
Featherweight X10: A Core Calculus
for Async-Finish Parallelism

Jonathan K. Lee Jens Palsberg
UCLA, University of California, Los Angeles

{jkenl,palsberg}@cs.ucla.edu

Abstract
We present a core calculus with two of X10’s key constructs for
parallelism, namely async and finish. Our calculus forms a con-
venient basis for type systems and static analyses for languages
with async-finish parallelism, and for tractable proofs of correct-
ness. For example, we give a short proof of the deadlock-freedom
theorem of Saraswat and Jagadeesan. Our main contribution is a
type system that solves the open problem of context-sensitive may-
happen-in-parallel analysis for languages with async-finish paral-
lelism. We prove the correctness of our type system and we report
experimental results of performing type inference on 13,000 lines
of X10 code. Our analysis runs in polynomial time, takes a total of
28 seconds on our benchmarks, and produces a low number of false
positives, which suggests that our analysis is a good basis for other
analyses such as race detectors.

Categories and Subject DescriptorsD.3 Programming Lan-
guages [Formal Definitions and Theory]

General Terms Algorithms, Languages, Theory, Verification

Keywords parallelism, operational semantics, static analysis

1. Introduction
Two of X10’s [5] key constructs for parallelism are async and
finish. The async statement is a lightweight notation for spawning
threads, while a finish statementfinish s waits for termination of
all async statement bodies started while executings.

Our goal is to enable researchers to easily define type systems
and static analyses for languages with async-finish parallelism, and
prove their correctness. For that purpose we provide a Turing-
complete calculus with a minimal syntax and a simple formal
semantics. A program in our calculus consists of a collection of
methods that all have access to an array. The body of a method
is a statement that can be skip, assignment, sequence, while loop,
async, finish, or method call. If we add some boilerplate syntax to
a program in our calculus, the result is an executable X10 program.

We call our calculus Featherweight X10, abbreviated FX10.
Featherweight X10 shares a key objective with Featherweight Java
[8], namely to enable a fundamental theorem to have a proof that
is concise, while still capturing the essence of the proof for the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

PPoPP’10, January 9–14, 2010, Bangalore, India.
Copyright c© 2010 ACM 978-1-60558-708-0/10/01. . . $10.00

full language. Our hope is that other researchers will find it easy to
work either with FX10 as it is or with small extensions that meet
particular needs.

We demonstrate the usefulness of our calculus in two ways.
First, we give a short proof of the deadlock-freedom theorem of
Saraswat and Jagadeesan [17]. They considered a much larger sub-
set of X10 but stated the deadlock-freedom theorem without proof.
Second, we present a type system that solves the open problem
of context-sensitive may-happen-in-parallel analysis for languages
with async-finish parallelism. We prove the type system correct and
then discuss our experience with type inference.

The goal of may-happen-in-parallel analysis is to identify pairs
of statements that may happen in parallel during some execution
of the program. May-happen-in-parallel analysis is also known
aspairwise reachability[9]. While the problem is undecidable in
general and NP-complete under certain assumptions [18], a static
analysis that gives an approximate answer is useful as a basis
for tools such as data race detectors [6]. Researchers have de-
fined may-happen-in-parallel analysis for Ada [7, 13, 15, 16], Java
[12, 3], X10 [2], and other languages. Those seven papers specify
polynomial-time analyses using pseudo-code, data flow equations
or set constraints, but they give no proofs of correctness with re-
spect to a formal semantics. Additionally, the algorithms are either
intraprocedural, rely on inlining of method calls before the analy-
sis begins, or treat call sites in a context-insensitive fashion, that is,
merge the information from different call sites.

We believe that when a program happen may execute two state-
ments in parallel, it should be because the programmerintended
it. Thus, may-happen-in-parallel information should be something
the programmer has in mind while programming, rather than some-
thing discovered after the programming is done. The data flow
equations and set constraints used in previous work are great for
specifying what an analysis does, but are much less helpful for
a working programmer. We will use a type system to specify a
may-happen-in-parallel analysis that comes with all the advantages
of type systems: syntax-directed type rules and a well-understood
approach to proving correctness [20]. In our case, we also get a
straightforward way to do modular, context-sensitive analysis of
methods, that is, a way to analyze each method just once and avoid
merging information from different call sites for the same method.
The advantage of syntax-directed type rules is that each rule con-
centrates on just one form of statement, and explains using only
local information why the may-happen-in-parallel information for
that statement is the way it is.

The paper by Agarwal et al. [2] on an intraprocedural may-
happen-in-parallel analysis for X10 first determines what cannot
happen in parallel and then takes its complement. In contrast,
our type system defines a modular, interprocedural may-happen-
in-parallel analysis without use of double negation. Additionally,
our analysis comes with a proof of correctness plus experiments.

Naik and Aiken [14] presented a flow- and context-sensitive may-
happen-in-parallel analysis for Java as part of a static race detector.
Their problem differs from ours because Java has no construct like
finish.

Previous approaches to interprocedural analysis of concurrent
programs include the paper by Barik and Sarkar [4] on X10, and the
paper by von Praun and Gross [19] on Java; both present analyses
that differ from may-happen-in-parallel analysis. The paper by
Barik and Sarkar mentions that a refinement of their analysis with
may-happen-in-parallel information is left for future work.

For a programp, let MHP(p) be the true may-happen-in-
parallel information. Intuitively, if an execution ofp can reach a
state in which two statements with labelsl1 andl2 can both happen
next, then(l1, l2) ∈ MHP(p), and only such pairs are members of
MHP(p). We will show how to compute a conservative yet precise
approximation ofMHP(p). In our case, a conservative approxima-
tion is a superset ofMHP(p).

Our approach is to assign a typeE to a program; every program
has a type. Intuitively,E is a method summary for each method
in the program. Each summary is a pair(M,O), whereM is may-
happen-in-parallel information andO is a helper set that we explain
in a later section. Our correctness theorem (Theorem 3) says that if
p has typeE, andE(f0) = (M,O), wheref0 is the name of the
main method, then

MHP(p) ⊆M

In other words,M is a conservative approximation ofMHP(p).
If E is given, then we can do typechecking. In practice, we want

to computeE from p, that is, we want to do typeinference, without
any annotations or other help at all. For type inference we use the
following approach. Fromp we generate a family of set constraints
C(p), and then we solveC(p) using a polynomial-time algorithm
that resembles the algorithms used for iterative data flow analysis.
We prove the equivalence result (Theorem 4) that the solutions to
C(p) coincides with the types ofp.

The slogan of the overall approach could be:the type system
leads to syntax-directed type rules and a proof of correctness,
the constraints lead to a polynomial time algorithm, and the type
system and the constraints are equivalent. Our use of types gives a
high-level specification of the analysis, while the use of constraints
for us is an implementation technique.

In the following section we give two examples of skeletons
of programs in our core language, along with discussions of how
our analysis works. In Section 3 we present our core calculus, in
Section 4 we show our type system, and in Section 5 we show
how to generate and solve constraints. Finally, in Section 6 we
discuss our experimental results for 13,000 lines of X10 code, and
in Section 7 we conclude. Three appendices give detailed proofs of
our theorems.

2. Examples
In this section we will give a taste of how our may-happen-in-
parallel analysis works, and what results it can produce.

Let us first outline the main challenges for may-happen-in-
parallel analysis for async-finish parallelism. The key problems
stem from async, finish, loops and method calls. An async state-
ment allows the body to run in parallel with any statement that
follows it. If the body of a finish statement executes an async (or
a method call that executes an async), then only when the async
completes execution will the finish statement itself complete exe-
cution. This means that any statement in the body of a finish state-
ment cannot run in parallel with anything that happens after the
finish statement. A loop requires determining which async state-
ments may occur in the body and recognizing that the body of the
loop may run in parallel with those statements. Any bodies of async

statements that are executing at the time of a method call may run
in parallel with anything that may be executed in the method body.

2.1 First Example: Intraprocedural Analysis

The first example is from a PPoPP 2007 paper by Agarwal et al. [2,
Figure 4], with some minor changes.

void main() {
S0: finish {

S1: async {
S13: finish {

S5: ...
S6: async S11
S7: async S12

}
S8: ...

}
S2: ...

}
S3: ...

}

From this program, we generate set constraints. Each set con-
straint is an equality of a set variable and a set expression, where
the set expression may use set union. In a later section, we will
show the constraints in detail (Figure 5), and explain how we gen-
erate and solve them.

The output from our constraint solver says correctly thatS2 may
happen in parallel with each ofS5, S6, S7, S8, S11, andS12, as
well as with the entirefinish statement. This is correct because
the async statementS1 has the statementS2 occurring after it, so
the entire body of the async may happen in parallel with S2.

The output also says thatS11 andS12 may happen in parallel.
This is correct because the two asyncs are not enclosed in separate
finish statements and thus may be executing until the end of the
enclosing finish. Furthermore, the output says thatS7 andS11 may
happen in parallel. This is correct because the body of an async
may run in parallel with any statement that occurs after it.

The type inference algorithm found correctly that no other state-
ments may happen in parallel. In particular, the inner finish state-
ment ensures thatS11 andS12 cannot run in parallel with the state-
ments that follow the inner finish statement.

We conclude that for this program our algorithm determines the
best possible may-happen-in-parallel information.

2.2 Second Example: Modular Interprocedural Analysis

The second example illustrates the modularity and context-sensitive
aspects of our analysis.

void f() { async S5 }

void main() {
S1: finish {

async S3
f()

}
S2: finish {

f()
async S4

}
}

The output from our constraint solver says thatS5 may happen
in parallel with each ofS3, async S4, andS4, and thatS3 may also
happen in parallel with the first callf() and withasync S5. This is
correct because the body of an async may run in parallel with any

statement that occurs after it, including after method boundaries.
Here,S3 will run in parallel with the callf(), which in turn will
execute an async with bodyS5. So, S3 may happen in parallel
with f(), async S5, andS5. In the secondfinish, we havef()
executing first which will allowS5 to run in parallel withasync S4
andS4.

The type inference algorithm found correctly that no other state-
ments may happen in parallel. In particular,S1 andS2 are finish
statements that prevent the body ofS1 to run in parallel with the
body ofS2, and our algorithm determines thatS3 cannot happen in
parallel withS4.

We conclude that also for this program our algorithm deter-
mines the best possible may-happen-in-parallel information.

Let us contrast the results from our analysis (Section 4) with the
results from a context-insensitive analysis (Section 7) that merges
information from different call sites. The context-insensitive anal-
ysis would say thatS3 may happen in parallel withS4. The reason
is that the context-insensitive analysis will conservatively merge (i)
the information from the first call site thatS3 may be executing
when methodf completes its execution with (ii) the information
from the second call site thatS4 runs after the call completes ex-
ecution. The pair ofS3 andS4 is an example of a false positive:
the context-insensitive analysis infers that they may happen in par-
allel when in fact they cannot happen in parallel. In contrast, our
analysis doesn’t produce this particular false positive.

3. Featherweight X10
3.1 Design

FX10 is a core calculus in which sequential computation is the de-
fault, parallelism comes from the async statement, and synchro-
nization comes from the finish statement.

A subset of X10.The language X10, version 1.5, is the starting
point for the design of FX10. From X10 we take:

• a Turing-complete core consisting of while-loops, assignments,
and a single one-dimensional integer array,

• methods and method calls, and

• the async and finish statements.

Both programs in Section 2 are FX10 programs, if we fill in
the missing statements and ignore the labels of statements. We
omit many features from X10, including places, distributions, and
clocks.

Conventions and omitted boilerplate syntax.The grammar for
FX10 usesskip in place of the empty statement “;”, and it specifies
abstract syntax so it omits “{” and “}” for grouping of statements.
The grammar for FX10 also omits some boilerplate syntax that
is required to change an FX10 program into an executable X10
program. The boilerplate syntax consists of a main class plus one
other class with a final fielda that contains a one-dimensional
integer array, a constructor, and then the methods from the FX10
program. For example, after we add the boilerplate syntax to the
program in Section 2.2, it reads:

public class Main {
public static void main(String[] args) {

new C().main();
}

}
class C {

final int[:rank==1] a;
public C() { ... }
void f() { /* unchanged */ }
void main() { /* unchanged */ }

}

The the constructorC() initializes the array variablea; for
example, it might load the array’s contents from a file.

One array.An FX10 computation works with a single shared
memory given by an integer array variable nameda. We chose to
work with an array variable instead of a family of integer variables
because of a subtlety in the X10 semantics of async. The body of
an async statement can access variables outside the async statement
only if those variables are declaredfinal, that is, they can be initial-
ized once but not updated later. We want to enable updates to vari-
ables, and therefore final integer variables are insufficient for our
purposes. Instead we have a final integer array variable to which an
array reference is assigned once, while the individual locations of
the array can be updated and read multiple times.

Methods.FX10 contains methods and method calls to enable us
to show our context-sensitive may-happen-in-parallel analysis. For
studies in which methods play no particular role, researchers can
easily remove methods from the language.

A method in FX10 has no arguments, no local variables, no
return value, and no mechanism for early return. The reason is
that the key problem for may-happen-in-parallel analysis stems
from procedure calls themselves. A static analysis may be context
insensitive (that is, merge the information from different call sites),
or context sensitive (that is, separate the information from different
call sites). As we will show in Section 7, for the case of may-
happen-in-parallel analysis, the difference is significant.

Informal semantics.The semantics of FX10 uses the binary op-
erator‖ in the semantics of async, it uses the binary operatorB in
the semantics of finish, and it uses the constant

√
to model a com-

pleted computation. A state in the semantics is a triple consisting
of the program, the state of the arraya, and a treeT that describes
the code executing. The internal nodes ofT are either‖ or B, while
the leaves are either

√
or 〈s〉, wheres is a statement.

As an example of how the semantics works, we will now infor-
mally discuss an execution of the program in Section 2.2. Let us
focus on the code that is being executed and let us ignore the state
of the arraya. The execution begins inmain by executing the first
finish statement.

〈finish { async S3 f() } S2〉 →
〈async S3 f()〉 B 〈S2〉 →

(〈S3〉 ‖ 〈f()〉) B 〈S2〉 →
(〈S3〉 ‖ 〈async S5〉) B 〈S2〉 →

(〈S3〉 ‖ 〈S5〉) B 〈S2〉

The first step illustrates the semantics of finish and introducesB to
signal that the left-hand side ofB must complete execution before
the right-hand can proceed. The second step illustrates the seman-
tics of async and introduces‖ to signal thatS3 andf() should pro-
ceed in parallel. The third step illustrates the semantics of method
call and replaces the callf() with the bodyasync S5. The fourth
step again illustrates the semantics of async. The two sides of‖
can execute in parallel, which we model with an interleaving se-
mantics. When one of the sides completes execution, it will reach
the state

√
. For example ifS3 →

√
, then the semantics can do

(S3 ‖ S5) → (
√
‖ S5) → S5. When alsoS5 completes execution,

the semantics can finally proceed with the right-hand side ofB.

3.2 Syntax

We usec to range over natural numbersN = {0, 1, 2, . . .}, and
we usel to range over labels. Figure 1 shows the grammar for the
abstract syntax of FX10.

An FX10 program consists of a family of methodsfi, each with
no arguments, return type void, and bodysi. We usep(fi) to denote
si. Eachsi can access a nonempty one-dimensional arraya with
indices0..n − 1, wheren > 0. We used to range over natural

Program : p ::= void fi() { si }, i ∈ 1..u
Statement : s ::= skipl

| i s
Instruction : i ::= skipl

| a[d] =l e;
| whilel (a[d] 6= 0) s
| asyncl s
| finishl s
| fi()

l

Expression : e ::= c
| a[d] + 1

Figure 1. The grammar of Featherweight X10.

numbers up ton− 1: {0, 1, 2, . . . , n− 1}. When execution of the
program begins, input values are loaded into all elements of the
arraya, and if the execution terminates, the result is ina[0]. Thus,
the arraya is fully initialized for all indicesd when computation
begins.

The body of each method is a statement. A statement is a se-
quence of labeled instructions. The labels have no impact on com-
putation but are convenient for our may-happen-in-parallel analy-
sis. Each instruction is either skip, assignment, while loop, async,
finish, or method call.

The right-hand side of an assignment is an expression that can
be either an integer constant or an array lookup plus one. An async
statementasyncl s runss in parallel with the continuation of the
async statement. The async statement is a lightweight notation for
spawning threads, while a finish statementfinishl s waits for
termination of all async bodies started while executings.

It is straightforward to show that FX10 is Turing-complete, via
a reduction from the while-programs of Kfoury et al. [10].

Compared to the core language for async-parallelism of Abadi
and Plotkin [1], FX10 differs by having a finish statement and
methods, while their language has constructs of yield and block.

3.3 Semantics

Our semantics of FX10 is inspired by the semantics for a larger
subset of X10 given by Saraswat and Jagadeesan [17]. In FX10, all
code runs on the same place.

We will now define a small-step operational semantics for
FX10. In the semantics of while loops and method calls, we will
use the following operator on statements. Lets1 . s2 be defined as
follows:

skipl . s2 ≡ skipl s2

(i s1) . s2 ≡ i (s1 . s2)

Our semantic structures are arrays, trees, and states:

A ∈ Array = N → Z
Tree : T ::= T B T | T ‖ T | 〈s〉 |

√

State = Program ×Array × Tree

We useA to denote the state of the arraya, that is, a total
mapping from natural numbers (N) to integers (Z). The initial state
of a is calledA0. If c is a natural number, thenA(c) denotes the
corresponding integer. We also defineA on expressions:A(c) = c
andA(a[d] + 1) = A(c) + 1.

A treeT1 B T2 is convenient for giving the semantics of finish:
T1 must complete execution before we move on to executingT2.
A treeT1 ‖ T2 represents a parallel execution ofT1 andT2 that
interleaves the execution of subtrees, except when disallowed byB.
A tree〈s〉 represents statements running. A tree

√
has completed

execution.

A state in the semantics is a triple(p,A, T). We will define
the semantics via a binary relation on states, written(p,A, T) →
(p,A′, T ′). The initial state of an execution ofp is (p,A0, 〈s0〉)
wheres0 is the body off0, andf0 is the name of the main method.
Now we show the rules for taking a step from(p,A, T). Rules (1)–
(6) below cover the cases whereT is either of the form(T1 B T2)
or of the form(T1 ‖ T2), while Figure 2 shows the rules whereT
is of the form〈s〉. There is no rule for the case of(p,A,

√
).

(p,A,
√

B T2) → (p,A, T2) (1)

(p,A, T1) → (p,A′, T ′
1)

(p,A, T1 B T2) → (p,A′, T ′
1 B T2)

(2)

(p,A,
√
‖ T2) → (p,A, T2) (3)

(p,A, T1 ‖
√

) → (p,A, T1) (4)

(p,A, T1) → (p,A′, T ′
1)

(p,A, T1 ‖ T2) → (p,A′, T ′
1 ‖ T2)

(5)

(p,A, T2) → (p,A′, T ′
2)

(p,A, T1 ‖ T2) → (p,A′, T1 ‖ T ′
2)

(6)

We can now state the deadlock-freedom theorem of Saraswat
and Jagadeesan. Let→∗ be the reflexive, transitive closure of→.

THEOREM 1. (Deadlock freedom)For every state(p,A, T),
eitherT =

√
or there existsA′, T ′ such that

(p,A, T) → (p,A′, T ′).

Proof. See Appendix A. �

4. May-Happen-in-Parallel Analysis
We use a type system to specify our modular, context-sensitive
may-happen-in-parallel analysis. Every program has a type (The-
orem 6) in our type system, which means that we can derive may-
happen-in-parallel information for all programs. We first define
three abstract domains and nine helper functions, and then proceed
to show our type rules.

4.1 Abstract Domains and Helper Functions

We useP(S) to denote the powerset of a setS.
We defineLabelSet = P(Label). We useA,B,O,R to range

overLabelSet.
We defineLabelPairSet = P(Label×Label). We useM to

range overLabelPairSet.
We defineTypeEnv = MethodName→ (LabelPairSet×

LabelSet). We useE to range overTypeEnv; we will call each
E a type environment.

Intuitively, we will useLabelSet for collecting sets of labels
of statements; we will useLabelPairSet for collecting labels
of pairs of statements that may happen in parallel; and we will
useTypeEnv to map methods to statements that may happen in
parallel and to statements that may still be executing when the
method completes execution.

We define nine functions on the data setsTree, Statement,
Label, LabelSet, andLabelPairSet, see Figure 3.

The function callSlabelsp(s) conservatively approximates the
set of labels of statements that may be executed during the execu-
tion of the statements in programp. The function callT labelsp(T)
conservatively approximates the set of labels of statements that may
be executed during the execution of the treeT in programp. No-
tice thatT labels is defined in terms ofSlabels. The function call
FSlabels(s) returns the singleton set consisting of the label ofs.

(p,A, 〈skipl〉) → (p,A,
√

) (7)

(p,A, 〈skipl k〉) → (p,A, 〈k〉) (8)

(p,A, 〈a[d] =l e; k〉) → (p,A[c := A(e)], 〈k〉) (9)

(p,A, 〈(whilel (a[d] 6= 0) s) k〉) → (p,A, 〈k〉) (if A(c) = 0) (10)

(p,A, 〈(whilel (a[d] 6= 0) s) k〉) → (p,A, 〈s . (whilel (a[d] 6= 0) s) k〉) (if A(c) 6= 0) (11)

(p,A, 〈(asyncl s) k〉) → (p,A, 〈s〉 ‖ 〈k〉) (12)

(p,A, 〈(finishl s) k〉) → (p,A, 〈s〉B 〈k〉) (13)

(p,A, 〈fi()
l k〉) → (p,A, 〈si . k〉) (wherep(fi) = si) (14)

Figure 2. Operational semantics rules for(p,A, T) whereT is of the forms.

