and
one from T (E) to C(E). After the definition we prove that they are well-defined and each
others inverses.

Definition 8 The functions

I : C(E)→ T (E)

J : T (E)→ C(E)

12

are defined as follows.

I(W ⊆ W ′) = (LI(W) ≤ LI(W
′))

J (W ≤ W ′) = (LJ (W) ⊆ LJ (W ′))

where the functions LI and LJ are:

LI(W) =





W if W ∈ XE ∪ YE

Int if W = {Int}
(x→ [[F]])λx.F if W = ({λx.F})λx.F

([[H]]→ [[GH]])GH if W = (Abs(E))GH

LJ (W) =





W if W ∈ XE ∪ YE

{Int} if W = Int

({λx.F})λx.F if W = (x→ [[F]])λx.F

(Abs(E))GH if W = ([[H]]→ [[GH]])GH

2

Theorem 9 The sets C(E) and T (E) are isomorphic, and I and J are bijections and each

others inverses.

Proof. If I and J are well-defined, then clearly they are inverses of each other and thus
bijections, so C(E) and T (E) are isomorphic.

First we show that I is well-defined, that is, I maps each element of C(E) to an element
of T (E). It is sufficient to prove that for n ≥ 0, I maps each element of Cn(E) to an element
of T (E). We proceed by induction on n. In the base case, consider the constraints of C0(E),
that is, the non-conditional constraints of C(E) and observe that for those we have:

C0(E) T0(E)
{Int} ⊆ [[0]] Int ≤ [[0]]

{Int} ⊆ [[succ F]] Int ≤ [[succ F]]
[[F]] ⊆ {Int} [[F]] ≤ Int

({λx.F})λx.F ⊆ [[λx.F]] (x→ [[F]])λx.F ≤ [[λx.F]]
[[G]] ⊆ (Abs(E))GH [[G]] ≤ ([[H]]→ [[GH]])GH

x ⊆ [[x]] x ≤ [[x]]

It follows that the lemma holds in the base case.
In the induction step, consider first C2n+2(E) for some n ≥ 0. Suppose

({λx.F})λx.F ⊆ [[G]] ⇒ [[H]] ⊆ x

({λx.F})λx.F ⊆ [[G]] ⇒ [[F]] ⊆ [[GH]]

are in C(E) and suppose ({λx.F})λx.F ⊆ [[G]] is in C2n+1(E). By the induction hypothesis,
(x → [[F]])λx.F ≤ [[G]] is in T (E). Moreover, [[G]] ≤ ([[H]] → [[GH]])GH is in T (E) and thus
also in T (E). Hence, (x → [[F]])λx.F ≤ ([[H]] → [[GH]])GH is in T (E), so also [[H]] ≤ x and
[[F]] ≤ [[GH]] are in T (E).

13

Consider then C2n+1(E) for some n ≥ 0. Suppose r ⊆ s and s ⊆ t are in C2n(E), and
suppose s ∈ XE ∪ YE. By the induction hypothesis, LI(r) ≤ LI(s) and LI(s) ≤ LI(t) are in
T (E). From s ∈ XE ∪ YE we get LI(s) = s, so LI(r) ≤ LI(t) is in T (E).

Then we show that J is well-defined, that is, J maps each element of T (E) to an element
of C(E). It is sufficient to prove that for n ≥ 0, J maps each element of Tn(E) to an element of
C(E). We proceed by induction on n. In the base case, consider the constraints of T0(E), that
is, the constraints of T (E). Using the same table as above we observe that J is well-defined
on all these constraints.

In the induction step, consider first T2n+2(E) for some n ≥ 0. Suppose (x → [[F]])λx.F ≤
([[H]]→ [[GH]])GH is in T2n+1(E). It is sufficient to prove that LJ ([[H]]) ⊆ LJ (x) and LJ ([[F]]) ⊆
LJ ([[GH]]) are in C(E), or equivalently, that [[H]] ⊆ x and [[F]] ⊆ [[GH]] are in C(E). In C(E)
we have

({λx.F})λx.F ⊆ [[G]] ⇒ [[H]] ⊆ x

({λx.F})λx.F ⊆ [[G]] ⇒ [[F]] ⊆ [[GH]] .

If ({λx.F})λx.F ⊆ [[G]] is in C(E), then [[H]] ⊆ x and [[F]] ⊆ [[GH]] are in C(E). To see
that ({λx.F})λx.F ⊆ [[G]] is in C(E), notice that in T (E), (x → [[F]])λx.F occurs only in the
constraint (x → [[F]])λx.F ≤ [[λx.F]], and ([[H]] → [[GH]])GH occurs only in the constraint
[[G]] ≤ ([[H]] → [[GH]])GH . Since (x → [[F]])λx.F ≤ ([[H]] → [[GH]])GH is in T2n+1(E) we get
that also [[λx.F]] ≤ [[G]] is in T2n+1(E). Hence, (x → [[F]])λx.F ≤ [[G]] is in T2n+1(E), so by the
induction hypothesis, ({λx.F})λx.F ⊆ [[G]] is in C(E).

Consider then T2n+1(E) for some n ≥ 0. Suppose r ≤ s and s ≤ t are in T2n(E), and
suppose s ∈ XE ∪ YE. By the induction hypothesis, LJ (r) ⊆ LJ (s) and LJ (s) ⊆ LJ (t) are in
C(E). From s ∈ XE ∪ YE we get LJ (s) = s, so LJ (r) ⊆ LJ (t) is in C(E). 2

4.2 The equivalence proof

The following construction is the key to mapping flow information to types.

Definition 10 For every λ-term E, ϕ ∈ Cmap(E), and q0 ∈ Cl(E), define the term automaton
A(E,ϕ, q0) as follows:

A(E,ϕ, q0) = (Cl(E), Σ, q0, δ, `)

where:

• δ({λx1.E1, . . . , λxn.En}, 0) =
⋂n

i=1 ϕ(xi)
for n > 0

• δ({λx1.E1, . . . , λxn.En}, 1) =
⋃n

i=1 ϕ[[Ei]]
for n > 0

• `(q) =





⊥ if q = ∅
Int if q = {Int}
→ if q ⊆ Abs(E) ∧ q 6= ∅
> otherwise

14

2

Lemma 11 Suppose ϕ ∈ Cmap(E) and S1, S2 ∈ Cl(E). If S1 ⊆ S2, then tA(E,ϕ,S1) ≤ tA(E,ϕ,S2).

Proof. Define the orderings ⊆0, ⊆1 on Cl(E) such that ⊆0 equals ⊆ and ⊆1 equals ⊇. The
desired conclusion follows immediately from the property that if α ∈ D(tA(E,ϕ,S1))∩D(tA(E,ϕ,S2)),

then δ̂(S1, α) ⊆πα δ̂(S2, α). This property is proved by straightforward induction on the length
of α. 2

We can now prove that the type system and the safety analysis accept the same programs.

Theorem 12 For every λ-term E, the following seven conditions are equivalent:

1. C(E) is solvable.

2. T (E) is solvable.

3. T (E) is solvable.

4. C(E) is solvable.

5. C(E) does not contain constraints of the forms {Int} ⊆ Abs(E) or {λx.F} ⊆ {Int}.

6. T (E) does not contain constraints of the forms Int ≤ V → V ′ or V → V ′ ≤ Int, where

V, V ′ ∈ XE ∪ YE.

7. The function

λV.{ k | the constraint {k} ⊆ V is in C(E) }

is the least solution of C(E).

Proof. Given a λ-term E, notice that by the isomorphism of Theorem 9, (5) ⇔ (6). To
show the remaining equivalences, we proceed by proving the implications:

(1) ⇒ (2) ⇒ (3) ⇒ (4) ⇒ (5) ⇒ (7) ⇒ (1)

To prove (1) ⇒ (2), suppose C(E) has solution ϕ ∈ Cmap(E). Let f be the function
λS.tA(E,ϕ,S) and define ψ ∈ Tmap(E) by ψ = f ◦ϕ. We will show that T (E) has solution ψ. We
consider each of the constraints in turn. The cases of the constraints generated from subterms
of the forms 0, succ E, x are immediate, by using Lemma 11. Consider then λx.F and the
constraint x→ [[F]] ≤ [[λx.F]]. By the definition of f and Lemma 11 we get

ψ(x)→ ψ([[F]]) = f({λx.F}) ≤ ψ([[λx.F]]) .

Consider then GH and the constraint [[G]] ≤ [[H]] → [[GH]]. We know that ϕ([[G]]) ⊆ Abs(E)
so there are two cases. Suppose first that ϕ([[G]]) = ∅. We then have ψ([[G]]) = ⊥ ≤ ψ([[H]])→
ψ([[GH]]). Consider then the case where ϕ([[G]]) = {λx1.E1, . . . , λxn.En}, for n > 0. We then

15

have that ϕ([[H]]) ⊆ ϕ([[xi]]) and ϕ([[Ei]]) ⊆ ϕ([[GH]]) for i ∈ {1, . . . , n}. Thus, ϕ([[H]]) ⊆⋂n
i=1 ϕ([[xi]]) and

⋃n
i=1 ϕ([[Ei]]) ⊆ ϕ([[GH]]). So, by Lemma 11,

ψ([[G]]) = f(ϕ([[G]]))

= f(
n⋂

i=1

ϕ([[xi]]))→ f(
n⋃

i=1

ϕ([[Ei]]))

≤ f(ϕ([[H]]))→ f(ϕ([[GH]]))

= ψ([[H]])→ ψ([[GH]])

To prove (2)⇒ (3), suppose T (E) has solution ψ ∈ Tmap(E). It is sufficient to show that
T (E) has solution ψ, and this can be proved by straightforward induction on the construction
of T (E).