The function callFT labels(T) conservatively approximates the
set of labels of statements that can be executed next in the treeT .
Notice thatFT labels is defined in terms ofFSlabels. The func-
tion callsymcross(A,B) returns the union of the crossproduct of
A andB with the crossproduct ofB andA. We needsymcross
to help produce a symmetric set of pairs of labels. The functions
Lcross, Scross, andTcross are convenient abbreviations of calls
to symcross. The function callparallel(T) specifies for the tree
T a set of pairs of labels of statements that are “executing in paral-
lel right now”, that is, for each pair, both can take a step now. No-
tice thatparallel is defined in terms ofsymcross andFT labels.
The functionparallel is central to our definition of correctness:
for every reachable treeT , we must conservatively approximate
parallel(T).

4.2 Type Rules

We will use type judgments of three forms:

` p : E

p,E,R ` T : M

p,E,R ` s : M,O

The first form of judgment says that programp is well typed and
that the methods inp have the types given byE. The second form
of judgment says that treeT is well typed in a situation where
R is a set of labels of statements that may run in parallel withT
whenT starts execution, andM is a set of pairs of labels such
that for each pair(l1, l2), the instructions with labelsl1 andl2 may
happen in parallel during the execution ofT . We will call M the
may-happen-in-parallel set. The third form of judgment says that
statements is well typed in a situation much like the previous one,
now with the addition thatO is the set of labels of instructions
that may be executing when the execution ofs terminates. For
p,E,R ` s : M,O, we will always haveR ⊆ O; in other
words,O can contain labels of both statements that started before
s and statements that started during the execution ofs. A type
environmentE that maps a method namefi to a pair(Mi, Oi)
represents that during a call tofi, the pairs inMi may happen in
parallel, and the statements with labels inOi may be executing
when the call tofi returns.

Figure 4 shows the type rules.
Rule (45) says that a program is well typed with a type envi-

ronmentE if each method body has the type specified byE in a
situation whereR = ∅. This rule enables modular type checking:
we only need to type check each method once, even though method
calls may be made in situations whereR 6= ∅.

Rule (46) says three things. First, the set of labelsR of state-
ments that may run in parallel withT1 B T2 whenT1 B T2 starts
execution, are also the set of labels of statements that may run in

parallel withT1 and withT2 when each of them starts execution.
Second, we get the may-happen-in-parallel set forT1 B T2 by tak-
ing the union of the may-happen-in-parallel set forT1 and the may-
happen-in-parallel set forT2. Third, there is no interaction between
T1 andT2 that produces new pairs of labels of statements that may
happen in parallel. This rule has a close cousin in Rule (55) for
finish statements.

Rule (47) says that for a treeT1 ‖ T2, the analysis ofT1 must
take into account thatT2 may already be executing, and vice versa.
We do that by extendingRwith labels from the appropriate subtree,
for exampleT labels(T2). This rule has a close cousin in Rule (54)
for async statements.

Rule (48) says that we can type check a tree〈s〉 by typing the
statements.

Rule (49) says that if a subtree has completed execution, then
nothing runs in parallel with it.

Rule (50) says that the skip instruction runs in parallel with
the statements with labels inR. TheLcross() function represents
every possible pairing of the labels inR with skip’s label. Since
skip does not generate statements that may run in parallel after the
execution of the skip, we see that the set of labels of instructions
that may be executing when skip terminates isR.

Rule (51) works similarly to the previous rule, with the excep-
tion that we are additionally dealing with a substatement after the
skip statement. We see that the skip label may run in parallel with
theR labels, which is represented via the use ofLcross(). We
now type the substatements1 where we retain the sameR for the
environment because skip doesn’t generate anything that can run
in parallel. The resultingO labels from thes1 judgement will be
theO labels returned from the judgement forskip; s1. The may-
happen-in-parallel set is the union of the set produced byLcross()
that we have seen above and theM from thes1 judgement.

Rule (52) is similar to Rule (51).
Rule (53) is based on a conservative assumption: the loop

body will be executed at least twice. Two iterations are suffi-
cient to model situations in which the loop body may happen in
parallel with itself. The rule relies on the assumption when it in-
cludesLcross(l, O1) andScrossp(s1, O1) in the may-happen-in-
parallel set. The rule also shows how we use the setO1 when typing
a sequence of statements, which here is a sequence of a while loop
ands2: we use the setO1 as the set of labels of statements execut-
ing at the beginning of execution ofs2.

Rule (54) says that for a statementasyncl s1 s2 the analysis
of s1 must take into account thats2 may already be executing,
and vice versa. We do that by extendingR with labels from the
appropriate statement, for exampleSlabels(s2). By adding the
entireSlabels(s2) we make the conservative assumption that the
entire async body may run in parallel with the continuation, and
vice versa. Notice that the label setO1 appears once in the first

Slabels : Program→ (Statement→ LabelSet)
Slabelsp is the⊆-least solution to the following equations.

Slabelsp(skipl) = {l} (15)

Slabelsp(skipl k) = {l} ∪ Slabelsp(k) (16)

Slabelsp(a[d] =l e; k) = {l} ∪ Slabelsp(k) (17)

Slabelsp(whilel (a[d] 6= 0) s k) = {l} ∪ Slabelsp(s) ∪ Slabelsp(k) (18)

Slabelsp(asyncl s k) = {l} ∪ Slabelsp(s) ∪ Slabelsp(k) (19)

Slabelsp(finishl s k) = {l} ∪ Slabelsp(s) ∪ Slabelsp(k) (20)

Slabelsp(fi()
l k) = {l} ∪ Slabelsp(si) ∪ Slabelsp(k) if p(fi) = si (21)

T labels : Program→ (Tree→ LabelSet)

T labelsp(
√

) = ∅ (22)

T labelsp(T1 B T2) = T labelsp(T1) ∪ T labelsp(T2) (23)

T labelsp(T1 ‖ T2) = T labelsp(T1) ∪ T labelsp(T2) (24)

T labelsp(〈s〉) = Slabelsp(s) (25)

FSlabels : Statement→ LabelSet

FSlabels(skipl) = {l} (26)

FSlabels(skipl k) = {l} (27)

FSlabels(a[d] =l e; k) = {l} (28)

FSlabels(whilel (a[d] 6= 0) s k) = {l} (29)

FSlabels(asyncl s k) = {l} (30)

FSlabels(finishl s k) = {l} (31)

FSlabels(fi()
l k) = {l} (32)

FT labels : Tree→ LabelSet

FT labels(
√

) = ∅ (33)

FT labels(T1 B T2) = FT labels(T1) (34)

FT labels(T1 ‖ T2) = FT labels(T1) ∪ FT labels(T2) (35)

FT labels(〈s〉) = FSlabels(s) (36)

symcross : LabelSet× LabelSet→ LabelPairSet

symcross(A,B) = (A×B) ∪ (B ×A) (37)

Lcross : Label × LabelSet→ LabelPairSet

Lcross(l, A) = symcross({l}, A) (38)

Scross : Program→ (Statement× LabelSet→ LabelPairSet)

Scrossp(s,A) = symcross(Slabelsp(s), A) (39)

Tcross : Program→ (Tree× LabelSet→ LabelPairSet)

Tcrossp(T,A) = symcross(T labelsp(T), A) (40)

parallel : Tree→ LabelPairSet

parallel(
√

) = ∅ (41)

parallel(T1 B T2) = parallel(T1) (42)

parallel(T1 ‖ T2) = parallel(T1) ∪ parallel(T2) ∪ symcross(FT labels(T1), FT labels(T2)) (43)

parallel(〈s〉) = ∅ (44)

Figure 3. Helper definitions.

p = void fi() { si }, 1..u
E = {fi 7→ (Mi, Oi)}
p,E, ∅ ` si : Mi, Oi

` p : E
(45)

p,E,R ` T1 : M1 p,E,R ` T2 : M2

p,E,R ` T1 B T2 : M1 ∪M2
(46)

p,E, T labels(T2) ∪R ` T1 : M1

p,E, T labels(T1) ∪R ` T2 : M2

p,E,R ` T1 ‖ T2 : M1 ∪M2
(47)

p,E,R ` s : Ms, O

p,E,R ` 〈s〉 : Ms
(48)

p,E,R `
√

: ∅ (49)

p,E,R ` skipl : Lcross(l, R), R
(50)

p,E,R ` s1 : M,O

p,E,R ` skipl s1 : Lcross(l, R) ∪M,O
(51)

p,E,R ` s1 : M,O

p,E,R ` a[d] =l e; s1 : Lcross(l, R) ∪M,O
(52)

p,E,R ` s1 : M1, O1 p,E,O1 ` s2 : M2, O2

p,E,R ` whilel (a[d] 6= 0) s1 s2 :
Lcross(l, O1) ∪ Scrossp(s1, O1) ∪M1 ∪M2, O2

(53)

p,E, Slabelsp(s2) ∪R ` s1 : M1, O1

p,E, Slabelsp(s1) ∪R ` s2 : M2, O2

p,E,R ` asyncl s1 s2 :
Lcross(l, R) ∪M1 ∪M2, O2

(54)

p,E,R ` s1 : M1, O1 p,E,R ` s2 : M2, O2

p,E,R ` finishl s1 s2 : Lcross(l, R) ∪M1 ∪M2, O2
(55)

E(fi) = (Mi, Oi) p,E,R ∪Oi ` k : M ′, O′

p,E,R ` fi()
l k :

Lcross(l, R) ∪ symcross(Slabelsp(p(fi)), R) ∪
Mi ∪M ′,
O′

(56)

Figure 4. Type rules.

hypothesis and never again; let us explain why this seemingly
strange phenomenon makes sense. In any typing judgement such
asp,E,R ` s1 : M1, O1, we have thatO1 is a union ofR and
someO′ (this is a lemma in our proof of correctness). The setO′

must be a subset ofSlabelsp(s1) as the async statement is the only
time where new labels are introduced intoO. So, in the typing of
s2, the setSlabelsp(s1) containsO′.

Rule (55) says that the setO1 produced by the typing of the
finish body can be ignored. So, we use the initialR for typing both
the finish bodys1 and the continuations2, and thereby indicate
that we are disregarding whatever statements that may be running
as a result of executings1. In other words, we don’t useO1 in the
typing of s2. As a result, if any labels occur inO1 that are not
in R, the rule reflects that the corresponding statements will not
happen in parallel withs2. The statements with labels inR that
were executing whens1 started execution may still be executing

whens2 starts execution so we useR in the typing ofs2 to account
for that.

Rule (56) shows how to type check a call with an arbitraryR
even though Rule (45) has only provided a type environment in
which methods have been type checked withR = ∅. The type
environment says that forR = ∅, the setOi contains the labels of
statements that may be executing at the end of the call. We then
simply take the union ofR andOi and use that for typing the
continuationk. The may-happen-in-parallel set for the method call
containssymcross(Slabelsp(p(fi)), R), a set that reflects that
anything that may happen in parallel with call may also happen
in parallel with the body.

The following soundness theorem says that for a programp and
any treeT reachable by executingp, the setparallel(T) is a sub-
set of the the may-happen-in-parallel set determined by type check-
ing p. Intuitively, the type system conservatively approximates all
parallel(T).

THEOREM 2. (Soundness)If ` p : E andp,E, ∅ ` 〈s0〉 : M and
(p,A0, 〈s0〉) →∗ (p,A, T) thenparallel(T) ⊆M .

Proof. See Appendix B. �

For a programp, define

MHP(p) =
[
{ parallel(T) | (p,A0, 〈s0〉) →∗ (p,A, T) }

THEOREM 3. (Correctness) If ` p : E andE(f0) = (M,O),
thenMHP(p) ⊆M .

Proof. Immediate from Theorem 2. �

5. Type Inference
The type inference problem is: given a programp, findE such that
` p : E. We will do type inference in two steps: first we rephrase
the type inference problem as an equivalent constraint problem, and
then we solve the constraint problem.

5.1 Constraints

Variables.For every statements we will generate three set vari-
ables:rs, os, andms. The variablesrs andos will range over sets
of labels, while the variablems will range over sets of pairs of la-
bels. For every methodfi we will generate two set variables:oi and
mi.

Kinds of constraints.We will use two kinds of constraints. The
level-1constraints are of the forms:

v = v′

v = c

v = c ∪ v′

wherev is anr variable or ano variable,v′ is anr variable or an
o variable, andc is a set constant. Thelevel-2constraints are of the
forms:

v = v′′

v = Lcross(l, v′)

v = Lcross(l, v′) ∪ v′′

v = Lcross(l, v′) ∪ v′′ ∪ v′′′

v = Lcross(l, v′) ∪ Scross(c, v′) ∪ v′′ ∪ v′′′

v = Lcross(l, v′) ∪ symcross(c, v′) ∪ v′′ ∪ v′′′

wherev is anm variable,v′ is anr variable or ano variable,v′′

andv′′′ arem variables,l is the label associated with a statement,
andc is a set constant.

rS0 = {}
rS1 = rS0

rS13 = {S2} ∪ rS1

rS5 = rS13

rS6 = rS5

rS11 = {S7, S12} ∪ rS6

oS11 = rS11

rS7 = {S11} ∪ rS6

rS12 = rS7

oS12 = rS12

oS7 = {S12} ∪ rS7

oS6 = oS7

oS5 = oS6

rS8 = rS13

oS8 = rS8

oS13 = oS8

rS2 = {S5, S6, S7, S8, S11, S12, S13} ∪ rS1

oS2 = rS2

oS1 = oS2

rS3 = rS0

oS3 = rS3

oS0 = oS3

mS1 = Lcross(S1, rS1) ∪mS13 ∪mS2

mS6 = Lcross(S6, rS6) ∪mS11 ∪mS7

mS11 = Lcross(S11, rS11)

mS7 = Lcross(S7, rS7) ∪mS12

mS12 = Lcross(S12, rS12)

mS5 = Lcross(S5, rS5) ∪mS6

mS8 = Lcross(S8, rS8)

mS13 = Lcross(S13, rS13) ∪mS5 ∪mS8

mS2 = Lcross(S2, rS2)

mS3 = Lcross(S3, rS3)

mS0 = Lcross(S0, rS0) ∪mS1 ∪mS3

Figure 5. Constraints for the example program in Section 2.1.

Valuations.For a given system of constraintsC, letL be the set
of labels that occur inC. LetD denote the domain ofvaluationsof
the set variables: each function inDmaps eachr ando variable that
occurs inC to a subset ofL, it maps eachm variable that occurs
in C to a subset ofL × L, and, for convenience, it maps eachoi

variable to a subset ofL and it maps eachmi variable to a subset
ofL×L, without regard to whether thoseoi andmi variables occur
in C. It is straightforward to show thatD is a finite lattice.

Solutions.We say thatϕ ∈ D is a solution of the system of
constraints if for every constraintv = rhs, we haveϕ(v) =
ϕ(rhs). Here we userhs to range over the possible right-hand
sides of the constraints, and we useϕ(rhs) to denoterhs with
each variablev′ occurring inrhs replaced withϕ(v′).

Constraint generation.We useC(p) to denote the constraints
generated from a programp, and we useC(s) to denote the con-
straints generated a from statements. We will defineC(p) and
C(s) below.

For each methodfi in p ≡ void fi() { si }, 1..u, we define
C(p) =

S
i(Di ∪ C(si)). We defineDi to have the following

constraints:

rsi = ∅ (57)

oi = osi (58)

mi = msi (59)

For s ≡ skipl we defineC(s) = Ds whereDs is defined by
the following constraints:

os = rs (60)

ms = Lcross(l, rs) (61)

For s ≡ skipl s1 we defineC(s) = Ds ∪ C(s1) whereDs

contains the following constraints:

rs1 = rs (62)

os = os1 (63)

ms = Lcross(l, rs) ∪ms1 (64)

For s ≡ a[d] =l e; s1 we defineC(s) = Ds ∪ C(s1) where
we defineDs to have the constraints below:

rs1 = rs (65)

os = os1 (66)

ms = Lcross(l, rs) ∪ms1 (67)

For s ≡ whilel (a[d] 6= 0) s1 s2 we defineC(s) = Ds ∪
C(s1) ∪ C(s2) where we defineDs to have the following con-
straints:

rs1 = rs (68)

rs2 = os1 (69)

os = os2 (70)

ms =

„
Lcross(l, os1) ∪ Scrossp(s1, os1) ∪
ms1 ∪ms2

«
(71)

Fors ≡ asyncl s1 s2 we defineC(s) = Ds ∪ C(s1) ∪ C(s2)
and defineDs to have the constraints:

rs1 = Slabels(s2) ∪ rs (72)

rs2 = Slabels(s1) ∪ rs (73)

os = os2 (74)

ms = Lcross(l, rs) ∪ms1 ∪ms2 (75)

Fors ≡ finishl s1 s2 we haveC(s) = Ds ∪ C(s1) ∪ C(s2).
We defineDs to have the following constraints:

rs1 = rs (76)

rs2 = rs (77)

os = os2 (78)

ms = Lcross(l, rs) ∪ms1 ∪ms2 (79)

And finally for s ≡ fi()
l k we haveC(s) = Ds ∪ C(k).Ds is

defined to have the following constraints:

rk = rs ∪ oi (80)

os = ok (81)

ms =

0@ Lcross(l, rs) ∪
symcross(Slabelsp(p(fi)), rs) ∪
mi ∪mk

1A (82)

Types and constraints are equivalent in the sense of Theorem 4
below. Intuitively, a program has a type if and only if the constraints
are solvable. Additionally, we can map a type derivation to a solu-
tion to the constraint system, and vice versa. To state the theorem,

we need the following definition. Forϕ ∈ D, we say thatϕ extends
E if and only if ∀fi ∈ dom(E) : (ϕ(mi), ϕ(oi)) = E(fi).

THEOREM 4. (Equivalence)` p : E if and only if there exists a
solutionϕ ofC(p) whereϕ extendsE.

Proof. See Appendix C. �

Theorems like Theorem 4 that relate types and constraints have
been known since a paper by Kozen et al. [11].

5.2 Solving Constraints

We will now explain how to solve the constraintsC(p) generated
from a programp. Our solution procedure resembles the algorithms
used for iterative data flow analysis.

Notice that the constraints inC(p) have distinct left-hand sides
and that every variable is the left-hand side of some constraint. This
enables us to define the function

F : D → D
F = λϕ ∈ D.λv.ϕ(rhs)

(wherev = rhs is a constraint)

It is straightforward to show thatF is monotone. So,F is a mono-
tone function from a finite latticeD to itself. The least-fixed-point
theorem guarantees thatF has a least fixed point. Moreover, it is
straightforward to see that the fixed points ofF coincide with the
solutions ofC(p). Hence, the least fixed point ofF is the least
solution ofC(p) and thus we have shown the following theorem.

THEOREM 5. C(p) has a least solution.

We solve the constraintsC(p) by executing the fixed-point
computation that computes the least fixed point ofF . The worst-
case time complexity isO(n6) wheren is the size of the constraint
system. Let us explain the reason for theO(n6) time complexity
in detail. First, we haveO(n) m variables that each can contain
O(n2) pairs, so we haveO(n3) iterations. In each iteration we
considerO(n) constraints and for each one we must do a finite
number of set unions. If we represent each set as a bit vector with
O(n2) entries, then set union takesO(n2) time. The total is thus
O(n3)×O(n)×O(n2) = O(n6).

The guaranteed existence of a least solution ofC(p) implies
thatp has a type, as expressed in the following theorem.

THEOREM 6. There existsE such that̀ p : E.

Proof. Combine Theorem 4 and Theorem 5. �

5.3 Implementation

One approach to implementing type inference would be to solve
the constraints all at once. As an optimization of that, our imple-
mentation of type inference proceeds in three steps:

1. solve the equations that defineSlabels,

2. solve the level-1 constraints, and finally

3. solve the level-2 constraints.

The level-1 constraints don’t involvem variables so we can solve
them without involving the level-2 constraints. Once we have a
solution to the level-1 constraints, we can simplify the level-2
constraints by replacing eachr variable ando variable with its
solved form. The simplified level-2 constraints are of the forms

v = v′′

v = c

v = c ∪ v′′

v = c ∪ v′′ ∪ v′′′

wherev, v′′, v′′′ arem variables, andc is a set constant.
The equations that defineSlabels are in the form of simplified

level-2 constraints and we solve them using the same iterative
approach that we use for level-2 constraints.

The constraints for FX10 are all we need to type inference
for the full X10 language; the remaining constructs generate con-
straints that are similar to those for FX10.

5.4 Example

From the program in Section 2.1, we generate the constraints listed
in Figure 5. As explained in Section 2.1, the output from our
constraint solver says correctly thatS2 may happen in parallel with
each ofS5, S6, S7, S8, S11, andS12, as well as with the entire
finish statement, thatS11 andS12 may happen in parallel, and
thatS7 andS11 may happen in parallel.