To prove (3) ⇒ (4), suppose T (E) has solution ψ ∈ Tmap(E). Define ϕ ∈ Cmap(E) as
follows:

ϕ(V) =





∅ if (ψ(V))(ε) = ⊥
{Int} if (ψ(V))(ε) = Int

Abs(E) if (ψ(V))(ε) = →
Abs(E) ∪ {Int} if (ψ(V))(ε) = >

We will show that C(E) has solution ϕ. To see this, let W ⊆ Z be a constraint in C(E).
If it is of the forms {Int} ⊆ {Int} or {λx.F} ⊆ Abs(E), then it is solvable by all functions,
including ϕ. For the remaining cases, notice that by Theorem 9, LI(W) ≤ LI(Z) is in T (E)
and thus it has solution ψ. This means that W ⊆ Z cannot be of the forms {Int} ⊆ Abs(E) or
{λx.F} ⊆ {Int}. Suppose then that W ⊆ Z is of one of the remaining forms, that is, {Int} ⊆ V ,
V ⊆ V ′, V ⊆ {Int}, {λx.F} ⊆ V , V ⊆ Abs(E), where V, V ′ ∈ XE ∪ YE. We will treat just the
first of them, the others are similar. For a constraint of the form {Int} ⊆ V , it follows that
Int ≤ V is in T (E). Since T (E) has solution ψ we get that (ψ(V))(ε) ∈ {Int,>}. Thus, ϕ(V)
is either {Int} or Abs(E) ∪ {Int}, and hence {Int} ⊆ V has solution ϕ.

To prove (4)⇒ (5), observe that constraints of the forms {Int} ⊆ Abs(E) or {λx.F} ⊆ {Int}
are not solvable.

To prove (5)⇒ (7), suppose C(E) does not contain constraints of the forms {Int} ⊆ Abs(E)
or {λx.F} ⊆ {Int}. Define

ϕ′ = λV.{ k | the constraint {k} ⊆ V is in C(E) }

We proceed in four steps, as follows.

• First we show that ϕ′ is a solution of C(E). We consider in turn each of the seven possible
forms of constraints in C(E). Constraints of the forms {Int} ⊆ {Int} and {λx.F} ⊆
Abs(E) have any solution, including ϕ′. We are thus left with constraints of the forms
{Int} ⊆ V , V ⊆ V ′, V ⊆ {Int}, {λx.F} ⊆ V , V ⊆ Abs(E), where V, V ′ ∈ XE ∪ YE. We
will treat just the first three, since case four is similar to case one and since case five is
similar to case three. For a constraint of the form {Int} ⊆ V , notice that Int ∈ ϕ′(V), so
the constraint has solution ϕ′. For a constraint of the form V ⊆ V ′, suppose k ∈ ϕ′(V).

16

Then the constraint {k} ⊆ V is in C(E), and hence the constraint {k} ⊆ V ′ is also in
C(E). It follows that k ∈ ϕ′(V ′). For a constraint of the form V ⊆ {Int}, suppose it does
not have solution ϕ′. Hence, there exist k ∈ ϕ′(V) such that k 6= Int. It follows that the
constraint {k} ⊆ V is in C(E), and hence the constraint {k} ⊆ {Int} is also in C(E), a
contradiction.

• Next we show that ϕ′ is the least solution of C(E). To do this, let ϕ be any solution of
C(E) and suppose V ∈ XE ∪ YE. It is sufficient to prove that ϕ′(V) ⊆ ϕ(V). Suppose
k ∈ ϕ′(V). Then the constraint {k} ⊆ V is in C(E). Since ϕ is a solution of C(E),
k ∈ ϕ(V).

• Next we show that ϕ′ is a solution of C(E). Consider first the non-conditional constraints
of C(E). Since these constraints are also members of C(E), they have solution ϕ′. Con-
sider then {λx.F} ⊆ V ⇒ K in C(E) and suppose {λx.F} ⊆ V has solution ϕ′. Then
by the definition of ϕ′, we have that {λx.F} ⊆ V is in C(E), so also K is in C(E), and
hence K has solution ϕ′.

• Finally we show that ϕ′ is the least solution of C(E). To do this, let ϕ be any solution of
C(E). Then ϕ is also a solution of C(E), as can be proved by straightforward induction
on the construction of C(E). Since ϕ′ is the least solution of C(E), ϕ′ is smaller than or
equal to ϕ.