6. Experimental Results
We ran our experiments on a system that has dualIntel Xeon
CPUsrunning at 3.06GHz with 512 KB of cache and 4GB of main
memory.

We use 13 benchmarks taken from the HPC challenge bench-
marks, the Java Grande benchmarks in X10, the NAS benchmarks,
and two benchmarks written by ourselves. Figure 6 shows the num-
ber of lines of code (LOC), the number of asyncs and the number of
constraints. The number of asyncs includes the number of foreach
and ateach loops, which are X10 constructs that let all the loop it-
erations run in parallel. We can think of foreach and ateach as plain
loops where the body is wrapped in an async. Our own plasma sim-
ulation benchmark, called plasma, is the longest and by far the most
complicated benchmark with 151 asyncs.

Figure 6 shows a division of the asyncs into two categories:
loop asyncs and place-switching asyncs. Loop asyncs are asyncs
that occur in loops and are not wrapped in a finish; such asyncs
may happen in parallel with asyncs from different iterations of the
same loop. The vast majority of the loop asyncs occur in ateach and
foreach loops. Place-switching asyncs are based on a more general
form of async than what FX10 supports and are used to switch
between places. Our implementation handles the more general form
of async in exactly the same way as the asyncs in FX10. Most often
such place-switching enables data transfers or remote computation.
A common usage found in our benchmarks is creating a data value
such that it may be usable across async boundaries and then storing
that data in a buffer on the place where the data is needed. Note
here that for an ateach loop, we count the implicit async as a loop
async even though it also serves the purpose of place switching.

Our implementation of type inference for X10 first translates an
X10 program to a condensed form that closely resembles FX10,
and then it proceeds to generate and solve constraints. The con-
densed form has ten kinds of nodes, namely end, async, call, finish,
if, loop, method, return, skip, and switch, see Figure 7. The total
number of nodes is a good measure of the size of the input to our
type inference algorithm. Switch nodes are unlike anything we have
in FX10; we use them to accommodate various control-flow state-
ments. End nodes do not correspond to any program point in the
code, but act as place holders for our constraint system. Skip nodes
are all the various statements and expressions that don’t affect the
analysis and represent blocks of code that don’t contain any method
calls, returns, asyncs or finishes.

Figure 6 lists the numbers of constraints, and Figure 8 lists the
time to do type inference and the executed number of iterations.
Method calls appear to add a significant amount of time to solve
the constraints, most notably seen in the number of iterations re-
quired to solve theSlabels constraints. When an iteration for com-
puting label sets completes, a call site will need to propagate any
new labels to neighboring statements and eventually the enclosing

LOC ———— #async ———— —— #constraints ——
total loop place switch Slabels level-1 level-2

HPC challenge benchmarks:
stream 70 4 3 1 103 232 103
fragstream 73 4 3 1 103 232 103
Java Grande benchmarks:
sor 185 7 2 5 132 298 132
series 290 3 1 2 90 224 90
sparsemm 366 4 1 3 173 370 173
crypt 562 2 2 0 149 326 149
moldyn 699 14 6 8 241 596 241
linpack 781 8 3 5 225 547 225
raytracer 1,205 13 2 11 478 1,045 478
montecarlo 3,153 3 1 2 345 727 345
NAS benchmarks:
mg 1,858 57 37 20 1,028 2,518 1,028
Our own benchmarks:
mapreduce 53 3 1 2 40 96 40
plasma 4,623 151 120 31 2,596 6,230 2,596

Figure 6. Experimental results: static measurements.

————————————————— #nodes —————————————————
Total End Async Call Finish If Loop Method Return Skip Switch

HPC challenge benchmarks:
stream 126 23 4 5 4 3 10 20 21 36 0
fragstream 126 23 4 5 4 3 10 20 21 36 0
Java Grande benchmarks:
sor 161 29 7 21 5 1 7 24 16 51 0
series 119 29 3 17 2 3 7 14 7 36 1
sparsemm 201 28 4 25 3 0 16 32 27 66 0
crypt 175 26 2 25 2 5 9 24 21 61 0
moldyn 316 75 14 25 14 2 29 36 22 99 0
linpack 286 61 8 42 6 10 19 25 17 98 0
raytracer 555 77 13 132 9 16 8 65 50 185 0
montecarlo 405 60 3 80 3 2 6 83 39 129 0
NAS benchmarks:
mg 1,320 292 57 248 52 40 68 122 87 354 0
Our own benchmarks:
mapreduce 52 12 3 5 2 0 3 8 4 15 0
plasma 3,200 604 151 505 84 93 231 170 221 1,140 1

Figure 7. Experimental results: number of nodes.

time space Number of iterations #pairs of async bodies that MHP
(ms) (MB) Slabels level-1 level-2 total self same diff

HPC challenge benchmarks:
stream 153 5 3 2 2 5 4 1 0
fragstream 158 5 3 2 2 5 4 1 0
Java Grande benchmarks:
sor 219 6 5 2 3 13 6 3 4
series 230 9 4 2 4 1 1 0 0
sparsemm 225 8 4 2 3 3 2 1 0
crypt 218 8 4 2 2 2 2 0 0
moldyn 420 24 5 2 3 59 14 36 9
linpack 331 13 4 3 3 10 6 1 3
raytracer 3,105 173 5 2 4 49 13 24 12
montecarlo 1,403 132 6 2 4 4 3 1 0
NAS benchmarks:
mg 5,197 196 6 3 5 272 51 17 204
Our own benchmarks:
mapreduce 96 3 3 2 3 1 1 0 0
plasma 16,476 257 6 2 6 258 134 120 4

Figure 8. Experimental results: type inference.

analysis time space Number of iterations #pairs of async bodies that MHP
(ms) MB) Slabels level-1 level-2 total self same diff

NAS benchmarks:
mg context-sensitive 5,197 196 6 3 5 272 51 17 204
mg context-insensitive 25,935 350 6 17 5 681 52 23 606
Our own benchmarks:
plasma context-sensitive 16,476 257 6 2 6 258 134 120 4
plasma context-insensitive 167,828 1,429 6 14 6 2,281 136 126 2,019

Figure 9. Experimental results: comparison of our context-sensitive analysis to a context-insensitive analysis.

method will need another iteration to disseminate new sets to its
callers. This effect does not appear when solving the level-1 and
level-2 constraints; we believe that finish statements help limit the
propagation. Finish statements cap how far the sets can flow down
a call chain, which translates into fewer iterations.

For evaluation of the quality of our analysis, we focus on count-
ing pairs of labels of entire async bodies. Figure 8 shows the num-
ber of pairs of async bodies that may happen in parallel, according
to our analysis, together with three exhaustive and disjoint subcate-
gories. The legend of Figure 8 is: self = an async body may happen
in parallel with itself; same = two different async bodies in the same
method may happen in parallel; diff = two async bodies in different
methods may happen in parallel. Let us discuss each of the columns
in turn. A typical scenario for theself category is:

while (...) { async S1 }

Notice thatS1 may happen in parallel with itself. If we compare
the self column to the total number of asyncs in the program, we can
easily determine how many asyncs appear in loops (or in methods
called in loops) without a finish for wrapping the async. Most of
the benchmarks have a high percentage of such asyncs, which we
expected as this is the easiest way to generate parallelism in X10.
Some of the smaller benchmarks like series and mapreduce use just
one loop to do most of the processing, but also need to perform
some communication which is done with the other asyncs.

In our benchmarks, a typical scenario for thesamecategory is:

while (...) {
async {

finish async S1
finish async S2

}
}

Here,S1 andS2 may happen in parallel because separate itera-
tions of the loop run in parallel with each other. Such code is useful
when we don’t need synchronization among separate iterations of
a loop but need a strict order of execution during a single iteration.

The example is Section 2.2 is a typical scenario for the diff
category. For example, statementsS5 andS3may happen in parallel
and are in separate methods. Most of the benchmarks have few pairs
of async bodies in this category. However, one can easily move
a pair from thesamecategory to the diff category by moving an
async in a loop to a method that the loop then calls. In mg, we have
several methods with asyncs in their bodies that are called from
several different loops. Some calls were deeply nested in several
loop async bodies.

We manually examined the type-inference output for stream,
fragstream, sor, series, sparsemm, crypt, and mapreduce to look
for false positives, that is, pairs of async bodies that our algorithm
says can happen in parallel but actually can’t. We found none!
For the other, larger benchmarks, the generated number of pairs
is large and we performed only a brief examination and noticed no
obvious false positives. Asyncs in the bodies of loops are typical

in the benchmarks and don’t provide false positives unless the loop
guard is always false which we believe is not the case in any of the
examples we closely examined, for the inputs we used.

7. Context-insensitive Analysis
We will now compare our context-sensitive analysis to a context-
insensitive analysis that merges information from different call
sites. Let us first explain how the context-insensitive analysis
works: it uses thesameset variables and constraints as our context-
sensitive analysis,exceptfor the following differences.

Variables.For every methodfi, we generate an extra set vari-
ableri.

Constraint generation.For s ≡ fi()
l k we add the following

constraint:

rs ⊆ ri (83)

We also replace Rule (57) with the following constraint:

rsi = ri (84)

The effect of these changes is a merge of thers variables from
different call sites. Thus, the context-insensitive analysis says that
the method may happen in parallel with the labels in the sets for all
thosers variables at once.

A subtlety is that for a context-insensitive analysis we can
removeScrossp(p(fi), R) from Rule (82) without changing the
analysis. This is because the pairs generated byScrossp(p(fi), R)
will eventually be added anyway due to the newrs ⊆ ri constraint.

We ran the context-insensitive analysis on our benchmarks. For
the 11 smallest benchmarks, the runs used roughly the same amount
of time and space, and we got the exact same results. Only for the
two largest benchmarks, plasma and mg, did the context-insensitive
analysis produce any additional label pairs in the may-happen-
in-parallel sets. Figure (9) shows a comparison of our context-
sensitive analysis and a context-insensitive analysis of plasma and
mg. The context-insensitive analysis requires more time and space,
and it produces many more pairs of async bodies that may happen
in parallel.

The increase in run time and space usage of the context-
insensitive analysis compared to our context-sensitive analysis is
somewhat unsurprising. First, the context-insensitive analysis is
more conservative so the number of label pairs that are generated
and copied through the constraint variables is higher. In particular,
the higher number of pairs increases the time required to perform
the set operations. Second, the introduction of subset constraints
leads to an increase in the number of level-1 iterations. The reason
is that each call site can contribute labels tori and then the con-
straint solver needs additional iterations to propagate the additional
labels amongst the constraints.

The increase in the number of label pairs is mostly for async
bodies in different methods. As far as we can tell, the increase is
due to a few methods that are called in many different places. Such
a method can easily have an overly conservativeo set that then
leads to many spurious pairs. The reason is that call site contributes

to theri set for a method, and the set forri will be a subset ofoi,
so nowoi has many elements to be paired with labels of statements
that follow each call.

The example in Section 2.2 illustrates this effect. The statement
S3 is running at the beginning of the first callf(), and so it will
running when that call completes execution. Due to the merging of
information from different call sites, the analysis finds thatS3 is
also running at the end of the second callf(). When the analysis
consider the statementasync S4 that follows the second callf(),
it will conclude thatS3 andS4 may happen in parallel.

We thank Vivek Sarkar (personal communication, 2009) for the
following observation. The intraprocedural analysis of [2] ignores
function calls and uses the two finish statements to conclude thatS3
andS4 cannot happen in parallel. The context-insensitive analysis
of function calls creates an infeasible datapath from the body of
one finish statement to the body of another finish statement and
therefore the spurious pair ofS3 andS4. In contrast, our analysis
avoids such infeasible datapaths and doesn’t produce the spurious
pair ofS3 andS4.

8. Conclusion
We have presented a core calculus for async-finish parallelism
along with a type system for modular, context-sensitive may-
happen-in-parallel analysis. Type inference is straightforward: gen-
erate and solve simple set constraints in polynomial time. Com-
pared to a context-insensitive analysis, our context-sensitive analy-
sis is faster, uses less space, and produces better results.

Our experiments suggest that our analysis produces few false
positives and should therefore be a good basis for other static
program analyses. In fact we have been unable to find any false
positives at all! One way a false positive can occur is if a program
has a loop that is never executed: our analysis will analyze the loop
anyway. For example:

while (...) { async S1 }
async S2

Suppose the while loop is never executed. Our analysis will
nevertheless say thatS1 andS2 may happen in parallel. We found
no occurrences of the above pattern in our benchmarks.

Our detailed proof of correctness is evidence that our core cal-
culus is a good basis for type systems and static analyses for lan-
guages with async-finish parallelism, and tractable proofs of cor-
rectness. We leave further investigation of the precision of the anal-
ysis to future work. While our analysis produces an overapproxi-
mation of may-happen-in-parallel information, one might use a dy-
namic analysis that instead gives an underapproximation. The dif-
ference between an overapproximation and an underapproximation
will shed light on the precision of the overapproximation.

We can straightforwardly extend our calculus to support other
features of X10. For example, a worthwhile extension of our cal-
culus would be to model the X10 notion of clocks. Another idea
is to support computation with multiple places by changing trees
of the forms to be of the form〈P, s〉 whereP is a place. A tree
〈P, s〉 means that statements is executing on placeP . One could
then consider refining our analysis by asking whether two state-
ments may happen in parallel on thesameplace. We leave such an
analysis to future work.

Acknowledgments.We thank Christian Grothoff, Shu-Yu Guo,
Riyaz Haque, and the anonymous reviewers for helpful comments
on a draft the paper.

References
[1] Martı́n Abadi and Gordon D. Plotkin. A model of cooperative threads.

In POPL, pages 29–40, 2009.

[2] Shivali Agarwal, Rajkishore Barik, Vivek Sarkar, and R. K. Shyama-
sundar. May-happen-in-parallel analysis of X10 programs. InPPoPP,
pages 183–193, 2007.

[3] Rajkishore Barik. Efficient computation of may-happen-in-parallel
information for concurrent Java programs. InLCPC, pages 152–169,
2005.

[4] Rajkishore Barik and Vivek Sarkar. Interprocedural load elimination
for optimization of parallel programs. InPACT, 2009.

[5] Philippe Charles, Christopher Donawa, Kemal Ebcioglu, Christian
Grothoff, Allan Kielstra, Vivek Sarkar, and Christoph Von Praun. X10:
An object-oriented approach to non-uniform cluster computing. In
OOPSLA, pages 519–538, 2005.

[6] Jong-Deok Choi, Keunwoo Lee, Alexey Loginov, Robert O’Callahan,
Vivek Sarkar, and Manu Sridharan. Efficient and precise datarace
detection for multithreaded object-oriented programs. InPLDI, pages
258–269, 2002.

[7] Evelyn Duesterwald and Mary Lou Soffa. Concurrency analysis in the
presence of procedures using a data-flow framework. InSymposium
on Testing, Analysis, and Verification, pages 36–48, 1991.

[8] Atsushi Igarashi, Benjamion Pierce, and Philip Wadler. Featherweight
Java: A minimal core calculus for Java and GJ. InOOPSLA, pages
132–146, 1999.

[9] Vineet Kahlon. Boundedness vs. unboundedness of lock chains: Char-
acterizing decidability of pairwise CFL-reachability for threads com-
municating via locks. InLICS, pages 27–36, 2009.

[10] A. J. Kfoury, Michael A. Arbib, and Robert N. Moll.A Programming
Approach to Computability. Springer-Verlag, 1982.

[11] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient
inference of partial types.Journal of Computer and System Sciences,
49(2):306–324, 1994.

[12] Lin Li and Clark Verbrugge. A practical MHP information analysis
for concurrent Java programs. InLCPC, pages 194–208, 2004.

[13] Stephen P. Masticola and Barbara G. Ryder. Non-concurrency analy-
sis. InPPoPP, pages 129–138, 1993.

[14] Mayur Naik and Alex Aiken. Conditional must not aliasing for static
race detection. InPOPL, pages 327–338, 2007.

[15] Gleb Naumovich and George S. Avrunin. A conservative data flow
algorithm for detecting all pairs of statement that may happen in
parallel. InSIGSOFT FSE, pages 24–34, 1998.

[16] Gleb Naumovich, George S. Avrunin, and Lori A. Clarke. An ef-
ficient algorithm for computing HP information for concurrent Java
programs. InESEC / SIGSOFT FSE, pages 338–354, 1999.

[17] Vijay A. Saraswat and Radha Jagadeesan. Concurrent clustered pro-
gramming. InCONCUR, pages 353–367, 2005.

[18] Richard N. Taylor. Complexity of analyzing the synchronization
structure of concurrent programs.Acta Inf., 19:57–84, 1983.

[19] Christoph von Praun and Thomas R. Gross. Static conflict analyis for
multi-threaded object-oriented programs. InPLDI, pages 115–128,
2003.

[20] Andrew Wright and Matthias Felleisen. A syntactic approach to type
soundness.Information and Computation, 115(1):38–94, 1994.

Appendix A: Proof of Theorem 1
(Deadlock freedom)For every state(p,A, T), eitherT =√

or there existsA′, T ′ such that(p,A, T) → (p,A′, T ′).

Proof. We proceed by induction onT . We have four cases. If
T ≡

√
, then the result is immediate.

If T ≡ 〈s〉, then we have from Rules (7)–(14) that there exists
A′, T ′ such that(p,A, T) → (p,A′, T ′).

If T ≡ (T1 B T2), then from the induction hypothesis we have
that eitherT1 =

√
or there existsA′, T ′

1 such that(p,A, T1) →
(p,A′, T ′

1). If T1 =
√

, then(p,A, T) can take a step by Rule (1).
If there existsA′, T ′

1 such that(p,A, T1) → (p,A′, T ′
1), then

(p,A, T) can take a step by Rule (2).
If T ≡ (T1 ‖ T2), then from the induction hypothesis

we have that eitherT1 =
√

or there existsA′, T ′
1 such that

(p,A, T1) → (p,A′, T ′
1), and we have that eitherT2 =

√
or

there existsA′, T ′
2 such that(p,A, T2) → (p,A′, T ′

2). In all four
cases, one of Rules (3)–(6) applies to enable(p,A, T) to take a
step. This completes the proof of progress. �

Appendix B: Proof of Theorem 2
8.1 A Lemma about the Helper Functions

We begin with a lemma that states 19 useful properties ofsymcross,
Lcross, Scross, Tcross, Slabels, FSlabels, andFT labels.

LEMMA 7. 1. symcross(A,B) = symcross(B,A)
2. IfA′ ⊆ A andB′ ⊆ B

thensymcross(A′, B′) ⊆ symcross(A,B).
3. symcross(A,C)∪symcross(B,C) = symcross(A∪B,C)

4. Lcross(l, A ∪B) = Lcross(l, A) ∪ Lcross(l, B)
5. Scrossp(s,A ∪B) = Scrossp(s,A) ∪ Scrossp(s,B)
6. Scrossp(s1, Slabelsp(s2)) = Scrossp(s2, Slabelsp(s1))
7. Tcrossp(T,A ∪B) = Tcrossp(T,A) ∪ Tcrossp(T,B)
8. Tcrossp(T1, T labelsp(T2)) = Tcrossp(T2, T labelsp(T1))
9. Tcrossp(

√
, A) = ∅

10. IfR′ ⊆ R thenTcrossp(T,R′) ⊆ Tcrossp(T,R).
11. Slabelsp(sa . sb) = Slabelsp(sa) ∪ Slabelsp(sb)
12. FSlabels(s) ⊆ Slabelsp(s)
13. FT labels(T) ⊆ T labelsp(T)
14. symcross(FT labels(T1), FT labels(T2)) ⊆

Tcrossp(T1, T labelsp(T2)
15. If(p,A, T) → (p,A′, T ′) thenT labelsp(T ′) ⊆ T labelsp(T).

16. IfSlabelsp(s) = {l} ∪ Slabelsp(k) then
Scrossp(s,R) = Lcross(l, R) ∪ Scrossp(k,R).

17. IfSlabelsp(s) = {l} ∪ Slabelsp(s1) ∪ Slabelsp(s2) then
Scrossp(s,R) = Lcross(l, R)∪

Scrossp(s1, R) ∪ Scrossp(s2, R).
18. Tcrossp(〈s〉, R) = Scrossp(s,R)
19. IfT labelsp(T) = T labelsp(T1) ∪ T labelsp(T2) then

Tcrossp(T,R) = Tcrossp(T1, R) ∪ Tcrossp(T2, R).

Proof.

1. By examining the definition ofsymcross() we see this is
trivially true.

2. We also see that this is true by the definition ofsymcross().
3. From Lemma (7.2) we have

1) symcross(A,C) ⊆ symcross(A ∪B,C) and
2) symcross(B,C) ⊆ symcross(A∪B,C), therefore giving
us 3)symcross(A,C)∪ symcross(B,C) ⊆ symcross(A∪
B,C). Suppose we havel ∈ A ∪ B and l′ ∈ C. This
implies that l ∈ A ∨ l ∈ B. If l ∈ A then (l, l′) ∈
symcross(A,C). If l ∈ B then (l, l′) ∈ symcross(B,C).
Thus we have thatsymcross(A∪B,C) ⊆ symcross(A,C)∪
symcross(B,C), which with 3) gives us our conclusion.

4. We unfoldLcross(), then apply (7.1), (7.3) and finally can use
the definitionLcross() again to reach our conclusion.

5. We unfoldScrossp(), then apply (7.1), (7.3) and finally can
use the definitionScrossp() again to reach our conclusion.

6. We unfold the definition ofScrossp(), apply (7.1) and finally
apply the definition ofScrossp() to reach our conclusion.

7. We unfoldTcrossp(), then apply (7.1), (7.3) and finally use the
definition ofTcrossp() once again to get our conclusion.

8. We unfold the definition ofTcrossp(), apply (7.1) and finally
apply the definition ofTcrossp() to reach our conclusion.

9. Unfolding the definition ofTcrossp() and thenT labelsp()
gives usTcrossp(

√
, A) = symcross(∅, A). From the defi-

nition of symcross() we have our conclusion.
10. Let us unfold the definition ofTcrossp() and then apply (7.2)

to reach our conclusion.

11. Let us perform induction onsa. This gives us seven cases to
examine.
If sa ≡ skipl then from the definition of. we havesa . sb =
skipl sb and from Rule (16)Slabelsp(sa . sb) = {l} ∪
Slabelsp(sb). From Rule (15) we haveSlabelsp(sa) = {l}.
From here we can use substitution to reach our conclusion.
If sa ≡ skipl s1 then from the definition of. we have
that sa . sb = skipl (s1 . sb). Using Rule (16) we have
Slabelsp(sa . sb) = {l} ∪ Slabelsp(s1 . sb). Using the in-
duction hypothesis we have that
Slabelsp(s1 . sb) = Slabelsp(s1) ∪ Slabelsp(sb). We may
now substitute that in and use Rule (16) to get our conclusion
Slabelsp(sa . sb) = Slabelsp(skipl s1) ∪ Slabelsp(sb) =
Slabelsp(sa) ∪ Slabelsp(sb).
If sa ≡ a[d] =l e; s1 then we proceed using similar reasoning
as the previous case.
If sa ≡ whilel (a[d] 6= 0) s1 s2 then from the definition of
. we havesa . sb = whilel (a[d] 6= 0) s1 (s2 . sb). From
Rule (18) we haveSlabelsp(sa . sb) = {l} ∪ Slabelsp(s1) ∪
Slabelsp(s2 . sb). Using the induction hypothesis we get
Slabelsp(s2 . sb) = Slabelsp(s2) ∪ Slabelsp(sb). We may
now substitute and use Rule (18) we getSlabelsp(sa . sb) =
Slabelsp(whilel(a[d] 6= 0) s1 s2) ∪ Slabelsp(sb) =
Slabelsp(sa) ∪ Slabelsp(sb)
If sa ≡ asyncl s1 s2 then we may proceed using similar logic
as the previous case.
If sa ≡ finishl s1 s2 then we may proceed using similar logic
as the previous case.
If sa ≡ fi()

l k then from the definition of. we havesa . sb =
fi()

l (s1 . sb). From Rule (21) we haveSlabelsp(sa . sb) =
{l} ∪ Slabelsp(si) ∪ Slabelsp(k . sb) wherep(fi) = si.
From the induction hypothesis we have thatSlabelsp(k . sb) =
Slabelsp(k)∪Slabelsp(sb). We substitute and use Rule (21) to
getSlabelsp(sa . sb) = Slabelsp(fi()

l k) ∪ Slabelsp(sb) =
Slabelsp(sa) ∪ Slabelsp(sb).

12. Let us perform case analysis ons. As we examine each case
with the definitions ofFSlabels() andSlabelsp() we see that
the conclusion is obvious.

13. Let us perform induction onT . This gives us four cases.
If T ≡

√
then examining the definitions we seeFT labels(

√
) =

T labelsp(
√

). The conclusion is obviously true.
If T ≡ T1 B T2 thenFT labels(T) = FT labels(T1) and
T labelsp(T) = T labelsp(T1) ∪ T labelsp(T2). From the in-
duction hypothesis we have thatFT labels(T1) ⊆ T labelsp(T1)
and thus we can see that our conclusion is true.
If T ≡ T1 ‖ T2 then
FT labels(T) = FT labels(T1) ∪ FT labels(T2) and
T labelsp(T) = T labelsp(T1) ∪ T labelsp(T2). From the in-
duction hypothesis we have thatFT labels(T1) ⊆ T labelsp(T1)
andFT labels(T2) ⊆ T labelsp(T2). From here it is easy to
reach our conclusion.
If T ≡ 〈s〉 then examining the definitions we see
FT labels(T) = FSlabels(s) and
T labelsp(T) = Slabelsp(s). From (7.12) we reach our con-
clusion.

14. From (7.13) we have 1)FT labels(T1) ⊆ T labelsp(T1) and
2) FT labels(T2) ⊆ T labelsp(T2). From unfoldingTcross()
we have 3)Tcrossp(T1, T labelsp(T2)) =
symcross(T labelsp(T1), T labelsp(T2)). Using (7.2) with 1)
and 2) gives us
4) symcross(FT labels(T1), FT labels(T2)) ⊆
symcross(T labelsp(T1), T labelsp(T2)). From 3) and 4) we
have our conclusion.

15. Let us perform induction onT . This gives us four cases.

If T ≡
√

then we do not take a step.
If T ≡ T1 B T2 then there are two rules by which we may take
a step.
Suppose we step by Rule (1) andT ′ = T2. From the defini-
tion of T labelsp() we haveT labelsp(T) = T labelsp(T1) ∪
T labelsp(T2) and T labelsp(T ′) = T labelsp(T2). We see
from this that the conclusion is true.
Suppose we step by Rule (2) then we have 1)T ′ = T ′

1 B T2

and 2) (p,A, T1) → (p,A′, T ′
1). Unfolding the definition

of T labelsp() we have 3)T labelsp(T) = T labelsp(T1) ∪
T labelsp(T2) and
4) T labelsp(T ′) = T labelsp(T ′

1) ∪ T labelsp(T2). From
the induction hypothesis we have that 3)T labelsp(T ′

1) ⊆
T labelsp(T1) and from here we easily may arrive at the con-
clusion.
If T ≡ T1 ‖ T2 then there are four rules by which we can step.
Suppose we step by Rule (3) then we may use similar logic as
the case whereT ≡ T1 B T2 and we step by Rule (1).
Suppose we step by Rule (4) then we proceed using similar
logic as the previous case.
Suppose we step by Rule (5) then we may use similar logic as
the case whereT ≡ T1 B T2 and we step by Rule (2).
Suppose we step by Rule (6) then we may proceed using similar
logic as the previous case.
If T ≡ 〈s〉 then we now perform induction ons to give us an
additional seven cases.
If s ≡ skipl then we step by Rule (7) andT ′ =

√
. From

the definition ofT labels() we haveT labelsp(T ′) = ∅ and
T labelsp(T) = {l}. Thus we see that the conclusion is true.
If s ≡ skipl s1 then we step by Rule (8) andT ′ = 〈s1〉. We
see that by the definition ofT labels() that T labelsp(T ′) =
Slabelsp(s1) andT labelsp(T) = {l}∪Slabelsp(s1). We now
can easily arrive at the conclusion.
If s ≡ a[d] =l e; s1 then we step by Rule (9) and proceed
using similar reasoning as the previous case.
If s ≡ whilel (a[d] 6= 0) s1 s2 then there are two rules by
which we may take a step.
Suppose we step by Rule (10) thenT ′ = 〈s2〉. From the def-
inition of T labelsp() we haveT labelsp(T ′) = Slabelsp(s2)
andT labelsp(T) = {l} ∪ Slabelsp(s1) ∪ Slabelsp(s2). The
conclusion is obvious.
Suppose we step by Rule (11) thenT ′ = 〈s1 . whilel (a[d] 6=
0) s1 s2〉. From the definition ofT labelsp() and (7.11) we
haveT labelsp(T ′) = Slabelsp(s1) ∪ {l} ∪ Slabelsp(s1) ∪
Slabelsp(s2) = Slabelsp(s) andT labelsp(T) = Slabelsp(s).
The conclusion is obviously true.
If s ≡ asyncl s1 s2 then we step by Rule (12) andT ′ =
〈s1〉 ‖ 〈s2〉. Using the definition ofT labelsp() we have
T labelsp(T ′) = Slabelsp(s1) ∪ Slabelsp(s2) and
T labelsp(T) = {l} ∪ Slabelsp(s1) ∪ Slabelsp(s2). The
conclusion is now obvious.
If s ≡ finishl s1 s2 then we step by Rule (13) andT ′ =
〈s1〉B 〈s2〉. From the definition ofT labelsp()
we getT labelsp(T ′) = Slabelsp(s1) ∪ Slabelsp(s2) and
T labelsp(T) = {l} ∪ Slabelsp(s1) ∪ Slabelsp(s2). The
conclusion is easily reached from here.
If s ≡ fi()

l s1 then we step by Rule (14) andT ′ = 〈si . s1〉
where p(fi) = si. From the definition ofT labelsp() we
get T labelsp(T ′) = Slabelsp(si . s1) andT labelsp(T) =
{l} ∪ Slabelsp(si) ∪ Slabelsp(s1). From (7.11) we have
Slabelsp(si . s1) = Slabelsp(si) ∪ Slabelsp(s1). From here
we can easily arrive at our conclusion.

16. Let us unfold the definition ofScross() to get
1) Scrossp(s,R) = symcross(Slabelsp(s), R). We may
now substitute to get 2)Scrossp(s,R) = symcross({l} ∪

Slabelsp(k), R). Let us apply the (7.3) to get
3) Scrossp(s,R) = symcross({l}, R)∪
symcross(Slabelsp(k), R). We may now use the definitions
of Lcross() andScrossp() achieve our conclusion.

17. Let us use the definition ofScross() to get 1)Scrossp(s,R) =
symcross(Slabelsp(s), R). We may substitute to get
2) Scrossp(s,R) = symcross({l} ∪ Slabelsp(s1)∪
Slabelsp(s2), R). Using (7.3) we can get 3)Scrossp(s,R) =
symcross({l}, R) ∪ symcross(Slabelsp(s1), R)∪
symcross(Slabelsp(s2), R). We may now use the definition
of Lcross() andScrossp() to arrive at our conclusion.

18. UnfoldingTcross() gives us
1) Tcrossp(〈s〉, R) = symcross(T labelsp(s), R). We un-
fold T labelsp() to get
2) Tcrossp(〈s〉, R) = symcross(Slabelsp(s), R). We apply
the definition ofScrossp() to get our conclusion
Tcrossp(〈s〉, R) = Scrossp(s,R).

19. Let us unfold the definition ofTcrossp() to get
1) Tcrossp(T,R) = symcross(T labelsp(T), R). Substitut-
ing the premise in 1) gives us 2)Tcrossp(T,R) =
symcross(T labelsp(T1) ∪ Tcrossp(T2), R). We apply (7.3)
on 2) to get 3)Tcrossp(T,R) =
symcross(T labelsp(T1), R)∪symcross(T labelsp(T2), R).
Finally we apply the definition ofTcross() on 3) to get our
conclusion,
Tcrossp(T,R) = Tcrossp(T1, R) ∪ Tcrossp(T2, R).

�

8.2 Unique Typing

We first observe that any label setR and statements will always
uniquely determineM andO. We will use this property often to
show that types are equal.

LEMMA 8. If p,E,R ` s : M1, O1 and p,E,R ` s : M2, O2

thenM1 = M2 andO1 = O2.

Proof. Let us perform induction ons and examine the seven cases.
If s ≡ skipl the conclusion is immediately obvious from

Rule (50).
If s ≡ skipl s1 then from Rule (51) we have 1)p,E,R `

s1 : M ′
1, O

′
1, 2) M1 = Lcross(l, R) ∪ M ′

1, 3) O1 = O′
1, 4)

p,E,R ` s1 : M ′
2, O

′
2, 5) M2 = Lcross(l, R) ∪ M ′

2 and 6)
O2 = O′

2. Using the induction hypothesis on 1) and 4) we get 7)
M ′

1 = M ′
2 and 8)O′

1 = O′
2. Applying some substitution among

2),3),5),6),7) and 8) we arrive at our conclusionM1 = M2 and
O1 = O2.

If s ≡ a[d] =l e; s1 then we may proceed using similar
reasoning as the previous case.

If s ≡ whilel (a[d] 6= 0) s1 s2 then from Rule (53) we
have 1)p,E,R ` s1 : M ′

1, O
′
1, 2) p,E,O′

1 ` s2 : M ′′
1 , O

′′
1 ,

3) M1 = Lcross(l, O′
1) ∪ Scrossp(s1, O

′
1) ∪ M ′

1 ∪ M ′′
1 , 4)

O1 = O′′
1 , 5) p,E,R ` s1 : M ′

2, O
′
2, 6) p,E,O′

2 ` s2 : M ′′
2 , O

′′
2 ,

7) M2 = Lcross(l, O′
2) ∪ Scrossp(s1, O

′
2) ∪M ′

2 ∪M ′′
2 and 8)

O2 = O′′
2 . Let us apply the induction hypothesis on 1) and 5) to get

9)M ′
1 = M ′

2 and 10)O′
1 = O′

2. From 10) we are able to apply the
induction hypothesis on 2) and 6) to get 11)M ′′

1 = M ′′
2 and 12)

O′′
1 = O′′

2 . Using substitution with 9),10),11) and 12) in 3),4),7)
and 8) we get our conclusionM1 = M2 andO1 = O2.

If s ≡ asyncl s1 s2 then from Rule (54) we have
1) p,E, Slabelsp(s2)∪R ` s1 : M ′

1, O
′
1, 2)p,E, Slabelsp(s1)∪

R ` s2 : M ′′
1 , O

′′
1 , 3) M1 = Lcross(l, R) ∪ M ′

1 ∪ M ′′
1 ,

4) O1 = O′′
1 , 5) p,E, Slabelsp(s2) ∪ R ` s1 : M ′

2, O
′
2, 6)

p,E, Slabelsp(s1)∪R ` s2 : M ′′
2 , O

′′
2 , 7)M2 = Lcross(l, R)∪

M ′
2 ∪M ′′

2 and 8)O2 = O′′
2 . We may apply the induction hypothe-

sis on 1) and 5) and 2) and 6) to get 9)M ′
1 = M ′

2, 10)O′
1 = O′

2,

11)M ′′
1 = M ′′

2 and 12)O′′
1 = O′′

2 . Substituting 9),10),11) and 12)
in 3),4),7) and 8) we get our conclusionM1 = M2 andO1 = O2.

If s ≡ finishl s1 s2 then we may proceed using similar
reasoning as the previous case.

If s ≡ fi()
l k then from Rule (56) we have 1)E(fi) =

(Mi, Oi), 2)p,E,R∪Oi ` s1 : M ′
k, O

′
k, 3)M1 = Lcross(l, R)∪

symcross(Slabelsp(p(fi), R) ∪ Mi ∪ M ′
k, 4) O1 = O′

k, 5)
p,E,R ∪ Oi ` sk : M ′′

k , O
′′
k , 6) M2 = Lcross(l, R) ∪

symcross(Slabelsp(p(fi), R) ∪ Mi ∪ M ′′
k and 7)O2 = O′′

k .
From applying the induction hypothesis with 2) and 5) we get 8)
M ′

k = M ′′
k and 9)O′

k = O′′
k . Substituting 6) and 8) in 3) we

get 10)M1 = M2. Substituting 7) and 9) in 4) we obtain 11)
O1 = O2. From 10) and 11) we have our conclusion. �

The next lemma is similar to the previous lemma, but works for
trees: anyR andT uniquely determinesM .

LEMMA 9. If p,E,R ` T : M and p,E,R ` T : M ′ then
M = M ′.

Proof. Let us perform induction onT . There are four cases.
If T ≡

√
then from Rule (49) we have 1)M = ∅ and 2)

M ′ = ∅. It is obvious thatM = M ′.
If T ≡ T1 B T2 then from Rule (46) we have 1)p,E,R `

T1 : M1, 2) p,E,R ` T2 : M2, 3) M = M1 ∪ M2, 4)
p,E,R ` T1 : M ′

1, 5)p,E,R ` T2 : M ′
2 and 6)M ′ = M ′

1 ∪M ′
2.

From the induction hypothesis applied to 1) and 4) and to 2) and 5)
we get 7)M1 = M ′

1 and 8)M2 = M ′
2. From 3),6),7) and 8) we

seeM = M ′.
If T ≡ T1 ‖ T2 then from Rule (47) we have

1) p,E, T labelsp(T2) ∪ R ` T1 : M1, 2) p,E, T labelsp(T1) ∪
R ` T2 : M2, 3)M = M1∪M2, 4)p,E, T labelsp(T2)∪R ` T1 :
M ′

1, 5)p,E, T labelsp(T1)∪R ` T2 : M ′
2 and 6)M ′ = M ′

1∪M ′
2.

We use the induction hypothesis on 1) and 4) and on 2) and 5) to
get 7)M1 = M ′

1 and 8)M2 = M ′
2. From 3),6),7) and 8) we get

M = M ′.
If T ≡ 〈s〉 then from Rule (48) we have 1)p,E,R ` s :

Ms, Os, 2) M = Ms, 3) p,E,R ` s : M ′
s, O

′
s, 4) M ′ = M ′

s.
From Lemma (8) applied to 1) and 3) we have 5)Ms = M ′

s. From
2),4) and 5) we haveM = M ′. �

8.3 Principal Typing

The following lemma shows that if a statement is typable with a set
R, then it will also be typable with a setR′. This is convenient for
showing the existence of a type when we perform induction in the
proofs of later lemmas; once we have such a type, we can then use
the unique-typing lemmas to relate the type to other types.

LEMMA 10. If p,E,R ` s : M,O then there existsM ′ andO′

such thatp,E,R′ ` s : M ′, O′.

Proof. Let us perform induction ons. This gives us seven cases to
examine.

If s ≡ skipl then from Rule (50) we letM = Lcross(l, R′)
andO = R′.

If s ≡ skipl s1 then from Rule (51) we have 1)p,E,R ` s1 :
M1, O1. Using the induction hypothesis with 1) we have that there
existsM ′

1 andO′
1 such that 2)p,E,R′ ` s1 : M ′

1, O
′
1. Then by

Rule (51) we letM = Lcross(l, R′) ∪M1 andO = O′
1.

If s ≡ a[d] =l e; s1 then we proceed using similar logic as the
previous case.

If s ≡ whilel (a[d] 6= 0) s1 s2 then by Rule (53) we have
1) p,E,R ` s1 : M1, O1 and 2)p,E,O1 ` s2 : M2, O2.
Using the induction hypothesis with 1) and 2) we have that there
existsM ′

1,M ′
2,O′

1 andO′
2 such that 3)p,E,R′ ` s1 : M ′

1, O
′
1

and 4)p,E,O′
1 ` s2 : M ′

2, O
′
2. Then from Rule (53) we let

M = Lcross(l, R′)∪Scrossp(s1, O
′
1)∪M1∪M2 andO = O′

2.

If s ≡ asyncl s1 s2 then by Rule (54) we have
1) p,E, Slabelsp(s2) ∪R ` s1 : M1, O1 and
2) p,E, Slabelsp(s1) ∪ R ` s2 : M2, O2. We may use the induc-
tion hypothesis with 1) and 2) go get that there existsM ′

1,M ′
2,O′

1

andO′
2 such that 3)p,E, Slabelsp(s2) ∪ R′ ` s1 : M ′

1, O
′
1 and

4) p,E, Slabelsp(s1) ∪ R′ ` s2 : M ′
2, O

′
2. Then from Rule (54)

we letM = Lcross(l, R′) ∪M ′
1 ∪M ′

2 andO = O′
2.

If s ≡ finishl s1 s2 then from Rule (55) we have 1)p,E,R `
s1 : M1, O1 and 2)p,E,R ` s2 : M2, O2. We use the induction
hypothesis with 1) and 2) to get that there existsM ′

1,M ′
2,O′

1 and
O′

2 such that 3)p,E,R′ ` s1 : M ′
1, O

′
1 and 4)p,E,R′ ` s2 :

M ′
2, O2. Then from Rule (55) we letM = Lcross(l, R′) ∪M ′

1 ∪
M ′

2 andO = O′
2.

If s ≡ fi() k then by Rule (56) we have 1)E(fi) = (Mi, Oi)
and 2)p,E,R ∪Oi ` k : M ′, O′. Using the induction hypothesis
with 2) we have that there existsM ′′ andO′′ such that 3)p,E,R′∪
Oi ` k : M ′′, O′′. With 1) and 3) we may apply Rule (56) with
M ′ = Lcross(l, R′)∪symcross(Slabelp(p(fi)), R

′)∪Mi∪M ′′

andO′ = O′′ to reach our conclusion. �

Again, we need a similar lemma for execution trees.

LEMMA 11. If p,E,R ` T : M then there existsM ′ such that
p,E,R′ ` T : M ′.

Proof. Let us perform induction onT . There are four cases.
If T ≡

√
then by Rule (49) we letM ′ = ∅.

If T ≡ T1 B T2 then from Rule (46) we have 1)p,E,R `
T1 : M1 and 2)p,E,R ` T2 : M2. We may use the induction
hypothesis with 1) and 2) to get that there existsM ′

1 andM ′
2 such

that 3) p,E,R′ ` T1 : M ′
1 and 4)p,E,R′ ` T2 : M ′

2. By
Rule (46) we letM ′ = M ′

1 ∪M ′
2.