To prove (7)⇒ (1), simply notice that since C(E) has a solution, it is solvable. 2

Corollary 13 The type system accepts the same programs as the safety analysis.

The equivalence proof is illustrated in Section 5.

4.3 Algorithms

As corollaries of Theorem 12 we get two cubic time algorithms. Given a λ-term E, first observe
that both C(E) and T (E) can be computed in time O(n3) where n is the size of E. We can
then easily answer the following two questions:

• Question (safety): Is E accepted by safety analysis?
Algorithm: Check that C(E) does not contain constraint of the forms {Int} ⊆ Abs(E) or
{λx.F} ⊆ {Int}.

• Question (type inference): Is E typable? If so, what is an annotation of it?
Algorithm: Use the safety checking algorithm. If E turns out to be typable, we get an
annotation by first calculating the two functions

ϕ′ = λV.{ k | the constraint {k} ⊆ V is in C(E) }

and

f = λS.tA(E,ϕ,S)

17

and then forming the composition

ψ = f ◦ ϕ′ .

This function ψ is a solution of T (E).

The question of type inference has been open until now. In contrast, it is well-known that flow
analysis in the style discussed in this paper can be computed in time O(n3).

It remains open to define a more direct O(n3) time type inference algorithm, that is, one
that does not use the reduction to the safety checking problem.

5 Examples

We will illustrate the proof of equivalence with two examples. The λ-terms that will be treated
are λx.x(succ x), which was also discussed in Section 1, and (λx.xx)(λy.y).

5.1 λx.x(succ x)

As in Section 1, we give each of the two occurrences of x a label so that the λ-term reads
λx.x1(succ x2). For brevity, let E = λx.x1(succ x2). Notice that Abs(E) = {E}. As stated in
Section 1, C(E) looks as follows:

{E} ⊆ [[E]]

[[x1]] ⊆ {E}

x ⊆ [[x1]]

x ⊆ [[x2]]

{E} ⊆ [[x1]] ⇒ [[succ x2]] ⊆ x

{E} ⊆ [[x1]] ⇒ [[x1(succ x2)]] ⊆ [[x1(succ x2)]]

{Int} ⊆ [[succ x2]]

[[x2]] ⊆ {Int}

The deductive closure C(E) looks as follows:

{E} ⊆ [[E]]

[[x1]] ⊆ {E}

x ⊆ [[x1]]

x ⊆ [[x2]]

{Int} ⊆ [[succ x2]]

[[x2]] ⊆ {Int}

x ⊆ {E}

x ⊆ {Int}

18

Intuitively, this deductive closure is obtained by observing that no constraint matches the
condition of any of the two conditional constraints, and by using the transitivity rule twice.

As also stated in Section 1, T (E) looks as follows:

x→ [[x1(succ x2)]] ≤ [[E]]

[[x1]] ≤ [[succ x2]]→ [[x1(succ x2)]]

x ≤ [[x1]]

x ≤ [[x2]]

Int ≤ [[succ x2]]

[[x2]] ≤ Int

The deductive closure T (E) looks as follows:

x→ [[x1(succ x2)]] ≤ [[E]]

[[x1]] ≤ [[succ x2]]→ [[x1(succ x2)]]

x ≤ [[x1]]

x ≤ [[x2]]

Int ≤ [[succ x2]]

[[x2]] ≤ Int

x ≤ [[succ x2]]→ [[x1(succ x2)]]

x ≤ Int

This deductive closure is obtained by using the transitivity rule twice.
It can be verified by inspection that Theorem 9 is true for E, that is, C(E) and T (E)

are isomorphic. Moreover, C(E) does not contain constraints of the forms {Int} ⊆ Abs(E)
or {λx.F} ⊆ {Int}, and T (E) does not contain constraints of the forms Int ≤ V → V ′ or
V → V ′ ≤ Int, where V, V ′ ∈ XE ∪ YE.

We are now ready to focus on the equivalence proof. We will go through that proof and
illustrate each construction in the case of E.

The equivalence proof may be summarized as follows. The proof demonstrates several
instances of how to transform a solution of one constraint system into a solution of an other
constraint system. It may be helpful to think of a step as transforming the output of the previous
step, as follows. The starting point is a solution ϕ of C(E). This ϕ is then transformed into a
solution ψ of T (E). This ψ is also a solution of T (E), and it is then transformed into a solution
ϕ of C(E). Having such a solution implies that certain constraints are not in C(E) (condition
5), and also that certain constraints are not in T (E) (condition 6). The function ϕ need not be
a solution of C(E), but we can construct the least solution of C(E) from C(E). In one picture,
the transformations go as follows:

ϕ → ψ → ϕ

We will now follow a particular ϕ as it tours this diagram.

19

As starting point, we choose the least solution ϕ of C(E) which was also stated in Section 1.
It looks as follows:

ϕ([[E]]) = {E}

ϕ([[succ x2]]) = {Int}

ϕ([[x1(succ x2)]]) = ϕ(x) = ϕ([[x1]]) = ϕ([[x2]]) = ∅

To get the solution ψ of T (E), we need to construct the function λS.tA(E,ϕ,S) and compose
it with ϕ. The automaton A(E,ϕ, S) can be illustrated as follows:

- •
{E, Int}

>•
∅

⊥

{Int}
•Int→

{E}
• 0, 1

Notice that we have not pointed to the start state; it is a parameter of the specification.
The illustration gives both the name and the label of each state. There are just two transitions,
both from the state {E} to the state ∅. Observe that

tA(E,ϕ,S) =





⊥ → ⊥ if S = {E}
Int if S = {Int}
⊥ if S = ∅

We can then obtain the mapping ψ:

ψ([[E]]) = ⊥ → ⊥

ψ([[succ x2]]) = Int

ψ([[x1(succ x2)]]) = ψ(x) = ψ([[x1]]) = ψ([[x2]]) = ⊥

It can be verified by inspection that ψ is a solution of T (E) and T (E).
To get the solution ϕ of C(E), we need to compute (ψ(V))(ε) for every V ∈ XE ∪ YE. For

example,

(ψ([[E]]))(ε) = (⊥ → ⊥)(ε) =→

Plugging this into the definition of ϕ yields:

ϕ([[E]]) = {E}

ϕ([[succ x2]]) = {Int}

ϕ([[x1(succ x2)]]) = ϕ(x) = ϕ([[x1]]) = ϕ([[x2]]) = ∅

So, ϕ = ϕ, and it can be verified by inspection that ϕ is a solution of C(E).
Finally, to construct ϕ′ where

ϕ′ = λV.{ k | the constraint {k} ⊆ V is in C(E) }

notice that the constraints in C(E) that have the form {k} ⊆ V where V ∈ XE ∪ YE are:

{E} ⊆ [[E]]

{Int} ⊆ [[succ x2]]

So, ϕ = ϕ = ϕ′, and hence ϕ′ is the least solution of C(E).
It is only in special cases that ϕ = ϕ. Next we consider a slightly more complicated example

where this does not occur.

20

5.2 (λx.xx)(λy.y)

We give each of the two occurrences of x a label so that the λ-term reads (λx.x1x2)(λy.y).
For brevity, let E = (λx.x1x2)(λy.y). Notice that Abs(E) = {λx.x1x2, λy.y}. The constraint
system C(E) looks as follows:

λx.x1x2 {λx.x1x2} ⊆ [[λx.x1x2]]
λy.y {λy.y} ⊆ [[λy.y]]
E [[λx.x1x2]] ⊆ Abs(E)
x1x2 [[x1]] ⊆ Abs(E)
x1 x ⊆ [[x1]]
x2 x ⊆ [[x2]]
y y ⊆ [[y]]
x1x2 and
λx.x1x2

{
{λx.x1x2} ⊆ [[x1]] ⇒ [[x2]] ⊆ x

{λx.x1x2} ⊆ [[x1]] ⇒ [[x1x2]] ⊆ [[x1x2]]

x1x2 and
λy.y

{
{λy.y} ⊆ [[x1]] ⇒ [[x2]] ⊆ y

{λy.y} ⊆ [[x1]] ⇒ [[y]] ⊆ [[x1x2]]

E and
λx.x1x2

{
{λx.x1x2} ⊆ [[λx.x1x2]] ⇒ [[λy.y]] ⊆ x

{λx.x1x2} ⊆ [[λx.x1x2]] ⇒ [[x1x2]] ⊆ [[E]]

E and
λy.y

{
{λy.y} ⊆ [[λx.x1x2]] ⇒ [[λy.y]] ⊆ y

{λy.y} ⊆ [[λx.x1x2]] ⇒ [[y]] ⊆ [[E]]

To the left of the constraints, we have indicated from where they arise.
The constraint system T (E) looks as follows:

From λx.x1x2 x→ [[x1x2]] ≤ [[λx.x1x2]]
From λy.y y → [[y]] ≤ [[λy.y]]
From E [[λx.x1x2]] ≤ [[λy.y]]→ [[E]]
From x1x2 [[x1]] ≤ [[x2]]→ [[x1x2]]
From x1 x ≤ [[x1]]
From x2 x ≤ [[x2]]
From y y ≤ [[y]]

The deductive closures C(E) and T (E) look as follows.