If T ≡ T1 ‖ T2 the we may use similar logic as with the
previous case.

If T ≡ 〈s〉 then from Rule (48) we have 1)p,E,R ` s : M,O.
We use Lemma (10) with 1) and we have that there existsM ′′ and
O′′ such thatp,E,R′ ` s : M ′′, O′′. Then by Rule (48) we let
M ′ = M ′′. �

The following lemma is our principal typing lemma for state-
ments. Intuitively, we have a mappingπ from a typing to a set of
typings, and if we produce a typingT for a statementswithR = ∅,
thenπ(T) are exactly all the possible typings ofs. Our mappingπ
consists simply of creating appropriate set unions. The idea is that
for a judgmentp,E,R ` s : M,O, the statements with labels in
R may still be running whens terminates so if we have a judg-
mentp,E, ∅ ` s : M ′, O′, thenO must be the union ofR andO′.
Also, those statement with labels inR may run in parallel with any
statement ins, henceM is the union ofScrossp(s,R) andM ′.

LEMMA 12. p,E,R ` s : M,O if and only if there existsM ′ and
O′ such thatp,E, ∅ ` s : M ′, O′ andM = Scrossp(s,R) ∪M ′

andO = R ∪O′.

Proof. ⇒) We may use Lemma (10) with the premise to get that
there existsM ′ andO′ such thatp,E, ∅ ` s : M ′, O′. We next
perform induction ons. We have seven cases to examine and show
thatM = Scrossp(s,R) ∪M ′ andO = R ∪O′.

If s ≡ skipl then by Rule (50) and using the definition
of Lcross() we have 1)M ′ = ∅, 2) O′ = ∅, 3) M =
symcross({l}, R), and 4)O = R. Using Rule (15) and the defini-
tion of Scross() we have 5)M = symcross(Slabels(s), R) =
Scrossp(s,R). We can now easily see from 1),2),4) and 5) that
M = Scrossp(s,R) ∪M ′ andO = R ∪O′.

If s ≡ skipl s1 then by Rule (51) and the definition ofLcross()
we have 1)p,E, ∅ ` s1 : M ′

1, O
′
1, 2) M ′ = Lcross(l, ∅) ∪

M ′
1 = M ′

1, 3) O′ = O′
1 4) p,E,R ` s1 : M1, O1, 5) M =

Lcross(l, R)∪M1, and 6)O = O1. Using the induction hypothe-
sis on 1) and 4) we get 7)M1 = Scrossp(s1, R)∪M ′

1 and 8)O1 =
R ∪ O′

1. Let us substitute 7) in 5) to get 9)M = Lcross(l, R) ∪
Scrossp(s1, R) ∪ M ′

1. By using Rule (16), Lemma (7.16) and
2) we getM = Scrossp(s,R) ∪ M ′

1 = Scrossp(s,R) ∪ M ′.
Finally using 3), 6), and 8) we may perform substitution to get
O = O1 = R ∪O′

1 = R ∪O′ and thus we have our conclusion.
If s ≡ a[d] =l e; s1 we may proceed using similar reasoning

as the previous case.
If s ≡ whilel (a[d] 6= 0) s1 s2 then by Rule (53) we

have 1)p,E, ∅ ` s1 : M ′
1, O

′
1, 2) p,E,O′

1 ` s2 : M ′
2, O

′
2,

3) M ′ = Lcross(l, O′
1) ∪ Scrossp(s1, O

′
1) ∪ M ′

1 ∪ M ′
2, 4)

O′ = O′
2, 5) p,E,R ` s1 : M1, O1, 6) p,E,O1 ` s2 : M2, O2,

7) M = Lcross(l, O1) ∪ Scrossp(s1, O1) ∪ M1 ∪ M2, and
8) O = O2. From the induction hypothesis and Lemma (8)
applied to 2),5) and 6) we have 9)p,E, ∅ ` s2 : M ′′

2 , O
′′
2 ,

10) M ′
2 = Scrossp(s2, O

′
1) ∪ M ′′

2 , 11) O′
2 = O′

1 ∪ O′′
2 ,

12) M1 = Scrossp(s1, R) ∪ M ′
1, 13) O1 = R ∪ O′

1, 14)
M2 = Scrossp(s2, O1) ∪ M ′′

2 and 15)O2 = O1 ∪ O′′
2 . Sub-

stituting 10) in 3); 12),13) and 14) in 7); 11) in 4); and 13) and
15) in 8) yields 16)M ′ = Lcross(l, O′

1) ∪ Scrossp(s1, O
′
1) ∪

M ′
1 ∪ Scrossp(s2, O

′
1) ∪M ′′

2 , 17)M = Lcross(l, R ∪ O′
1) ∪

Scrossp(s1, R∪O′
1)∪Scrossp(s1, R)∪M ′

1∪Scrossp(s2, R∪
O′

1)∪M ′′
2 , 18)O′ = O′

1 ∪O′′
2 and 19)O = R∪O′

1 ∪O′′
2 . Using

Lemma (7.4) and (7.5) on 17) we have 20)M = Lcross(l, R) ∪
Scrossp(s1, R) ∪ Scrossp(s2, R) ∪ Lcross(l, O′

1)∪
Scrossp(s1, O

′
1) ∪ Scrossp(s2, O

′
1) ∪M ′

1 ∪M ′′
2 .

Using Lemma (7.17) with Rule (18) on 20) we get 21)M =
Scrossp(s,R) ∪ Lcross(l, O′

1) ∪ Scrossp(s1, O
′
1)∪

Scrossp(s2, O
′
1)∪M ′

1 ∪M ′′
2 . We may substitute 16) in 21) to get

M = Scrossp(s,R) ∪M ′ and then substitute 18) in 19) to get
O = R ∪O′.

If s ≡ asyncl s1 s2 then by Rule (54) we have
1) p,E, Slabelsp(s2) ` s1 : M ′

1, O
′
1, 2) p,E, Slabelsp(s1) `

s2 : M ′
2, O

′
2, 3) M ′ = Lcross(l, ∅) ∪M ′

1 ∪M ′
2 = M ′

1 ∪M ′
2,

4) O′ = O′
2, 5) p,E, Slabelsp(s2) ∪ R ` s1 : M1, O1, 6)

p,E, Slabelsp(s1) ∪ R ` s2 : M2, O2, 7)M = Lcross(l, R) ∪
M1∪M2, and 8)O = O2. We may apply the induction hypothesis
and Lemma (8) to 1),2),5) and 6) to get 9)p,E, ∅ ` s1 : M ′′

1 , O
′′
1 ,

10)p,E, ∅ ` s2 : M ′′
2 , O

′′
2 ,

11)M ′
1 = Scrossp(s1, Slabelsp(s2)) ∪M ′′

1 ,
12)M ′

2 = Scrossp(s2, Slabelsp(s1)) ∪M ′′
2 ,

13)O′
2 = Slabelsp(s1) ∪O′′

2 ,
14) M1 = Scrossp(s1, Slabelsp(s2) ∪ R) ∪ M ′′

1 , 15) M2 =
Scrossp(s2, Slabelsp(s1) ∪R) ∪M ′′

2 and
16)O2 = Slabelsp(s1)∪R∪O′′

2 . We now substitute 11) and 12) in
3); 14) and 15) in 7) to get 17)M ′ = Scrossp(s1, Slabelsp(s2))∪
M ′′

1 ∪ Scrossp(s2, Slabelsp(s1)) ∪M ′′
2 and

18)M = Lcross(l, R)∪Scrossp(s1, Slabelsp(s2)∪R)∪M ′′
1 ∪

Scrossp(s2, Slabelsp(s1) ∪ R) ∪ M ′′
2 . Using Lemma (7.5) on

18) then substituting in 17) we get 19)M = Lcross(l, R) ∪
Scrossp(s1, R) ∪ Scrossp(s2, R) ∪M ′. We now apply
Lemma (7.17) with Rule (19) to getM = Scrossp(s,R) ∪M ′.
Finally from 4),8),13) and 16) we haveO = R ∪O′.

If s ≡ finishl s1 s2 then by Rule (55) we have 1)p,E, ∅ `
s1 : M ′

1, O
′
1, 2) p,E, ∅ ` s2 : M ′

2, O
′
2, 3)M ′ = Lcross(l, ∅) ∪

M ′
1 ∪M ′

2 = M ′
1 ∪M ′

2, 4)O′ = O′
2, 5) p,E,R ` s1 : M1, O1,

6) p,E,R ` s2 : M2, O2, 7) M = Lcross(l, R) ∪M1 ∪M2,
and 8)O = O2. Let us apply the induction hypothesis with
Lemma (8) on 5) and 6) to get 9)M1 = Scrossp(s1, R) ∪M ′

1,
10) O1 = R ∪ O′

1, 11)M2 = Scrossp(s2, R) ∪ M ′
2, and 12)

O2 = R∪O′
2. We may substitute 3),9) and 11) in 7) to get 13)M =

Lcross(l, R) ∪ Scrossp(s1, R) ∪ Scrossp(s2, R) ∪M ′. Using
Lemma (7.17) with Rule (20) we getM = Scrossp(s,R) ∪M ′.
Finally we see from 4),8) and 12) we haveO = R ∪O′.

If s ≡ fi() k then by Rule (56) we have 1)E(fi) =
(Mi, Oi), 2) p,E,Oi ` k : M ′

k, O
′
k, 3) M ′ = Lcross(l, ∅) ∪

symcross(Slabelsp(p(fi)), ∅) ∪ Mi ∪ M ′
k = Mi ∪ M ′

k, 4)
O′ = O′

k, 5)p,E,R∪Oi ` k : Mk, Ok, 6)M = Lcross(l, R)∪
symcross(Slabelsp(p(fi)), R) ∪Mi ∪Mk and 7)O = Ok. We
may apply the induction hypothesis with the premise and 2) and 5)
to get that there existsM ′′

k ,M ′′′
k ,O′′

k andO′′′
k such that 8)p,E, ∅ `

k : M ′′
k , O

′′
k , 9)M ′

k = Scrossp(k,Oi)∪M ′′
k , 10)O′

k = Oi∪O′′
k ,

11)p,E, ∅ ` k : M ′′′
k , O′′′

k , 12)Mk = Scrossp(k,R∪Oi)∪M ′′′
k

and 13)Ok = R ∪ Oi ∪ O′′′
k . We apply Lemma (8) with 8) and

11) to get 14)M ′′
k = M ′′′

k and 15)O′′
k = O′′′

k . We substitute 9) in
3) to get 16)M ′ = Mi ∪ Scrossp(k,Oi) ∪M ′′

k . Substituting 12)
and 14) andp(fi) = si in 6) gives us 17)M = Lcross(l, R) ∪
symcross(Slabelsp(si), R)∪ Scrossp(k,R ∪Oi)∪Mi ∪M ′′

k .
Applying the definition ofScrossp() and Lemma (7.5 to 17) gives
us 18)M = Lcross(l, R) ∪ Scrossp(si, R) ∪ Scrossp(k,R) ∪
Scrossp(k,Oi) ∪Mi ∪M ′′

k . We substitute 16) in 18) to get 19)
M = Lcross(l, R) ∪ Scrossp(si, R) ∪ Scrossp(k,R) ∪ M ′.
Applying Lemma (7.17) with Rule (21) on 19) to get 20)M =
Scrossp(s,R) ∪M ′. Substituting 10) and 15) in 13) gives us 21)
Ok = R∪O′

k. We substitute 4) and 7) in 21) to get 22)O = R∪O′.
With 20) and 22) we have our conclusion.
⇐) From Lemma (10) and the premise there existsM ′′ and

O′′ such thatp,E,R ` s : M ′′, O′′. If we showM ′′ = M and
O′′ = O then we will have our conclusion thatp,E,R ` s : M,O.
We now will perform induction ons and examine the seven cases
and show thatM ′′ = M andO′′ = O.

If s ≡ skipl then from Rule (50) we have
1) M ′ = Lcross(l, ∅) = ∅, 2)O′ = ∅, 3)M ′′ = Lcross(l, R)
and 4)O′′ = R. Substituting 1) and 2) in the premise gives us
5) M = Scrossp(s,R) and 6)O = R. Unfolding the definition
of Scrossp() in 5) we have 7)M = symcross(Slabelsp(s), R).
From the definitionsSlabelsp() andLcross() applied to 7) we get
8) M = Lcross(l, R). From 3),4),6) and 8) we haveM ′′ = M
andO′′ = O.

If s ≡ skipl s1 then from Rule (51) we have 1)p,E, ∅ ` s1 :
M ′

1, O
′
1, 2) M ′ = Lcross(l, ∅) ∪ M ′

1 = M ′
1, 3) O′ = O′

1, 4)
p,E,R ` s1 : M ′′

1 , O
′′
1 , 5) M ′′ = Lcross(l, R) ∪ M ′′

1 and 6)
O′′ = O′′

1 . Let 7)M1 = Scrossp(s1, R) ∪ M ′
1 and 8)O1 =

R∪O′
1. Then using the induction hypothesis we have 9)p,E,R `

s1 : M1, O1. From Lemma (8) on 4) and 9) we have 10)M1 = M ′′
1

and 11)O1 = O′′
1 . Substituting 7) and 10) in 5) and 8) and 11) in

6) yields 12)M ′′ = Lcross(l, R) ∪ Scrossp(s1, R) ∪M ′
1 and

13) O′′ = R ∪ O′
1. Using Lemma (7.16) with Rule (16) on 12)

gives us 14)M ′′ = Scrossp(s,R) ∪M ′
1. Substituting 2) and 3)

in the premise gives us 15)M = Scrossp(s,R) ∪ M ′
1 and 16)

O = R ∪ O′
1. From 13),14),15) and 16) we seeM ′′ = M and

O′′ = O.
If s ≡ a[d] =l e; s1 then we may use similar reasoning as the

previous case.
If s ≡ whilel (a[d] 6= 0) s1 s2 then from Rule (53) we

have 1)p,E, ∅ ` s1 : M ′
1, O

′
1, 2) p,E,O′

1 ` s2 : M ′
2, O

′
2, 3)

M ′ = Lcross(l, O′
1)∪Scrossp(s1, O

′
1)∪M ′

1∪M ′
2, 4)O′ = O′

2,
5) p,E,R ` s1 : M ′′

1 , O
′′
1 , 6) p,E,O′′

1 ` s2 : M ′′
2 , O

′′
2 , 7)M ′′ =

Lcross(l, O′′
1) ∪ Scrossp(s,O′′

1) ∪M ′′
1 ∪M ′′

2 and 8)O′′ = O′′
2 .

Let 9)M1 = Scrossp(s1, R) ∪M ′
1 and 10)O1 = R ∪ O′

1. Then
from the induction hypothesis we have 11)p,E,R ` s1 : M1, O1.
Using Lemma (8) on 5) and 11) results in 12)M1 = M ′′

1 and 13)
O1 = O′′

1 . From Lemma (10) there existsM2 andO2 such that 14)
p,E, ∅ ` s2 : M2, O2. Let 15)M ′′′

2 = Scrossp(s2, O
′
1) ∪M2,

16)O′′′
2 = O′

1 ∪O2, 17)M ′′′′
2 = Scrossp(s2, O

′′
1) ∪M2 and 18)

O′′′′
2 = O′′

1 ∪ O2. We use the induction hypothesis with 14),15)
and 16) and 14),17) and 18) to get 19)p,E,O′

1 ` s2 : M ′′′
2 , O

′′′
2

and 20)p,E,O′′
1 ` s2 : M ′′′′

2 , O′′′′
2 . Using Lemma (8) on 2)

and 19) and 6) and 20) we get 21)M ′
2 = M ′′′

2 , 22)O′
2 = O′′′

2 ,

23) M ′′
2 = M ′′′′

2 and 24)O′′
2 = O′′′′

2 . Substituting 15) and 21)
in 3) and 16) and 22) in 4) to get 25)M ′ = Lcross(l, O′

1) ∪
Scrossp(s1, O

′
1) ∪M ′

1 ∪ Scrossp(s2, O
′
1) ∪M2 and 26)O′ =

O′
1 ∪ O2. We apply Lemma (7.17) with Rule (18) on 25) to get

27)M ′ = Scrossp(s,O′
1) ∪ M ′

1 ∪ M2. We now substitute 26)
and 27) in the premise and we get 28)M = Scrossp(s,R) ∪
Scrossp(s,O′

1) ∪ M ′
1 ∪ M2 and 29)O = R ∪ O′

1 ∪ O2. Ap-
plying Lemma (7.5) to 28) results in 30)M = Scrossp(s,R ∪
O′

1) ∪M ′
1 ∪M2. Substituting 9),10),12),13),17) and 23) in 7) and

gives us 31)M ′′ = Lcross(l, R ∪O′
1)∪ Scrossp(s1, R ∪O′

1)∪
Scrossp(s1, R)∪M ′

1∪Scrossp(s2, R∪O′
1)∪M2. From substitut-

ing 10),13),18) and 24) in 8) we get 32)O′′ = R∪O′
1∪O2. Using

Lemma (7.5) allows us to simplify 31) to 33)M ′′ = Lcross(l, R∪
O′

1)∪Scrossp(s1, R∪O′
1)∪M ′

1 ∪Scrossp(s2, R∪O′
1)∪M2.

Next we apply Lemma (7.17) with Rule (18) to get 34)M ′′ =
Scrossp(s,R ∪ O′

1) ∪ M ′
1 ∪ M2. From 30) and 34) we have

M ′′ = M and from 29) and 32) we haveO′′ = O.
If s ≡ asyncl s1 s2 then from Rule (54) we have

1) p,E, Slabelsp(s2) ` s1 : M ′
1, O

′
1, 2) p,E, Slabelsp(s1) `

s2 : M ′
2, O

′
2, 3) M ′ = Lcross(l, ∅) ∪M ′

1 ∪M ′
2 = M ′

1 ∪M ′
2,

4) O′ = O′
2, 5) p,E, Slabelsp(s2) ∪ R ` s1 : M ′′

1 , O
′′
1 , 6)

p,E, Slabelsp(s1)∪R ` s2 : M ′′
2 , O

′′
2 , 7)M ′′ = Lcross(l, R)∪

M ′′
1 ∪ M ′′

2 and 8)O′′ = O′′
2 . From Lemma (10) there exists

M ′′′
1 ,M ′′′

2 ,O′′′
1 , andO′′′

2 such that 9)p,E, ∅ ` s1 : M ′′′
1 , O

′′′
1 and

10)p,E, ∅ ` s2 : M ′′′
2 , O

′′′
2 .

Let 11) M1 = Scrossp(s1, Slabelsp(s2)) ∪ M ′′′
1 , 12) O1 =

Slabelsp(s2)∪O′′′
1 , 13)M2 = Scrossp(s2, Slabelsp(s1))∪M ′′′

2 ,
14)O2 = Slabelsp(s1) ∪O′′′

2 ,
15)M ′′′′

1 = Scrossp(s1, Slabelsp(s2) ∪ R) ∪M ′′′
1 16)O′′′′

1 =
Slabelsp(s2)∪R∪O′′′

1 , 17)M ′′′′
2 = Scrossp(s2, Slabelsp(s1)∪

R) ∪M ′′′
2 and 18)O′′′′

2 = Slabelsp(s1) ∪ R ∪ O′′′
2 . We use the

induction hypothesis applied to 9),11), and 12); 10),13) and 14);
9),15) and 16); and 10),17) and 18) to get 19)p,E, Slabelsp(s2) `
s1 : M1, O1, 20) p,E, Slabelsp(s1) ` s2 : M2, O2, 21)
p,E, Slabelsp(s2) ∪R ` s1 : M ′′′′

1 , O′′′′
1 and

22) p,E, Slabelsp(s1) ∪ R ` s2 : M ′′′′
2 , O′′′′

2 . Using Lemma (8)
on 1) and 19); 2) and 20); 5) and 21); and 6) and 22) we have
23) M ′

1 = M1, 24)O′
1 = O1, 25)M ′

2 = M2, 26)O′
2 = O2,

27) M ′′
1 = M ′′′′

1 , 28) O′′
1 = O′′′′

1 , 29) M ′′
2 = M ′′′′

2 and 30)
O′′

2 = O′′′′
2 . We substitute 11),13),23) and 25) in 3) to get 31)

M ′ = Scrossp(s1, Slabelsp(s2))∪Scrossp(s2, Slabelsp(s1))∪
M ′′′

1 ∪ M ′′′
2 . Substituting 15),17),27) and 29) in 7) gives us

32) M ′′ = Lcross(l, R) ∪ Scrossp(s1, Slabelsp(s2) ∪ R) ∪
Scrossp(s2, Slabelsp(s1) ∪ R) ∪ M ′′′

1 ∪ M ′′′
2 . We may apply

Lemma (7.5) and then substitute 31) in 32) to get 33)M ′′ =
Lcross(l, R) ∪ Scrossp(s1, R) ∪ Scrossp(s2, R) ∪ M ′. Us-
ing Lemma (7.17) with Rule (19) on 33) gives us 34)M ′′ =
Scrossp(s,R) ∪M ′. From 4),8),14),18),26) and 30) we may per-
form substitutions to get 35)O′′ = R ∪ O′. By substituting the
premise in 34) and 35) we getM ′′ = M andO′′ = O.

If s ≡ finishl s1 s2 then by Rule (55) we have 1)p,E, ∅ `
s1 : M ′

1, O
′
1, 2) p,E, ∅ ` s2 : M ′

2, O
′
2, 3)M ′ = Lcross(l, ∅) ∪

M ′
1∪M ′

2 = M ′
1∪M ′

2, 4)O′ = O′
2, 5)p,E,R ` s1 : M ′′

1 , O
′′
1 , 6)

p,E,R ` s2 : M ′′
2 , O

′′
2 , 7) M ′′ = Lcross(l, R) ∪ M ′′

1 ∪ M ′′
2

and 8)O′′ = O′′
2 . Let 9) M1 = Scrossp(s1, R) ∪ M ′

1, 10)
O1 = R ∪ O′

1, 11)M2 = Scrossp(s2, R) ∪M ′
2 and 12)O2 =

R ∪ O′
2. From the induction hypothesis applied with 1),9) and 10)

and 2),11) and 12) we get 13)p,E,R ` s1 : M1, O1 and 14)
p,E,R ` s2 : M2, O2. Using Lemma (8) on 5) and 13) and
on 6) and 14) we get 15)M1 = M ′′

1 , 16)M2 = M ′′
2 and 17)

O2 = O′′
2 . We substitute 9),11),15) and 17) in 7) to get 18)M ′′ =

Lcross(l, R) ∪ Scrossp(s1, R) ∪ Scrossp(s2, R) ∪M ′
1 ∪M ′

2.
Using Lemma (7.17) with Rule (20) on 18) we get 19)M ′′ =
Scrossp(s,R)∪M ′

1 ∪M ′
2. Substituting 4),12) and 17) in 8) gives

us 20)O′′ = R ∪ O′. From the 3),19) and the premise we have
M ′′ = M and from 20) and the premise we haveO′′ = O.

If s ≡ fi()
l k then by Rule (56) we have 1)E(fi) =

(Mi, Oi), 2) p,E,Oi ` k : M ′
k, O

′
k, 3) M ′ = Lcross(l, ∅) ∪

symcross(Slabelsp(p(fi)), ∅)∪Mi ∪M ′
k = Mi ∪M ′

k, 4)O′ =
O′

k, 5) p,E,R ∪ Oi ` k : M ′′
k , O

′′
k , 6) M ′′ = Lcross(l, R) ∪

symcross(Slabelsp(p(fi)), R) ∪ Mi ∪ M ′′
k and 7)O′′ = O′′

k .
Applying Lemma (10) with 2) we have that there existsM ′′′

k

andO′′′
k such that 8)p,E, ∅ ` k : M ′′′

k , O′′′
k . Let 9) M ′′′′

k =
Scrossp(k,Oi) ∪ M ′′′

k , 10) O′′′′
k = Oi ∪ O′′′

k , 11) M ′′′′′
k =

Scrossp(k,R ∪ Oi) ∪M ′′′
k and 12)O′′′′′

k = R ∪ Oi ∪ O′′′
k . We

may apply the induction hypothesis with the premise, 8),9) and 10)
to get 13)p,E,Oi ` k : M ′′′′

k , O′′′′
k . We also use the induction hy-

pothesis with the premise, 8),11) and 12) to get 14)p,E,R∪Oi `
k : M ′′′′′

k , O′′′′′
k . Using Lemma (8) with 2) and 13) and with 5) and

14) gives us 15)M ′
k = M ′′′′

k , 16)O′
k = O′′′′

k , 17)M ′′
k = M ′′′′′

k

and 18)O′′
k = O′′′′′

k . We apply Lemma (7.5) on 11) to get 19)
M ′′′′′

k = Scrossp(k,R) ∪ Scrossp(k,Oi) ∪ M ′′′
k . Substituting

9),15) and 17) in 19) gives us 20)M ′′
k = Scrossp(k,R) ∪M ′

k.
Substituting 10),16) and 18) in 12) gives us 21)O′′

k = R ∪ O′
k.

We substitute 20) in 6) then apply the definition ofScrossp() with
p(fi) = si to get 22)M ′′ = Lcross(l, R) ∪ Scrossp(si, R) ∪
Scrossp(k,R)∪Mi∪M ′

k. Applying Lemma (7.17) with Rule (21)
to 22) gives us 23)M ′′ = Scrossp(s,R) ∪Mi ∪M ′

k. We may
substitute 3) in 24) to get 24)M ′′ = Scrossp(s,R)∪M ′. Substi-
tuting 4) and 7) in 22) gives us 25)O′′ = R ∪O′. Substituting the
premise in 24) and 25) gives usM ′′ = M andO′′ = O as desired.

�

Likewise, we need a version that applies to an execution tree.

LEMMA 13. p,E,R ` T : M if and only if there existsM ′ such
thatp,E, ∅ ` T : M ′ andM = Tcrossp(T,R) ∪M ′.

Proof. ⇒) From Lemma (11) there existsM ′ such thatp,E, ∅ `
T : M ′. We perform induction onT and in each of the four cases
we will showM = Tcrossp(T,R) ∪M ′.

If T ≡
√

then from Rule (49) we have 1)M = ∅ and 2)
M ′ = ∅. From Lemma (7.9) we have 3)Tcrossp(

√
, R) = ∅.

From 1), 2) and 3) we can see thatM = Tcrossp(T,R) ∪M ′.
If T ≡ T1 B T2 then by Rule (46) we have 1)p,E,R ` T1 :

M1, 2) p,E,R ` T2 : M2, 3)M = M1 ∪M2, 4) p,E, ∅ ` T1 :
M ′

1, 5) p,E, ∅ ` T2 : M ′
2 and 6)M ′ = M ′

1 ∪M ′
2. We may use

the induction hypothesis on 1) and 2) to get 7)p,E, ∅ ` T1 : M ′′
1 ,

8) M1 = Tcrossp(T1, R) ∪M ′′
1 , 9) p,E, ∅ ` T2 : M ′′

2 and 10)
M2 = Tcrossp(T2, R) ∪M ′′

2 . From Lemma (9) we have that 11)
M ′

1 = M ′′
1 and 12)M ′

2 = M ′′
2 . Let us substitute 8),10),11) and

12) in 3) to get 13)M = Tcrossp(T1, R) ∪ Tcrossp(T2, R) ∪
M ′

1 ∪M ′
2. From Rule (23) we may apply Lemma (7.19) on 13) to

get 14)M = Tcrossp(T,R) ∪M ′
1 ∪M ′

2. Finally substituting 6)
in 14) we getM = Tcrossp(T,R) ∪M ′.

If T ≡ T1 ‖ T2 then by Rule (47) we have
1) p,E, T labelsp(T2) ∪ R ` T1 : M1, 2) p,E, T labelsp(T1) ∪
R ` T2 : M2, 3)M = M1 ∪M2, 4) p,E, T labelsp(T2) ` T1 :
M ′

1, 5) p,E, T labelsp(T1) ` T2 : M ′
2 and 6)M ′ = M ′

1 ∪M ′
2.

From the induction hypothesis applied to 1),2),4) and 5) we get 7)
p,E, ∅ ` T1 : M ′′

1 , 8)M1 = Tcrossp(T1, T labelsp(T2) ∪ R) ∪
M ′′

1 , 9) p,E, ∅ ` T2 : M ′′
2 ,

10)M2 = Tcrossp(T2, T labelsp(T1))∪R)∪M ′′
2 , 11)p,E, ∅ `

T1 : M ′′′
1 12) M ′

1 = Tcrossp(T1, T labelsp(T2)) ∪ M ′′′
1 , 13)

p,E, ∅ ` T2 : M ′′′
2 and 14)M ′

2 = Tcrossp(T2, T labelsp(T1)) ∪
M ′′′

2 , From Lemma (9) applied to 7) and 11) and to 9) and 13) we
get 15)M ′′

1 = M ′′′
1 and 16)M ′′

2 = M ′′′
2 . We use Lemma (7.7)

on 8) and 10) to get 17)M1 = Tcrossp(T1, T labelsp(T2)) ∪
Tcrossp(T1, R) ∪M ′′

1 and
18)M2 = Tcrossp(T2, T labelsp(T1))∪Tcrossp(T2, R)∪M ′′

2 .

We substitute 12) and 15) in 17) and substitute 14) and 16) in
18) to get 19)M1 = Tcrossp(T1, R) ∪ M ′

1 and 20)M2 =
Tcrossp(T2, R) ∪ M ′

2. Substituting 6),21) and 22) in 3) yields
21)M = Tcrossp(T1, R) ∪ Tcrossp(T2, R) ∪M ′. Finally we
use Lemma (7.19) with Rule (24) on 21) to get our conclusion
M = Tcrossp(T,R) ∪M ′.

If T ≡ 〈s〉 then from Rule (48) we have 1)p,E,R ` s :
Ms, Os, 2)M = Ms, 3) p,E, ∅ ` s : M ′

s, O
′
s and 4)M ′ = M ′

s.
Using Lemma (12) with the premise on 1) we get 5)p,E, ∅ ` s :
M ′′

s , O
′′
s and 6)Ms = Scrossp(s,R) ∪ M ′′

s . From Lemma (9)
we have that 7)M ′

s = M ′′
s . Using Lemma (7.18) on 6) we get 9)

Ms = Tcrossp(T,R) ∪M ′′
s . We substitute 4),7) and 8) in 2) and

we getM = Tcrossp(T,R) ∪M ′.
⇐) From Lemma (11) there existsM ′′ such thatp,E,R ` T :

M ′′. We also havè p : E from the premise. Using induction on
T we will examine the four cases and show thatM ′′ = M which
will give us our conclusion thatp,E,R ` T : M .

If T ≡
√

then from Rule (49) we have 1)M ′′ = ∅ and 2)
M ′ = ∅. From Lemma (7.9) we have 3)Tcrossp(

√
, R) = ∅. Let

us substitute 2) and 3) in the premise to get 4)M = ∅. From 1) and
4) we seeM ′′ = M .

If T ≡ T1 B T2 then from Rule (46) we have 1)p,E,R ` T1 :
M ′′

1 , 2)p,E,R ` T2 : M ′′
2 , 3)M ′′ = M ′′

1 ∪M ′′
2 , 4)p,E, ∅ ` T1 :

M ′
1, 5) p,E, ∅ ` T2 : M ′

2 and 6)M ′ = M ′
1 ∪M ′

2. Let 7)M ′′′
1 =

Tcrossp(T1, R) ∪ M ′
1 and 8)M ′′′

2 = Tcrossp(T2, R) ∪ M ′
2.

Using the induction hypothesis with 4) and 7) and with 5) and 8)
we obtain 9)p,E,R ` T1 : M ′′′

1 and 10)p,E,R ` T2 : M ′′′
2 .

Using Lemma (9) on 1) and 9) and on 2) and 10) we get 11)
M ′′

1 = M ′′′
1 and 12)M ′′

2 = M ′′′
2 . Substituting 6),7),8),11) and 12)

in 3) gives us 13)M ′′ = Tcrossp(T1, R)∪Tcrossp(T2, R)∪M ′.
We may use Lemma (7.19) with Rule (23) on 13) to get 14)
M ′′ = Tcrossp(T,R) ∪M ′. Comparing 14) to the premise gives
usM ′′ = M .

If T ≡ T1 ‖ T2 then from Rule (47) we have
1) p,E, T labelsp(T2) ∪ R ` T1 : M ′′

1 , 2) p,E, T labelsp(T1) ∪
R ` T2 : M ′′

2 , 3) M ′′ = M ′′
1 ∪M ′′

2 , 4) p,E, T labelsp(T2) `
T1 : M ′

1, 5) p,E, T labelsp(T1) ` T2 : M ′
2 and 6)M ′ =

M ′
1 ∪ M ′

2, From Lemma (11) there existM1 andM2 such that
7) p,E, ∅ ` T1 : M1 and 8) p,E, ∅ ` T2 : M2. Let 9)
M ′′′

1 = Tcrossp(T1, T labelsp(T2) ∪R) ∪M1,
10)M ′′′

2 = Tcrossp(T2, T labelsp(T1) ∪ R) ∪M2, 11)M ′′′′
1 =

Tcrossp(T1, T labelsp(T2)) ∪M1 and
12)M ′′′′

2 = Tcrossp(T2, T labelsp(T1)) ∪M2.
Applying Lemma (7.7) on 9) and 10) which gives us 13)M ′′′

1 =
Tcrossp(T1, R) ∪ Tcrossp(T1, T labelsp(T2)) ∪ M1 and 14)
M ′′′

2 = Tcrossp(T2, R) ∪ Tcrossp(T2, T labelsp(T1)) ∪ M2.
Substituting 11) and 12) in 13) and 14), respectively, yields 15)
M ′′′

1 = Tcrossp(T1, R)∪M ′′′′
1 and 16)M ′′′

2 = Tcrossp(T2, R)∪
M ′′′′

2 . Applying the induction hypothesis to 7) and 9); 8) and 10);
7) and 11); and 8) and 12) to get 17)p,E, T labelsp(T2) ∪ R `
T1 : M ′′′

1 , 18) p,E, T labelsp(T1) ∪ R ` T2 : M ′′′
2 , 19)

p,E, T labelsp(T2) ` T1 : M ′′′′
1 and 20)p,E, T labelsp(T1) `

T2 : M ′′′′
2 . From Lemma (9) applied to 1) and 17); 2) and 18);

4) and 19); and 5) and 20) which gives us 21)M ′′
1 = M ′′′

1 ,
22) M ′′

2 = M ′′′
2 , 23)M ′

1 = M ′′′′
1 and 24)M ′

2 = M ′′′′
2 . Sub-

stituting 6),15),16),21),22),23) and 24) in 3) yields 26)M ′′ =
Tcrossp(T1, R) ∪ Tcrossp(T2, R) ∪M ′. We use Lemma (7.19)
with Rule (24) to get 27)M ′′ = Tcrossp(T,R) ∪M ′. With 27)
and the premise we see thatM ′′ = M .

If T ≡ 〈s〉 then from Rule (48) we have 1)p,E,R ` s :
M ′′

s , O
′′
s , 2) M ′′ = M ′′

s , 3) p,E, ∅ ` s : M ′
s, O

′
s and 4)M ′ =

M ′
s. Using Lemma (12) with the premise on 1) we get 5)p,E, ∅ `

s : M ′′′
s , O′′′

s 6)M ′′
s = Scrossp(s,R) ∪M ′′′

s . From Lemma (8)
applied to 3) and 5) we get 7)M ′

s = M ′′′
s . We now will substitute

4),6) and 7) in 2) to get 8)M ′′ = Scrossp(s,R) ∪M ′. Applying

Lemma (7.18) and on 8) we get 9)M ′′ = Tcrossp(T,R) ∪M ′.
Upon comparing the premise with 9) we see thatM ′′ = M . �

8.4 Preservation

In Rules (11) and (14) we use the. operator to combine statements
so we need a way to type check such combined statements. The
following lemma shows that a natural type rule forsa . sb is
admissible.

LEMMA 14. If p,E,R ` sa : Ma, Oa and p,E,Oa ` sb :
Mb, Ob andp,E,R ` sa . sb : M,O thenM = Ma ∪Mb and
O = Ob.

Proof. Let s = sa . sb. We will perform induction onsa. This
gives us seven cases.

If sa ≡ skipl then by the definition of. we have 1)s =
skipl sb. From Rule (51) we have 2)p,E,R ` sb : M ′

b, O
′
b, 3)

M = Lcross(l, R) ∪ M ′
b and 4)O = O′

b. From Rule (50) we
have 5)Ma = Lcross(l, R) and 6)Oa = R. Substituting 6) in
the premise gives us 7)p,E,R ` sb : Mb, Ob. From Lemma (8)
applied to 2) and 7) we get 8)Mb = M ′

b and 9)Ob = O′
b. Using

substitution of 5) and 8) in 3) and 9) in 4) we haveM = Ma ∪Mb

andO = Ob.
If sa ≡ skipl s1 then by Rule (50) and the definition of. we

have 1)s = skipl (s1 . sb). From Rule (51) we have 2)p,E,R `
(s1 . sb) : Mk, Ok, 3) M = Lcross(l, R) ∪Mk, 4) O = Ok,
5) p,E,R ` s1 : M1, O1, 6)Ma = Lcross(l, R) ∪M1 and 7)
Oa = O1. After substituting 7) in 5), we may use the induction
hypothesis to get 8)Mk = M1 ∪ Mb and 9)Ok = Ob. From
3),4),6) and 9) we arrive at our conclusion thatM = Ma∪Mb and
O = Ob.

If sa ≡ a[d] =l e; s1 then we proceed using similar reasoning
as with the previous case.

If sa ≡ whilel (a[d] 6= 0) s1 s2 then from the definition of.
we have 1)s = whilel (a[d] 6= 0) s1 (s2 . sb). From Rule (53) we
have 2)p,E,R ` s1 : M1, O1, 3) p,E,O1 ` (s2 . sb) : Mk, Ok,
4)M = Lcross(l, O1)∪Scrossp(s1, O1)∪M1∪Mk, 5)O = Ok,
6) p,E,R ` s1 : M ′

1, O
′
1, 7) p,E,O′

1 ` s2 : M ′
2, O

′
2, 8)Ma =

Lcross(l, O′
1) ∪ Scrossp(s1, O

′
1) ∪M ′

1 ∪M ′
2 and 9)Oa = O′

2.
From Lemma (8) applied to 2) and 6) we have that 10)M1 = M ′

1

and 11)O1 = O′
1. Substituting 9) and 11) in 7) allows us to use the

induction hypothesis to get 12)Mk = M ′
2∪Mb and 13)Ok = Ob.

From 4),5),8),12) and 13) we see thatM = Ma∪Mb andO = Ob.
If sa ≡ asyncl s1 s2 then from the definition of. we

have 1)s = asyncl s1 (s2 . sb). From Rule (54) we have 2)
p,E, Slabelsp(s2 . sb)∪R ` s1 : M1, O1, 3)p,E, Slabelsp(s1)∪
R ` (s2 . sb) : Mk, Ok, 4) M = Lcross(l, R) ∪ M1 ∪ Mk,
5) O = Ok, 6) p,E, Slabelsp(s2) ∪ R ` s1 : M ′

1, O
′
1, 7)

p,E, Slabelsp(s1) ∪R ` s2 : M ′
2, O

′
2, 8)Ma = Lcross(l, R) ∪

M ′
1 ∪M ′

2 and 9)Oa = O′
2. By substituting 9) in 7) we are able to

apply the induction hypothesis and get 10)Mk = M ′
2∪Mb and 11)

Ok = Ob. Applying Lemma (12) to 2),6),7) and thep,E,Oa `
sb : Mb, Ob from the premise gives us 12)p,E, ∅ ` s1 : Mw, Ow

13)M1 = Scrossp(s1, Slabelsp(s2 . sb)∪R)∪Mw, 14)p,E, ∅ `
s1 : Mx, Ox, 15)M ′

1 = Scrossp(s1, Slabelsp(s2) ∪ R) ∪Mx,
16)p,E, ∅ ` s2 : My, Oy, 17)O′

2 = Slabelsp(s1)∪R∪Oy, 18)
p,E, ∅ ` sb : Mz, Oz and 19)Mb = Scrossp(sb, Oa) ∪ Mz.
From Lemma (8) applied to 12) and 14) we get 20)Mw =
Mx. We may substitute 9) and 17) in 19) to get 21)Mb =
Scrossp(sb, Slabelsp(s1)∪R∪Oy)∪Mz. Using Lemma (7.11)
on 13) we get
22) M1 = Scrossp(s1, Slabelsp(s2) ∪ Slabelsp(sb) ∪ R) ∪
Mw. Applying Lemma (7.5) to 21) and 22) yields 23)Mb =
Scrossp(sb, Slabelsp(s1))∪Scrossp(sb, R∪Oy)∪Mz and 24)
M1 = Scrossp(s1, Slabelsp(sb))∪Scrossp(s1, Slabelsp(s2)∪
R) ∪Mw. Using Lemma (7.6) we have

25) Scrossp(s1, Slabelsp(sb)) = Scrossp(sb, Slabelsp(s1)).
From 23) and 25) we see that 26)Scrossp(sb, Slabelsp(s1)) ⊆
Mb. We now substitute 15) and 20) in 24) to get 27)M1 =
Scrossp(s1, Slabelsp(sb)) ∪M ′

1. Substituting 10) and 27) in 4)
gives us 28)M = Lcross(l, R) ∪ Scrossp(s1, Slabelsp(sb)) ∪
M ′

1 ∪ M ′
2 ∪ Mb. From 27) we may simplify 28) to 29)M =

Lcross(l, R)∪M ′
1∪M ′

2∪Mb. Finally substituting 8) in 29) gives
usM = Ma∪Mb and then substituting 5) in 11) gives usO = Ob.