21

C(E) T (E)
{λx.x1x2} ⊆ [[λx.x1x2]] x→ [[x1x2]] ≤ [[λx.x1x2]]
{λx.x1x2} ⊆ Abs(E) x→ [[x1x2]] ≤ [[λy.y]]→ [[E]]
[[λx.x1x2]] ⊆ Abs(E) [[λx.x1x2]] ≤ [[λy.y]]→ [[E]]
{λy.y} ⊆ [[λy.y]] y → [[y]] ≤ [[λy.y]]
{λy.y} ⊆ x y → [[y]] ≤ x

{λy.y} ⊆ [[x1]] y → [[y]] ≤ [[x1]]
{λy.y} ⊆ Abs(E) y → [[y]] ≤ [[x2]]→ [[x1x2]]
{λy.y} ⊆ [[x2]] y → [[y]] ≤ [[x2]]
{λy.y} ⊆ y y → [[y]] ≤ y

{λy.y} ⊆ [[y]] y → [[y]] ≤ [[y]]
{λy.y} ⊆ [[x1x2]] y → [[y]] ≤ [[x1x2]]
{λy.y} ⊆ [[E]] y → [[y]] ≤ [[E]]
[[λy.y]] ⊆ x [[λy.y]] ≤ x

[[λy.y]] ⊆ [[x1]] [[λy.y]] ≤ [[x1]]
[[λy.y]] ⊆ Abs(E) [[λy.y]] ≤ [[x2]]→ [[x1x2]]
[[λy.y]] ⊆ [[x2]] [[λy.y]] ≤ [[x2]]
[[λy.y]] ⊆ y [[λy.y]] ≤ y

[[λy.y]] ⊆ [[y]] [[λy.y]] ≤ [[y]]
[[λy.y]] ⊆ [[x1x2]] [[λy.y]] ≤ [[x1x2]]
[[λy.y]] ⊆ [[E]] [[λy.y]] ≤ [[E]]
x ⊆ [[x1]] x ≤ [[x1]]
x ⊆ Abs(E) x ≤ [[x2]]→ [[x1x2]]
x ⊆ [[x2]] x ≤ [[x2]]
x ⊆ y x ≤ y

x ⊆ [[y]] x ≤ [[y]]
x ⊆ [[x1x2]] x ≤ [[x1x2]]
x ⊆ [[E]] x ≤ [[E]]
[[x1]] ⊆ Abs(E) [[x1]] ≤ [[x2]]→ [[x1x2]]
[[x2]] ⊆ y [[x2]] ≤ y

[[x2]] ⊆ [[y]] [[x2]] ≤ [[y]]
[[x2]] ⊆ [[x1x2]] [[x2]] ≤ [[x1x2]]
[[x2]] ⊆ [[E]] [[x2]] ≤ [[E]]
y ⊆ [[y]] y ≤ [[y]]
y ⊆ [[x1x2]] y ≤ [[x1x2]]
y ⊆ [[E]] y ≤ [[E]]
[[y]] ⊆ [[x1x2]] [[y]] ≤ [[x1x2]]
[[y]] ⊆ [[E]] [[y]] ≤ [[E]]
[[x1x2]] ⊆ [[E]] [[x1x2]] ≤ [[E]]

It can be verified by inspection that Theorem 9 is true for E, that is, C(E) and T (E)
are isomorphic. Moreover, C(E) does not contain constraints of the forms {Int} ⊆ Abs(E)
or {λx.F} ⊆ {Int}, and T (E) does not contain constraints of the forms Int ≤ V → V ′ or
V → V ′ ≤ Int, where V, V ′ ∈ XE ∪ YE.

22

As for the previous example, we will now go through the equivalence proof and illustrate
each construction in the case of E.

As starting point, we choose the least solution ϕ of C(E). It looks as follows:

ϕ(V) =

{
{λx.x1x2} if V = [[λx.x1x2]]
{λy.y} otherwise

To get the solution ψ of T (E), we need to construct the function λS.tA(E,ϕ,S) and compose it
with ϕ. The automaton A(E,ϕ, S) can be illustrated as follows:

&%
'$

-�q

0, 1

0, 1 0, 1• ••
{λx} {λy} {λx, λy}

→ → →

• •

• • •

∅ {Int}
⊥ Int

{Int, λx} {Int, λy} {Int, λx, λy}

> > >

As before, notice that we have not pointed to the start state; it is a parameter of the
specification. Notice also that we have abbreviated the names of some of the states. Observe
that tA(E,ϕ,S) = µα.α→ α, if S is a non-empty subset of {λx.x1x2, λy.y}. We can then obtain
the mapping ψ. It is a constant function:

ψ(V) = µα.α→ α

It can be verified by inspection that ψ is a solution of T (E) and T (E).
As an aside, note that although ψ(V) is an infinite tree for all V , there are other solutions

of T (E) and T (E) where all the involved types are finite. For example, consider the solution
ψ′ where

ψ′([[λx.x1x2]]) = (> → >)→ >

ψ′([[λy.y]]) = ψ′(x) = ψ′([[x1]]) = > → >

ψ′([[x2]]) = ψ′(y) = ψ′([[y]]) = ψ′([[x1x2]])

= ψ′([[E]]) = >

To get the solution ϕ of C(E), observe that

(ψ(V))(ε) = → .

23

Plugging this into the definition of ϕ yields that ϕ is a constant function:

ϕ(V) = Abs(E)

Notice that ϕ 6= ϕ. It can be verified by inspection that ϕ is a solution of C(E).
Finally, to construct ϕ′ where

ϕ′ = λV.{ k | the constraint {k} ⊆ V is in C(E) }

notice that the constraints in C(E) that have the form {k} ⊆ V where V ∈ XE ∪ YE are:

{λx.x1x2} ⊆ [[λx.x1x2]]
{λy.y} ⊆ [[λy.y]]
{λy.y} ⊆ x

{λy.y} ⊆ [[x1]]
{λy.y} ⊆ [[x2]]
{λy.y} ⊆ y

{λy.y} ⊆ [[y]]
{λy.y} ⊆ [[x1x2]]
{λy.y} ⊆ [[E]]

So, ϕ = ϕ′, and hence ϕ′ is the least solution of C(E).

6 Extensions

Various extensions to the type system and flow analysis have equivalent typability and safety
problems. We now show an example of such an extension: the conditional construct if0. For
simplicity, we consider if0 rather than a more usual if, to avoid introducing booleans. Thus,
the set of types TΣ and the abstract domain Cl(E) for the safety analysis remain the same.

The syntax for the extension of our example language is:

E ::= . . . | if0 E1E2E3

The intension is that if E1 evaluates to 0, then E2 is evaluated; if E1 evaluates to a non-zero
integer, then E3 is evaluated; and if E1 evaluates to a non-integer, then an error occurs. We
need one new type rule:

A ` E : Int A ` E2 : t A ` E3 : t

A ` if0 E1E2E3 : t
(7)

As before, we can rephrase the type inference problem in terms of solving a system of type
constraints. We need three new type constraints:

24

• for every occurrence of a subterm of the form if0 E1E2E3, we generate the three inequal-
ities

[[E1]] ≤ Int

[[E2]] ≤ [[if0 E1E2E3]]

[[E3]] ≤ [[if0 E1E2E3]] .

It is straightforward to check that Theorem 5 remains true, that is, the solutions of the con-
straint system correspond to the possible type annotations.

We need three new safety constraints:

• for every occurrence of a subterm of the form if0 E1E2E3, we generate the three constraints

[[E1]] ⊆ {Int}

[[E2]] ⊆ [[if0 E1E2E3]]

[[E3]] ⊆ [[if0 E1E2E3]] .

It is straightforward to check that Theorem 9 and Theorem 12 remain true, that is, C(E) are
T (E) are isomorphic, and the type system and the safety analysis accept the same programs.
Moreover, the safety analysis analysis and type inference algorithms remain the same.

The addition of polymorphic let, products, sums and atomic subtypes with coercions should
also be straightforward. Dynamic or soft typing systems are also candidates for formulating
equivalent type and flow analysis systems.

A different challenge is to formulate a type system equivalent to the safety analysis for
object-oriented languages presented in [14]. Yet another challenge is to find two equivalent
binding-time analyses, one based on type systems and one based on flow analysis. Results in
this direction were presented in [13].

7 Conclusion

We have described a type system and a flow analysis and proved that the corresponding typabil-
ity and safety problems are equivalent. We also obtained a cubic time algorithm for typability.
This problem has been open since the type system was first presented by Amadio and Cardelli
in 1991 [1].

For a given program, the system of type constraints and the system of flow constraints are
radically different. For the particular language studied in this paper, however, we demonstrated
that the deductive closures of those systems are isomorphic. This property does not seem to
be either a necessary or a sufficient condition for the equivalence result, but in itself it suggests
a close relationship between the systems.

Tang and Jouvelot [19] has demonstrated that type analysis and flow analysis can be com-
bined in a single framework. The type system part of their approach is that of simple types.

25

A challenge is to extend their framework such that the type system part is that of this paper.
Wand and Steckler [22] presented a framework for proving correctness of flow-based compiler
optimizations. A challenge is to investigate if their framework can be simplified when the flow
analysis is replaced by for example the framework of Tang and Jouvelot [19] or possibly an
extended one.

An example of an area in which a relationship between a typing problem and a flow problem
may be helpful is debugging and explaining type inferencing results for end users. A flow
analysis point of view might provide a concrete illustration of why the type inferencer produced
a particular type assignment or typing error [20].