If sa ≡ finishl s1 s2 then from the definition of. we obtain
1) s = finishl s1 (s2 . sb). From Rule (55) we have 2)p,E,R `
s1 : M1, O1, 3) p,E,R ` (s2 . sb) : Mk, Ok, 4) M =
Lcross(l, R) ∪M1 ∪Mk, 5)O = Ok, 6) p,E,R ` s1 : M ′

1, O
′
1,

7) p,E,R ` s2 : M ′
2, O

′
2, 8) Ma = Lcross(l, R) ∪M ′

1 ∪M ′
2

and 9)Oa = O′
2. From Lemma (8) applied to 2) and 6) we have

10)M1 = M ′
1. By substituting 9) in 7) we may apply the induction

hypothesis to get 11)Mk = M ′
2 ∪Mb and 12)Ok = Ob. From

4),5),8),10),11) and 12) we haveM = Ma ∪Mb andO = Ob.
If sa ≡ fi()

l k then from the definition of. we get 1)
s = fi()

l (k . sb). From Rule (56) we have 2)E(fi) =
(Mi, Oi), 3) p,E,R ∪ Oi ` (k . sb) : M ′

k, O
′
k, 4) M =

Lcross(l, R) ∪ symcross(Slabelsp(p(fi)), R) ∪ Mi ∪ M ′
k,

5) O = O′
k, 6) p,E,R ∪ Oi ` k : Mk, Ok, 7) Ma =

Lcross(l, R) ∪ symcross(Slabelp(p(fi)), R) ∪ Mi ∪ Mk and
8)Oa = Ok. Applying the induction hypothesis with the premise,
3) and 6) gives us 9)M ′

k = Mk ∪Mb and 10)O′
k = Ob. From

4),5),7),8),9) and 10) we haveM = Ma ∪Mb andO = Ob. �

When we step by Rule (3) and (4) in the proof of Preservation,
we will need this helper lemma.

LEMMA 15. If p,E,R ` T : M and p,E,R′ ` T : M ′ and
R′ ⊆ R thenM ′ ⊆M .

Proof. Using Lemma (13) on the premise we have 1)p,E, ∅ ` T :
M0, 2)M = Tcrossp(T,R) ∪M0, 3) p,E, ∅ ` T : M ′

0 and 4)
M ′ = Tcrossp(T,R′) ∪M ′

0. Applying Lemma (9) to 1) and 3)
gives us 5)M0 = M ′

0. We use Lemma (7.10) with the premise to
get 6)Tcrossp(T,R′) ⊆ Tcrossp(T,R). From 2),4),5) and 6) it
is easy to see thatM ′ ⊆M . �

We are now ready to prove preservation.

LEMMA 16. If ` p : E and p,E, ∅ ` T : M and (p,A, T) →
(p,A′, T ′), then there existsM ′ such thatp,E, ∅ ` T ′ : M ′ and
M ′ ⊆M .

Proof. From Lemma (13) there existsM ′ such that 0)p,E, ∅ `
T ′ : M ′. We will now showM ′ ⊆ M . We perform induction on
T and examine the four cases.

If T ≡
√

thenT does not take a step.
If T ≡ T1 B T2 then there are two rules by which we may take

a step.
Suppose we step by Rule (1) we have that 1)T ′ = T2. We may

substitute 1) in 0) to get 2)p,E, ∅ ` T2 : M ′ From Rule (46)
we have 3)p,E, ∅ ` T1 : M1, 4) p,E, ∅ ` T2 : M2 and 5)
M = M1 ∪M2. From Lemma (9) applied to 2) and 4) we have
that 6)M ′ = M2. We see the thatM ′ ⊆M from 5) and 6).

Suppose we step by Rule (2) we have 1)T ′ = T ′
1 B T2 and 2)

(p,A, T1) → (p,A′, T ′
1). Substituting 1) in 0) gives us 3)p,E, ∅ `

T ′
1 B T2 : M ′. From Rule (46) we have 4)p,E, ∅ ` T1 : M1, 5)
p,E, ∅ ` T2 : M2, 6) M = M1 ∪M2, 7) p,E, ∅ ` T ′

1 : M ′
1,

8) p,E, ∅ ` T2 : M ′
2 and 9)M ′ = M ′

1 ∪M ′
2. From Lemma (9)

applied to 5) and 8) we have 10)M2 = M ′
2. We may apply the

induction hypothesis with 4) and 2) and get that there existsM ′′
1

such that 11)p,E, ∅ ` T ′
1 : M ′′

1 and 12)M ′′
1 ⊆ M1. Using

Lemma (9) on 7) and 11) we get 13)M ′
1 = M ′′

1 . From 6),9),10),12)
and 13) we see thatM ′ ⊆M .

If T ≡ T1 ‖ T2 then there are four rules by which we may take
a step.

Suppose we step by Rule (3) we then have 1)T ′ = T2. We may
substitute 1) in 0) to get 2)p,E, ∅ ` T2 : M ′. From Rule (47) we
have 3)p,E, T labelsp(T2) ` T1 : M1, 4) p,E, T labelsp(T1) `
T2 : M2 and 5)M = M1 ∪M2. We can immediately see that 6)
∅ ⊆ T labels(T1). We also apply Lemma (15) on 2),4) and 6) to
get 7)M ′ ⊆M2. We may see from 5) and 7) thatM ′ ⊆M .

Suppose we step by Rule (4) then we proceed using similar
reasoning as the previous case.

Suppose we step by Rule (5) then we have 1)T ′ = T ′
1 ‖ T2

and 2) (p,A, T1) → (p,A′, T ′
1). Substituting 1) in 0) yields

3) p,E, ∅ ` T ′
1 ‖ T2 : M ′. From Rule (47) we have 4)

p,E, T labelsp(T2) ` T1 : M1, 5) p,E, T labelsp(T1) ` T2 :
M2, 6) M = M1 ∪ M2, 7) p,E, T labelsp(T2) ` T ′

1 : M ′
1, 8)

p,E, T labelsp(T ′
1) ` T2 : M ′

2 and 9)M ′ = M ′
1 ∪M ′

2. Using
Lemma (13) on 4),5),6) and 7) gives us 10)p,E, ∅ ` T1 : M ′′

1 , 11)
M1 = Tcrossp(T1, T labelsp(T2))∪M ′′

1 , 12)p,E, ∅ ` T2 : M ′′
2 ,

13)M2 = Tcrossp(T2, T labelsp(T1)) ∪M ′′
2 , 14)p,E, ∅ ` T ′

1 :
M ′′′

1 , 15)M ′
1 = Tcrossp(T ′

1, T labelsp(T2))∪M ′′′
1 , 16)p,E, ∅ `

T2 : M ′′′
2 and 17)M ′

2 = Tcrossp(T2, T labelsp(T ′
1)) ∪ M ′′′

2 .
From using the induction hypothesis applied to 2),10) and 14) and
using Lemma (9) we get 18)M ′′′

1 ⊆ M ′′
1 . We use Lemma (9)

on 12) and 16) to get 19)M ′′
2 = M ′′′

2 . Using Lemma (7.8) and
substituting 11),13),15),17) and 19) in 6) and 9) results in 20)
M = Tcrossp(T2, T labelsp(T1)) ∪M ′′

1 ∪M ′′
2 and 21)M ′ =

Tcrossp(T2, T labelsp(T ′
1))∪M ′′′

1 ∪M ′′
2 . We use Lemma (7.15)

with 2) to get 22)T labelsp(T ′
1) ⊆ T labelsp(T1). We now use

Lemma (7.10) with 22) to get 23)Tcrossp(T2, T labelsp(T ′
1)) ⊆

Tcrossp(T2, T labelsp(T1)). From 18),20),21) and 23) we may
getM ′ ⊆M .

Suppose we step by Rule (6) the we may proceed using similar
logic as the previous case.

If T ≡ 〈s〉 then we now perform induction ons which gives us
an additional seven cases.

If s ≡ skipl then we take a step by Rule (7) and have 1)
T ′ =

√
. We may substitute 1) in 0) to get 2)p,E, ∅ `

√
: M ′.

From Rule (49) we have 3)M ′ = ∅. From 3) we see thatM ′ ⊆M .
If s ≡ skipl s1 then we take a step by Rule (8) and have 1)

T ′ = 〈s1〉. We may substitute 1) in 0) to get 2)p,E, ∅ ` s1 : M ′.
Using Rule (48) we have 3)p,E, ∅ ` s : Ms, Os, 4)M = Ms, 5)
p,E, ∅ ` s1 : M ′

s, O
′
s and 6)M ′ = M ′

s. From Rule (51) we have
7) p,E, ∅ ` s1 : Ms1 , Os1 and 8)Ms = Lcross(l, ∅) ∪ Ms1 .
We may use Lemma (8) on 5) and 7) to get 9)M ′

s = Ms1 . From
4),6),8) and 9) we see thatM ′ ⊆M .

If s ≡ a[d] =l e; s1 then we step by Rule (9) then we may
proceed using similar logic as the previous case.

If s ≡ whilel (a[d] 6= 0) s1 s2 then there are two rules by
which we may take a step.

Suppose we step by Rule (10) then we have 1)T ′ = 〈s2〉. We
substitute 1) in 0) to get 2)p,E, ∅ ` 〈s2〉 : M ′. Let 3)R = ∅.
From Rule (48) we have 4)p,E,R ` 〈s〉 : Ms, 5)M = Ms, 6)
p,E,R ` 〈s2〉 : M ′

s and 7)M ′ = M ′
s. From Rule (53) we have 8)

p,E,R ` s1 : Ms1 , Os1 , 9) p,E,Os1 ` s2 : Ms2 , Os2 and 10)
Ms = Lcross(l, Os1)∪Scrossp(s1, Os1)∪Ms1∪Ms2 . Applying
Lemma (12) to 6),8) and 9) we get 11)p,E, ∅ ` s2 : M ′′

s , O
′′
s , 12)

M ′
s = Scrossp(s2, R) ∪M ′′

s , 13) p,E, ∅ ` s1 : M ′′
s1 , O

′′
s1 , 14)

Os1 = R ∪ O′′
s1 , 15) p,E, ∅ ` s2 : M ′′

s2 , O
′′
s2 and 16)Ms2 =

Scrossp(s2, Os1)∪M ′′
s2 . From Lemma (8) applied to 11) and 15)

we get 17)M ′′
s = M ′′

s2 . Substituting 14) and 17) in 16) gives us 18)
Ms2 = Scrossp(s2, R ∪ O′′

s1) ∪M
′′
s . Using Lemma (7.5) on 18)

results in 19)Ms2 = Scrossp(s2, O
′′
s1)∪ Scrossp(s2, R)∪M ′′

s .
From 12),17) and 19) we have 20)M ′

s ⊆ Ms2 . Finally from
5),7),10) and 20) we haveM ′ ⊆M .

Suppose we step by Rule (11) then we have 1)T ′ = 〈s1 . s〉.
Substituting 1) in 0) gives us 2)p,E,R ` s1 . s : M ′. Let 3)R =
∅. From Rule (48) we have 4)p,E,R ` s : Ms, Os, 5)M = Ms,
6) p,E,R ` s1 . s : M ′

s, O
′
s and 7)M ′ = M ′

s. From Lemma (10)
there existsM ′

s1 ,M ′
ss,O′

s1 andO′
ss such that 8)p,E,R ` s1 :

M ′
s1 , O

′
s1 and 9) p,E,O′

s1 ` s : M ′
ss, O

′
ss. We may use

Lemma (14) with 6),8) and 9) to get 10)M ′
s = M ′

s1 ∪M
′
ss. From

Rule (53) we have 11)p,E,R ` s1 : M1, O1, 12)p,E,O1 ` s2 :
M2, O2, 13)Ms = Lcross(l, O1)∪Scrossp(s1, O1)∪M1∪M2,
14) p,E,O′

s1 ` s1 : M ′
1, O

′
1, 15) p,E,O′

1 ` s2 : M ′
2, O

′
2 and

16)M ′
ss = Lcross(l, O′

1) ∪ Scrossp(s1, O
′
1) ∪M ′

1 ∪M ′
2. Us-

ing Lemma (8) with 8) and 11) we have 17)M ′
s1 = M1 and

18) O′
s1 = O1. Applying Lemma (12) to 11) and 14) gives us

19) p,E, ∅ ` s1 : M ′′
1 , O

′′
1 , 20)M1 = Scrossp(s1, R) ∪M ′′

1 ,
21) O1 = R ∪ O′′

1 , 22) p,E, ∅ ` s1 : M ′′′
1 , O

′′′
1 , 23) M ′

1 =
Scrossp(s1, O

′
s1) ∪ M

′′′
1 and 24)O′

1 = O′
s1 ∪ O

′′′
1 . We apply

Lemma (8) to 19) and 22) to get 25)M ′′
1 = M ′′′

1 and 26)O′′
1 =

O′′′
1 . Let us substitute 18) and 26) in 24) to get 27)O′

1 = O1 ∪O′′
1 .

We substitute 21) in 27) to get 28)O′
1 = R∪O′′

1 ∪O′′
1 = R∪O′′

1 .
From 21) and 28) we get 29)O1 = O′

1. Substituting 29) in 15)
we get 30)p,E,O1 ` s2 : M ′

2, O
′
2. Using Lemma (8) on 12) and

30) yields 31)M2 = M ′
2. We now substitute 13),20) and 21) in 5)

to get 32)M = Lcross(l, R ∪ O′′
1) ∪ Scrossp(s1, R ∪ O′′

1) ∪
Scrossp(s1, R)∪M ′′

1 ∪M2. Using Lemma (7.5) we may simplify
32) to 33)M = Lcross(l, R ∪ O′′

1) ∪ Scrossp(s1, R ∪ O′′
1) ∪

M ′′
1 ∪ M2. Substituting 10),16),17),20),23),25) and 31) in 7) re-

sults in 34)M ′ = Scrossp(s1, R) ∪M ′′
1 ∪ Lcross(l, R ∪O′′

1) ∪
Scrossp(s1, R∪O′′

1)∪Scrossp(s1, R∪O′′
1)∪M ′′

1 ∪M2. From
34) we use Lemma (7.5) and simplify to 35)M ′ = Lcross(l, R ∪
O′′

1) ∪ Scrossp(s1, R ∪ O′′
1) ∪M ′′

1 ∪M2. From 33) and 35) we
seeM ′ ⊆M .

If s ≡ asyncl s1 s2 then we take a step by Rule (12) and
have 1)T ′ = 〈s1〉 ‖ 〈s2〉. We substitute 1) in 0) to get 2)
p,E, ∅ ` 〈s1〉 ‖ 〈s2〉 : M ′. Let 3)T1 = 〈s1〉 and 4)T2 = 〈s2〉.
From Rule (47) we have 5)p,E, T labelsp(T2) ` 〈s1〉 : M ′

1,
6) p,E, T labelsp(T1) ` 〈s2〉 : M ′

2 and 7)M ′ = M ′
1 ∪ M ′

2.
From Rule (48) we have 8)p,E, ∅ ` s : Ms, Os, 9) M = Ms,
10) p,E, T labelsp(T2) ` s1 : M ′

s1 , O
′
s1 , 11) M ′

1 = M ′
s1 ,

12) p,E, T labelsp(T1) ` s2 : M ′
s2 , O

′
s2 and 13)M ′

2 = M ′
s2 .

From Rule (54) we have 14)p,E, Slabelsp(s2) ` s1 : M1, O1,
15) p,E, Slabelsp(s1) ` s2 : M2, O2 and 16)Ms = M1 ∪
M2. From the definition ofT labels() we may simplify 10)
and 12) to 17)p,E, Slabelsp(s2) ` s1 : M ′

s1 , O
′
s1 and 18)

p,E, Slabelsp(s1) ` s2 : M ′
s2 , O

′
s2 . We use Lemma (8) on

14) and 17) and on 15) and 18) to get 19)M ′
s1 = M1 and 20)

M ′
s2 = M2. From 7),9),16),19) and 20) we haveM ′ ⊆M .
If s ≡ finishl s1 s2 then we step by Rule (13) which gives us

1) T ′ = 〈s1〉 B 〈s2〉. Substituting 1) in 0) results in 2)p,E, ∅ `
〈s1〉B 〈s2〉 : M ′. From Rule (46) we have 3)p,E, ∅ ` 〈s1〉 : M ′

1,
4) p,E, ∅ ` 〈s2〉 : M ′

2 and 5)M ′ = M ′
1 ∪M ′

2. From Rule (48)
we have 6)p,E, ∅ ` s : Ms, Os, 7)M = Ms, 8) p,E, ∅ ` s1 :
M ′

s1 , O
′
s1 , 9) M ′

1 = M ′
s1 , 10) p,E, ∅ ` s2 : M ′

s2 , O
′
s2 and 11)

M ′
2 = M ′

s2 . From Rule (55) we get 12)p,E, ∅ ` s1 : Ms1 , Os1 ,
13)p,E, ∅ ` s2 : Ms2 , Os2 and 14)Ms = Lcross(l, ∅)∪Ms1 ∪
Ms2 . Using Lemma (8) on 8) and 12) and on 10) and 13) gives
us 15)Ms1 = M ′

s1 and 16)Ms2 = M ′
s2 . Substituting 14),15)

and 16) in 7) gives us 17)M = Lcross(l, ∅) ∪M ′
s1 ∪M

′
s2 . We

substitute 9) and 11) in 5) to get 18)M ′ = M ′
s1 ∪M

′
s2 . From 17)

and 18) we seeM ′ ⊆M .
If s ≡ fi()

l k then we step by Rule (14) which gives us 1)
p(fi) = si and 2)T ′ = 〈si . k〉. From` p : E and Rule (45) we
also have 3)E(fi) = (Mi, Oi) and 4)p,E, ∅ ` si : Mi, Oi.
Substituting 2) in 0) gives us 5)p,E, ∅ ` si . k : M ′. From
Rule (48) we have 6)p,E, ∅ ` s : Ms, Os, 7) M = Ms, 8)

p,E, ∅ ` si . k : M ′
s, O

′
s and 9)M ′ = M ′

s. Using Rule (56) on
6) gives us 10)p,E,Oi ` k : Mk, Ok, 11)Ms = Lcross(l, ∅) ∪
symcross(Slabelsp(si), ∅) ∪Mi ∪Mk = Mi ∪Mk. Applying
Lemma (14) with the premise, 4), 8) and 10) gives 12)M ′

s =
Mi ∪ Mk. From 7),9),11) and 12) we getM = M ′ and thus
M ′ ⊆M . �

8.5 Approximation

We now prove that our type system produces a label pair setM ,
such that if two statements can execute in parallel, then the pairing
of their labels will appear inM .

LEMMA 17. If p,E, ∅ ` T : M thenparallel(T) ⊆M .

Proof. Let us perform induction onT . There are four cases.
If T ≡

√
then from Rule (49) we have 1)M = ∅. From the

definition ofparallel(), 2) parallel(T) = ∅. From 1) and 2) we
seeparallel(T) ⊆M .

If T ≡ T1 B T2 then from Rule (46) we have 1)p,E, ∅ ` T1 :
M1, 2) p,E, ∅ ` T2 : M2 and 3)M = M1 ∪ M2. From the
definition ofparallel() we have 4)parallel(T) = parallel(T1).
Using the induction hypothesis on 1) yields 5)parallel(T1) ⊆M1

and From 3),4) and 5) we haveparallel(T) ⊆M .
If T ≡ T1 ‖ T2 then from Rule (47) we have

1) p,E, T labelsp(T2) ` T1 : M1, 2) p,E, T labelsp(T1) ` T2 :
M2 and 3)M = M1∪M2. We apply Lemma (13) to 1) and 2) to get
4)p,E, ∅ ` T1 : M ′

1, 5)M1 = Tcrossp(T1, T labelsp(T2))∪M ′
1,

6) p,E, ∅ ` T2 : M ′
2 and 7)M2 = Tcrossp(T2, T labelsp(T1))∪

M ′
2. Using Lemma (7.8) and substituting 5) and 7) in 3) gives us

8) M = Tcrossp(T1, T labelsp(T2)) ∪M ′
1 ∪M ′

2. Using the in-
duction hypothesis on 4) and 6) yields 9)parallel(T1) ⊆ M ′

1 and
10) parallel(T2) ⊆ M ′

2. Unfolding the definition ofparallel()
gives us 11)parallel(T) = parallel(T1) ∪ parallel(T2) ∪
symcross(FT labels(T1), FT labels(T2)). Using Lemma (7.14)
gives us
12)symcross(FT labels(T1), FT labels(T2)) ⊆
Tcrossp(T1, T labelsp(T2)). From 8),9),10),11) and 12) we have
parallel(T) ⊆M .

If T ≡ 〈s〉 then from the definition ofparallel() we have
parallel(T) = ∅ which makesparallel(T) ⊆M trivial. �

8.6 Soundness

We are now ready to prove Theorem 2, which we restate here:

Theorem (Soundness)If ` p : E, p,E, ∅ ` 〈s0〉 : M and
(p,A0, 〈s0〉) →∗ (p,A, T) thenparallel(T) ⊆M .

Proof. We will first show that:

Claim A: If ` p : E, p,E, ∅ ` 〈s0〉 : M and(p,A0, 〈s0〉) →∗
(p,A, T), then there existsM ′ such thatp,E, ∅ ` T : M ′

andM ′ ⊆M .

It is sufficient to show that:

Claim B: For all i: if ` p : E, p,E, ∅ ` 〈s0〉 : M and
(p,A0, 〈s0〉) →i (p,A, T), then there existsM ′ such that
p,E, ∅ ` T : M ′ andM ′ ⊆M .