The two systems considered in this paper use inequalities, that is, subtyping in the type
system and set inclusion in the flow analysis. One might consider changing the inequalities
to equalities and look for an equivalence result similar to the one on this paper. On the type
system side, this would result in a simply-typed lambda-calculus with a type inference algorithm
based on unification. On the flow analysis side, it would result in an analysis resembling the
one of Bondorf and Jørgensen [4]. Current work addresses obtaining an equivalence between
two such systems [6].

In conclusion, we find that a type system and a flow analysis can in some cases be equivalent
ways of looking at the same problem.

Acknowledgements

We thank Mitchell Wand for encouragement and helpful discussions. We also thank Torben
Amtoft and the anonymous referees for helpful comments on a draft of the paper. The results
of this paper were obtained while the first author was at Northeastern University, Boston.

References

[1] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM Transactions on

Programming Languages and Systems, 15(4):575–631, 1993. Also in Proc. POPL’91.

[2] Torben Amtoft. Minimal thunkification. In Proc. WSA’93, pages 218–229, 1993.

[3] Anders Bondorf. Automatic autoprojection of higher order recursive equations. Science

of Computer Programming, 17(1–3):3–34, December 1991.

[4] Anders Bondorf and Jesper Jørgensen. Efficient analyses for realistic off-line partial eval-
uation. Journal of Functional Programming, 3(3):315–346, 1993.

[5] Charles Consel. A tour of Schism: A partial evaluation system for higher-order applicative
languages. In Proc. PEPM’93, Second ACM SIGPLAN Symposium on Partial Evaluation

and Semantics-Based Program Manipulation, pages 145–154, 1993.

[6] Nevin Heintze. Personal communication. 1994.

26

[7] Nevin Heintze. Set-based analysis of ML programs. In Proc. ACM Conference on LISP

and Functional Programming, pages 306–317, 1994.

[8] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient inference of partial
types. Journal of Computer and System Sciences, 49(2):306–324, 1994. Also in Proc.
FOCS’92, 33rd IEEE Symposium on Foundations of Computer Science, pages 363–371,
Pittsburgh, Pennsylvania, October 1992.

[9] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient recursive subtyping.
Mathematical Structures in Computer Science, 1995. To appear. Also in Proc. POPL’93,
Twentieth Annual SIGPLAN–SIGACT Symposium on Principles of Programming Lan-
guages, pages 419–428, Charleston, South Carolina, January 1993.

[10] Tsung-Min Kuo and Prateek Mishra. Strictness analysis: A new perspective based on
type inference. In Proc. Conference on Functional Programming Languages and Computer

Architecture, pages 260–272, 1989.

[11] Jens Palsberg. Closure analysis in constraint form. ACM Transactions on Programming

Languages and Systems, 1995. To appear. Also in Proc. CAAP’94, Colloquium on Trees
in Algebra and Programming, Springer-Verlag (LNCS 787), pages 276–290, Edinburgh,
Scotland, April 1994.

[12] Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type inference for partial
types. Information Processing Letters, 43:175–180, 1992.

[13] Jens Palsberg and Michael I. Schwartzbach. Binding-time analysis: Abstract interpreta-
tion versus type inference. In Proc. ICCL’94, Fifth IEEE International Conference on

Computer Languages, pages 289–298, Toulouse, France, May 1994.

[14] Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Systems. John Wiley
& Sons, 1994.

[15] Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type inference. Infor-

mation and Computation, 118(1):128–141, 1995.

[16] Peter Sestoft. Analysis and Efficient Implementation of Functional Programs. PhD thesis,
DIKU, University of Copenhagen, October 1991.

[17] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, CMU, May
1991. CMU–CS–91–145.

[18] Olin Shivers. Data-flow analysis and type recovery in Scheme. In Peter Lee, editor, Topics

in Advanced Language Implementation, pages 47–87. MIT Press, 1991.

[19] Yan Mei Tang and Pierre Jouvelot. Separate abstract interpretation for control-flow analy-
sis. In Proc. TACS’94, Theoretical Aspects of Computing Sofware, pages 224–243. Springer-
Verlag (LNCS 789), 1994.

27

[20] Mitchell Wand. Finding the source of type errors. In Thirteenth Symposium on Principles

of Programming Languages, pages 38–43, 1986.

[21] Mitchell Wand. Type inference for record concatenation and multiple inheritance. Infor-

mation and Computation, 93(1):1–15, 1991.

[22] Mitchell Wand and Paul Steckler. Selective and lightweight closure conversion. In Proc.

POPL’94, 21st Annual Symposium on Principles of Programming Languages, pages 434–
445, 1994.

28