We proceed by induction oni. In the base case ofi = 0, we have
〈s0〉 = T and we can chooseM ′ = M . Fromp,E, ∅ ` 〈s0〉 : M
and〈s0〉 = T andM ′ = M , we immediately havep,E, ∅ ` T :
M ′ andM ′ ⊆ M . In the induction step, suppose we have Claim
B for a particulari, and consider(p,A0, 〈s0〉) →i (p,A, T) →
(p,A′, T ′). From the induction hypothesis, we haveM ′ such that
p,E, ∅ ` T : M ′ andM ′ ⊆ M . From` p : E, p,E, ∅ ` T : M ′

and(p,A, T) → (p,A′, T ′) and Lemma (16), we have that there

existsM ′′ such thatp,E, ∅ ` T ′ : M ′′ andM ′′ ⊆ M ′. Finally,
fromM ′′ ⊆M ′ andM ′ ⊆M , we haveM ′′ ⊆M . This completes
the proof of Claim B and therefore the proof of Claim A.

To prove the soundness theorem itself, suppose` p : E,
p,E, ∅ ` 〈s0〉 : M and (p,A0, 〈s0〉) →∗ (p,A, T). From
` p : E, p,E, ∅ ` 〈s0〉 : M and(p,A0, 〈s0〉) →∗ (p,A, T) and
Claim A, we have that there existsM ′ such thatp,E, ∅ ` T : M ′

andM ′ ⊆ M . Fromp,E, ∅ ` T : M ′ and Lemma (17) we have
parallel(T) ⊆ M ′. SinceM ′ ⊆ M , we haveparallel(T) ⊆ M ,
as desired. �

Appendix C: Proof of Theorem 4
Let ϕ,ψ be valuations of the set variables in two, possibly differ-
ent, constraints systems We say thatϕ,ψ agree on their common
domain, if for all v ∈ dom(ϕ) ∩ dom(ψ) : ϕ(v) = ψ(v). If ϕ,ψ
agree on their common domain, then we define

ϕ ∪ ψ = λv ∈ dom(ϕ) ∪ dom(ψ).

ϕ(v) if v ∈ dom(ϕ)
ψ(v) otherwise

LEMMA 18. p,E,R ` s : M,O if and only if there exists a
solution ϕ to C(s) whereϕ(rs) = R and ϕ(os) = O and
ϕ(ms) = M andϕ extendsE.

Proof. ⇐) Let us now perform induction ons and examine the
seven cases.

If s ≡ skipl then from constraints (60-61) we have 1)ϕ(rs) =
ϕ(os) and 2)ϕ(ms) = Lcross(l, ϕ(rs)). Substituting the premise
in 1) and 2) gives us 3)R = O and 4)M = Lcross(l, R). We may
apply Rule (50) with 3) and 4) to getp,E,R ` s : M,O.

If s ≡ skipl s1 then from constraints (62-64) we have
1) ϕ(rs) = ϕ(rs1), 2) ϕ(os) = ϕ(os1) and 3) ϕ(ms) =
Lcross(l, ϕ(rs)) ∪ ϕ(ms1). Let 4) ϕ(ms1) = M1. Substitut-
ing the premise and 4) in 1),2) and 3) gives us 5)R = ϕ(rs1), 6)
O = ϕ(os1) and 7)M = Lcross(l, R)∪M1. From the definition
of C(s) we haveC(s1) ⊆ C(s). We see that sinceϕ is a solution
to C(s), ϕ is also a solution toC(s1). Sinceϕ is a solution to
C(s1) and extendsE we may use the induction hypothesis with
4),5) and 6) to get 8)p,E,R ` s1 : M1, O. Using 7) and 8) we
may use Rule (51) to getp,E,R ` s : M,O.

If s ≡ a[d] =l e; s1 then we proceed using similar logic as the
previous case.

If s ≡ whilel (a[d] 6= 0) s1 s2 then from constraints (68-
71) we have 1)ϕ(rs) = ϕ(rs1), 2)ϕ(rs2) = ϕ(os1), 3)ϕ(os) =
ϕ(os2) and 4)ϕ(ms) = Lcross(l, ϕ(os1))∪Scrossp(s1, ϕ(os1))∪
ϕ(ms1) ∪ ϕ(ms2). Let 5)ϕ(os1) = O1, 6)ϕ(ms1) = M1 and 7)
ϕ(ms2) = M2. Substituting the premise, 5), 6) and 7) in 1),2),3),
and 4) gives us 8)R = ϕ(rs1), 9)ϕ(rs2) = O1, 10)O = ϕ(os2)
and 11)M = Lcross(l, O1)∪Scrossp(s1, O1)∪M1∪M2. From
the definition ofC(s) we haveC(s1) ⊆ C(s) andC(s2) ⊆ C(s).
Sinceϕ is a solution toC(s),ϕ is also a solution to bothC(s1) and
C(s2). Sinceϕ is a solution toC(s1) andC(s2) andϕ extendsE
we use the induction hypothesis with the 5),6),7),8),9) and 10) to
get 12)p,E,R ` s1 : M1, O1 and 13)p,E,O1 ` s2 : M2, O. We
may now apply Rule (53) with 11),12) and 13) to getp,E,R ` s :
M,O.

If s ≡ asyncl s1 s2 then from constraints (72-75) we obtain
1) ϕ(rs1) = Slabelsp(s2) ∪ ϕ(rs), 2)ϕ(rs2) = Slabelsp(s1) ∪
ϕ(rs), 3) ϕ(os) = ϕ(os2) and 4)ϕ(ms) = Lcross(l, ϕ(rs)) ∪
ϕ(ms1) ∪ ϕ(ms2). Let 5)ϕ(ms1) = M1, 6)ϕ(ms2) = M2 and
7) ϕ(os1) = O1. Substituting the premise, 5) and 6) in 1),2),3)
and 4) gives us 8)ϕ(rs1) = Slabelsp(s2) ∪ R, 9) ϕ(rs2) =
Slabelsp(s1)∪R, 10)O = ϕ(os2) and 11)M = Lcross(l, R)∪
M1∪M2. From the definition ofC(s) we haveC(s1) ⊆ C(s) and
C(s2) ⊆ C(s). Sinceϕ is a solution toC(s), ϕ is also a solution
to bothC(s1) andC(s2). Sinceϕ is a solution toC(s1) and
C(s2) andϕ extendsE we use the induction hypothesis with the
premise,5),6),7),8),9) and 10) to get 12)p,E, Slabelsp(s2)∪R `
s1 : M1, O1 and 13)p,E, Slabelsp(s1)∪R ` s2 : M2, O. Using
Rule (54) with 11),12) and 13) gives usp,E,R ` s : M,O.

If s ≡ finishl s1 s2 then from constraints (76-79) we get
1) ϕ(rs1) = ϕ(rs), 2) ϕ(rs2) = ϕ(rs), 3) ϕ(os2) = ϕ(os)
and 4)ϕ(ms) = Lcross(l, ϕ(rs)) ∪ ϕ(ms1) ∪ ϕ(ms2). Let
5) ϕ(ms1) = M1, 6) ϕ(ms2) = M2 and 7)ϕ(os1) = O1.
Substituting the premise, 5) and 6) in 1),2),3) and 4) results in
8) ϕ(rs1) = R, 9) ϕ(rs2) = R, 10) ϕ(Os2) = O and 11)
M = Lcross(l, R) ∪M1 ∪M2. From the definition ofC(s) we

haveC(s1) ⊆ C(s) andC(s2) ⊆ C(s). Sinceϕ is a solution
to C(s), ϕ is also solution to bothC(s1) andC(s2). Becauseϕ
is a solution toC(s1) andC(s2) andϕ extendsE we use the
induction hypothesis with the premise,5),6),7),8),9) and 10) to get
12) p,E,R ` s1 : M1, O1 and 13)p,E,R ` s2 : M2, O. We
apply Rule (55) with 11),12) and 13) to getp,E,R ` s : M,O.

If s ≡ fi() k then from constraints (80-82) we have 1)
ϕ(rk) = ϕ(rs) ∪ ϕ(oi), 2) ϕ(ok) = ϕ(os) and 3)ϕ(ms) =
Lcross(l, ϕ(rs))∪symcross(Slabelsp(p(fi)), ϕ(rs))∪ϕ(mi)∪
ϕ(mk). Let 4) ϕ(mi) = Mi and 5) ϕ(oi) = Oi. Let 6)
ϕ(mk) = Mk. Substituting the premise,4),5) and 6) in 1),2)
and 3) gives us 7)ϕ(rk) = R ∪ Oi, 8) ϕ(ok) = O and 9)
M = Lcross(l, R)∪symcross(Slabelsp(p(fi)), R)∪Mi∪Mk.
From the definition ofC(s) we haveC(k) ⊆ C(s). Sinceϕ is a
solutionC(s),ϕ is also a solution toC(k). Becauseϕ is a solution
to C(k) andϕ extendsE, we may apply the induction hypoth-
esis with 6),7) and 8) to get 10)p,E,R ∪ Oi ` k : Mk, O.
From the premise we have thatϕ extendsE which gives us 11)
E(fi) = (ϕ(mi), ϕ(oi)). From 9),10) and 11) we may apply
Rule (56) and obtainp,E,R ` s : M,O as desired.
⇒) Let us perform induction ons and examine the seven cases.
If s ≡ skipl then by Rule (50) we have 1)M = Lcross(l, R)

and 2)O = R. Let us construct a solutionϕ that extendsE
and such that 3)ϕ(rs) = R, 4) ϕ(os) = O and 5)ϕ(ms) =
M . We substitute 1),2) and 3) in 4) and 5) to get 6)ϕ(os) =
R and 7)ϕ(ms) = Lcross(l, ϕ(rs)). From 8) and 9) we see
constraints (60-61) are satisfied. From 3),4),5) we see that the other
conditions of the conclusion are also satisfied.

If s ≡ skipl s1 then by Rule (51) we have 1)p,E,R ` s1 :
M1, O1, 2) M = Lcross(l, R) ∪ M1 and 3)O = O1. From
the induction hypothesis to 1) we have a solutionϕ1 to C(s1)
which extendsE where 4)ϕ1(rs1) = R, 5) ϕ1(os1) = O1 and
6) ϕ1(ms1) = M1. Let 7)ϕ = ϕ1[rs 7→ R,ms 7→ M, os 7→ O].
From the definition of extension with 4),5) and 6) we have 8)
ϕ(rs) = R, 9) ϕ(os) = O, 10)ϕ(ms) = M , 11)ϕ(rs1) = R,
12) ϕ(os1) = O1 and 13)ϕ(ms1) = M1. From 8) and 11)
we have 14)ϕ(rs) = ϕ(rs1). From 3),9) and 12) we get 15)
ϕ(os) = ϕ(os1). From 2),8),10) and 13) we obtain 16)ϕ(ms) =
Lcross(l, ϕ(rs)) ∪ ϕ(ms1). Sinceϕ extendsϕ1, ϕ also extends
E and is a solution toC(s1). With 14),15) and 16) we satisfy
constraints (62-64) and thusϕ is a solution toC(s). From 8),9)
and 10) we satisfy the additional conditions of the conclusion.

If s ≡ a[d] =l e; s1 then we proceed using similar logic as the
previous case.

If s ≡ whilel (a[d] 6= 0) s1 s2 then from Rule (53) we have
1) p,E,R ` s1 : M1, O1, 2) p,E,O1 ` s2 : M2, O2, 3)M =
Lcross(l, O1) ∪ Scrossp(s1, O1) ∪M1 ∪M2 and 4)O = O2.
Applying the induction hypothesis to 1) yields a solutionϕ1 to
C(s1) that extendsE and 5)ϕ1(rs1) = R, 6)ϕ1(os1) = O1 and
7)ϕ1(ms1) = M1. Applying the induction hypothesis to 2) yields
a solutionϕ2 toC(s2) that extendsE such that 8)ϕ2(rs2) = O1,
9) ϕ2(os2) = O2 and 10)ϕ2(ms2) = M2. Notice thatϕ1 and
ϕ2 agree on their common domain. Let 11)ϕ = ϕ1 ∪ ϕ2. We
have thatϕ is a solution to bothC(s1) andC(s2), and thatϕ
extendsE. From our definition ofϕ, we have 12)ϕ(rs1) = R,
13) ϕ(os1) = O1, 14) ϕ(ms1) = M1, 15) ϕ(rs2) = O1, 16)
ϕ(os2) = O2 and 17)ϕ(ms2) = M2. From 11) we have 18)
ϕ(rs) = R, 19)ϕ(os) = O and 20)ϕ(ms) = M . From 12) and
18) we have 21)ϕ(rs) = ϕ(rs1). From 13) and 15) we get 22)
ϕ(os1) = ϕ(rs2). Combining 3),13),14),17) and 20) gives us 23)
ϕ(ms) = Lcross(l, ϕ(os1)) ∪ Scross(s1, ϕ(os1)) ∪ ϕ(ms1) ∪
ϕ(ms2). We use 4),16) and 19) to get 24)ϕ(os) = ϕ(os2). We see
from constraints (68-71) are satisfied by 21),22),23) and 24) and
sinceϕ satisfiesC(s1) andC(s2) it is a solution toC(s). From
18),19) and 20) we satisfy the other conditions of the conclusion.

If s ≡ asyncl s1 s2 then from Rule (54) we have
1) p,E, Slabelsp(s2)∪R ` s1 : M1, O1, 2)p,E, Slabelsp(s1)∪
R ` s2 : M2, O2, 3)M = Lcross(l, R) ∪M1 ∪M2 4)O = O2.
Applying the induction hypothesis to 1) yields a solutionϕ1 to
C(s1) that extendsE and 5)ϕ1(rs1) = Slabelsp(s2) ∪ R, 6)
ϕ1(os1) = O1 and 7)ϕ1(ms1) = M1. Applying the induction
hypothesis to 2) yields a solutionϕ2 to C(s2) that extendsE and
8) ϕ2(rs2) = Slabelsp(s1) ∪ R, 9) ϕ2(os2) = O2 and 10)
ϕ2(ms2) = M1. Notice thatϕ1 andϕ2 agree on their common
domain. Let 11)ϕ = ϕ1 ∪ ϕ2. We have thatϕ is a solution
to bothC(s1) andC(s2), and thatϕ extendsE. We will now
show thatϕ is a solution toC(s). From our definition ofϕ we
have 12)ϕ(rs1) = Slabelsp(s2) ∪ R, 13) ϕ(os1) = O1, 14)
ϕ(ms1) = M1, 15)ϕ(rs2) = Slabelsp(s1)∪R, 16)ϕ(os2) = O2

and 17)ϕ(ms2) = M2. From 11) we have 18)ϕ(rs) = R, 19)
ϕ(os) = O and 20)ϕ(ms) = M . From 12) and 18) we have 21)
ϕ(rs1) = Slabelsp(s2) ∪ ϕ(rs). From 15) and 18) we get 22)
ϕ(rs2) = Slabelsp(s1) ∪ ϕ(rs). Combining 3),14),17),18) and
20) gives us 23)ϕ(ms) = Lcross(l, ϕ(rs))∪ϕ(ms1)∪ϕ(ms2).
We use 4),16) and 19) to get 24)ϕ(os) = ϕ(os2). We see from
constraints (72-75) are satisfied by 21),22),23) and 24) and since
ϕ satisfiesC(s1) andC(s2) it is a solution toC(s). From 18),19)
and 20) we satisfy the other conditions of the conclusion.

If s ≡ finishl s1 s2 then from Rule (55) we get 1)p,E,R `
s1 : M1, O1, 2) p,E,R ` s2 : M2, O2, 3)M = Lcross(l, R) ∪
M1 ∪M2 and 4)O = O2. Applying the induction hypothesis to 1)
yields a solutionϕ1 toC(s1) that extendsE and 5)ϕ1(rs1) = R,
6) ϕ1(os1) = O1 and 7)ϕ1(ms1) = M1. Applying the induction
hypothesis to 2) yields a solutionϕ2 to C(s2) that extendsE and
8) ϕ2(rs2) = R, 9) ϕ2(os2) = O2 and 10)ϕ2(ms2) = M2.
Notice thatϕ1 andϕ2 agree on their common domain. Let 11)
ϕ = ϕ1 ∪ ϕ2. We have thatϕ is a solution to bothC(s1) and
C(s2), and thatϕ extendsE. We will now show thatϕ is a solution
to C(s). From our definition ofϕ we have 12)ϕ(rs1) = R,
13) ϕ(os1) = O1, 14) ϕ(ms1) = M1, 15) ϕ(rs2) = R, 16)
ϕ(os2) = O2 and 17)ϕ(ms2) = M2. From 11) we have 18)
ϕ(rs) = R, 19)ϕ(os) = O and 20)ϕ(ms) = M . From 12) and
18) we have 21)ϕ(rs) = ϕ(rs1). From 15) and 18) we get 22)
ϕ(rs) = ϕ(rs2). Combining 3),14),17),18) and 20) gives us 23)
ϕ(ms) = Lcross(l, ϕ(rs)) ∪ ϕ(ms1) ∪ ϕ(ms2). We use 4),16)
and 19) to get 24)ϕ(os) = ϕ(os2). We see from constraints (76-
79) are satisfied by 21),22),23) and 24) and sinceϕ satisfiesC(s1)
andC(s2) it is a solution toC(s). From 18),19) and 20) we satisfy
the other conditions of the conclusion.

If s ≡ fi() k then we have 1)E(fi) = (Mi, Oi), 2) p,E,R ∪
Oi ` k : Mk, Ok,
3)M = Lcross(l, R) ∪ symcross(Slabelsp(p(fi)), R) ∪Mi ∪
Mk and 4)O = Ok. We may apply the induction hypothesis on
2) to get a solutionϕk to C(k) that extendsE and 5)ϕk(rk) =
R ∪ Oi, 6) ϕk(ok) = Ok and 7)ϕk(mk) = Mk. Let 8) ϕ =
ϕk[rs 7→ R,ms 7→M, os 7→ O]. From the definition of extension
with 5),6) and 7) we have 9)ϕ(rs) = R, 10) ϕ(os) = O, 11)
ϕ(ms) = M , 12) ϕ(rk) = R ∪ Oi, 13) ϕ(ok) = Ok and
14) ϕ(mk) = Mk. Sinceϕ extendsE we use the definition
of extension with 1) to get 15)ϕ(oi) = Oi and 16)ϕ(mi) =
Mi. From 12) and 15) we get 17)ϕ(rk) = ϕ(rs) ∪ ϕ(oi).
Using 4),10) and 13) we obtain 18)ϕ(os) = ϕ(ok). Combining
3),7),8),9),11) and 16) we get 19)ϕ(ms) = Lcross(l, ϕ(rs)) ∪
symcross(Slabelsp(p(fi)), ϕ(rs)) ∪ ϕ(mi) ∪ ϕ(mk). We letϕ
be our solution as we see that it is a solution toC(s1) and satisfies
constraints (80-82) and thus is a solution toC(s). Additionally,
from 10) we also see thatϕ also extendsE. From 9),10) and 11)
we satisfy the remaining conditions of the conclusion. �

We are now ready to prove Theorem 4, which we restate here:

Theorem (Equivalence)̀ p : E if and only if there exists
a solutionϕ of C(p) whereϕ extendsE.

Proof. ⇐) We have a solutionϕ ofC(p) whereϕ extendsE. From
constraints (57-59) we have for allfi defined inp, 1)ϕ(rsi) = ∅,
2) ϕ(oi) = ϕ(osi) and 3)ϕ(mi) = ϕ(msi). Substituting the
premise thatϕ extendsE in 2) and 3) gives us 4)ϕ(osi) = Oi

and 5)ϕ(msi) = Mi. SinceC(si) ⊆ C(p), we see thatϕ is a
solution toC(si). Sinceϕ is a solution toC(si) andϕ extends
E then using Lemma (18) with 1),4),5) and the premise we get
for eachi, 6) p,E, ∅ ` si : Mi, Oi. Sinceϕ extendsE then for
all i 7) E(fi) = (ϕ(mi), ϕ(oi)). Substituting 2),3),4) and 5) in
7) gives us 8)E(fi) = (Mi, Oi) which is we can rewrite as 9)
E = { fi 7→ (Mi, Oi) }. From 6) and 9) we may use Rule (45) to
get` p : E as desired.
⇒) From Rule (45) we have 1)E = {fi 7→ (Mi, Oi)}

and for all i 2) p,E, ∅ ` si : Mi, Oi. We apply for eachi
Lemma (18) to 2) to get a solutionϕi toC(si) that extendsE and
3) ϕi(rsi) = ∅, 4) ϕi(osi) = Oi and 5)ϕi(msi) = Mi. Notice
that all theϕi agree on their common domain. Let 6)ϕ =

S
i ϕi,

We will now show thatϕ is a solution toC(p). We have thatϕ
is a solution to eachC(si) and thatϕ extendsE. All we must
show then is that constraints (57-59) are satisfied. From 1) we see
7)E(fi) = (Mi, Oi). Sinceϕ extendsE and using the definition
of extends we get 8)E(fi) = (ϕ(mi), ϕ(oi)). From 7) and 8) we
get 9)ϕ(mi) = Mi and 10)ϕ(oi) = Oi. From 3) and 6) we get
11) ϕ(rsi) = ∅. Using 4),6) and 10) we have 12)ϕ(osi) = Oi.
From 5),6) and 9) we have 13)ϕ(msi) = Mi. Substituting 10)
in 12) gives us 14)ϕ(osi) = ϕ(oi). We substitute 9) in 13) to
get 15)ϕ(msi) = ϕ(mi). From 11),14) and 15) we see that
constraints (57-59) are satisfied and sinceϕ extendsE we have
reached our conclusion. �

