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Abstract. Source-program modifications can make a partial evalua-
tor yield dramatically better results. For example, eta-redexes can pre-
serve static data flow by acting as an interface between values and con-
texts. This note presents a type-based explanation of what eta-expansion
achieves, why it works, and how it can be automated. This leads to a
unified view of various source-code improvements, including a popular
transformation called “The Trick.”

1 Introduction

This note presents ideas from papers by Danvy, Malmkjeer, and Palsberg [9, 10].

1.1 Background

Partial evaluation is a program-transformation technique for specializing pro-
grams [6,14]. As such, it contributes to solving the tension between program
generality (to ease portability and maintenance) and program specificity (to
have them attuned to the situation at hand). An offline partial evaluator is
divided into two stages:

1. a binding-time analysis determining which parts of the source program are
known (the “static” parts) and which parts may not be known (the “dy-
namic” parts);

2. a program specializer reducing the static parts and reconstructing the dy-
namic parts, thus producing the residual program.

The two stages must fit together such that (1) no static computation depends
on the result of a dynamic computation, and (2) no static parts are left in the
residual program [13,19,20,25]. As a rule, binding-time analyses lean toward
safety in the sense that in case of doubt a dynamic classification is safer than a
static one. In an offline partial evaluator, the precision of the binding-time analy-
sis determines the effectiveness of the program specializer [6, 14]. Informally, the
more parts of a source program are classified to be static by the binding-time
analysis, the more parts are processed away by the specializer.

Recall that a context is an expression with one hole [1]. A static (resp. dy-
namic) context is an expression with one hole where the expression fitting this
hole is static (resp. dynamic).



To obtain consistency, Mix-style partial evaluators [14] coerce static values
and contexts to be respectively dynamic values and dynamic contexts, when they
encounter a clash. This is acceptable if source programs are first-order and values
are either fully static or fully dynamic. However these coercions are excessive for
programs with partially static values and contexts.

Practical experience with partial evaluation shows that users need to mas-
sage their source programs to make binding-time analysis classify more program
parts as static, and thus to make specialization yield better results. Jones, Go-
mard, and Sestoft’s textbook [14, Ch. 12] documents three such “binding-time
improvements”: continuation-passing style, eta-expansion, and “The Trick.” In
this note we present the basic idea which in [9, 10] is fully developed into a unified
view of these binding-time improvements.

1.2 Eta-expansion

Eta-expanding a higher-order expression e of type 7 — 7o yields the expression
Av.eQu

where v does not occur free in e [1]. By analogy, “eta-expanding” a product
expression e of type 71 X 7o yields the expression

Pair(Fste, Snde) ,

and “eta-expanding” a disjoint-sum expression e of type 71 + 7 yields the ex-
pression

case e of inleft(x;) = inleft(z;) | inright(x2) = inright(z2) end.

In the following section we will show how eta-expansion prevents a binding-time
analysis from

— dynamizing static values in dynamic contexts, and
— dynamizing static contexts around dynamic values

when the values are of function, product, or disjoint-sum type. (We use “dy-
namize” to mean “make dynamic.) Preventing static values and contexts from
being dynamized improves the annotation in cases where the static values are
used elsewhere or in cases where other static values may also occur in the same
context. Thus, eta-expansion serves as a binding-time coercion for static values
in dynamic contexts and for dynamic values in potentially static contexts. We
can view an eta-redex as providing a syntactic representation of a binding-time
coercion, either from static to dynamic, or from dynamic to static. Eta-expansion
can also help ensure termination of a partial evaluator [5,17, 18].

In the case of using eta-expansion where the value is of disjoint-sum type, the
binding-time improvement enables “The Trick.” Intuitively, “The Trick” is used
to process dynamic choices of static values, i.e., when finitely many static values
may occur in a dynamic context. Enumerating these values makes it possible to



plug each of them into the context, thereby turning it into a static context and
enabling more static computation.

The Trick can also be used on any finite type, such as booleans or characters,
by enumerating its elements. Alternatively, one may wish to reduce the number
of static possibilities that can be encountered at a program point — for exam-
ple, only finitely many characters (instead of the whole alphabet) may occur
in a regular-expression interpreter [14, Sec. 12.2]. The Trick is usually carried
out explicitly by the programmer (see the while loop in Jones and Gomard’s
Imperative Mix [14, Sec. 4.8.3]).

This enumeration of static values could also be obtained by program analysis,
for example using Heintze’s set-based analysis [12]. Exploiting the results of such
a program analysis would make it possible to automate The Trick. In fact, a
program analysis determining finite ranges of values that may occur at a program
point does enable The Trick. For example, control-flow analysis [24] (also known
as closure analysis [23]) determines a conservative approximation of which A-
abstractions can give rise to a closure that may occur at an application site.
The application site can be transformed into a case-expression listing all the
possible A-abstractions and performing a first-order call to the corresponding
A-abstraction in each branch. This defunctionalization technique was proposed
by Reynolds in the early seventies [22] and recently cast in a typed setting [16].
Since the end of the eighties, it is used by such partial evaluators as Similix to
handle higher-order programs [3]. The conclusion of this is that Jones, Gomard,
and Sestoft actually do use an automated version of The Trick [14, Sec. 10.1.4,
Item (1)], even if they do not present it as such.

In this note we concentrate on eta-expansion of expressions of function type.
In the following section we give several examples of what eta-expansion achieves
and why it works. In Section 3 we present a binding-time analysis that inserts eta-
redexes automatically using two coercion rules, and we show that it transforms
Plotkin’s CPS-transformation into the improved form studied by Danvy and
Filinski [8].

2 The essence of eta-expansion

We show three examples, where

— a number occurs both in a static and in a dynamic context,
— a higher-order value occurs both in a static and in a dynamic context, and
— a function is applied to both a static and a dynamic higher-order argument.

After the examples, we summarize why eta-expansion improves binding times,
given a monovariant binding-time analysis. We use “@” (pronounced “apply”)
to denote applications, and we abbreviate (eg@e;)@es by eg@e;Qes.

2.1 First-order static values in dynamic contexts
The following expression is partially evaluated in a context with y dynamic.

O\z.(z +y) x (z — 1))@42



Assume that this §-redex will be reduced. The addition depends on the dynamic
operand y, so it should be reconstructed (in other words, x occurs in a dynamic
context, [-] +y). Both subtraction operands are static, so the subtraction can be
performed (in other words, z occurs in a static context, [-]—1). The multiplication
should be reconstructed since its first operand is dynamic. Overall, binding-time
analysis yields the following two-level term.

(Az.(2ty)x (2—1))@42

(Consistently with Nielson and Nielson [19], overlined means static and under-
lined means dynamic.)

We can summarize some of the binding-time information by giving the binding-
time types of variables, as in Lambda-Mix [11,14]. Here, x has type s (static)
and y has type d (dynamic). After specialization (i.e., two-level reduction), the
residual term reads as follows.

(42 +y) x 41

Lambda-Mix’s binding-time analysis is able to give an appropriate annotation
of the above program because the argument to Az.(x +y) x (x — 1) is a first-
order value. Inserting the static value in the dynamic context ([-] + y) poses no
problem. We now move on to the case where the inserted value is higher-order.

2.2 Higher-order static values in dynamic contexts

The following expression is partially evaluated in a context with g dynamic.

(Mf.fQg@f)@(la.a)

Again, assume that this S-redex is to be reduced. f occurs twice: once as the
function part of an application (which here is a static context), and once as the
argument of fQ@Qg (which here is a dynamic context). The latter occurrence forces
the binding-time analysis to classify f, and thus the rightmost A-abstraction, to
be dynamic. Overall, binding-time analysis yields the following two-level term.

(\f.fQgaf)a(ra.a)

Here, f has type d, and ¢ has also type d. After specialization, the residual term
reads as follows.
(Aa.a)Qg@Q(Aa.a)

So unlike the first-order case, the fact that f, the static value, occurs in the
dynamic context f@Qg@Q[:] “pollutes” its occurrence in the static context [-|@QgQ f,
so that neither is reduced statically.

NB: Since f is dynamic and occurs twice, a cautious binding-time analysis
would reclassify the outer application to be dynamic: there is usually no point
in duplicating residual code. In that case, the expression is totally dynamic and
so is not simplified at all.



In this situation, a binding-time improvement is possible since Aa.a will oc-
cur in a dynamic context. We can coerce this occurrence by eta-expanding the
occurrence of f in the dynamic context (the eta-redex is boxed).

(Af-F@ga \y. fay ) @(Xa.a)

Binding-time analysis now yields the following two-level term.

(Af.fQgQ(\y.fQy))Q(Aa.a)

Here, f has type d — d, and both g and y have type d. Specialization yields the
residual term

9Q(\y.y)

which is more reduced statically.

In this case, the eta-redex effectively protects the static higher-order expres-
sion Aa.a from being dynamized in the remainder of the computation. Instead,
only the occurrence in the dynamic context is affected.

2.3 Higher-order dynamic values in static contexts

The following expression is partially evaluated in a context with dy and dy dy-
namic.

(M.f@do@(f@(\z1.21)@d;))@(Na.a)

f is applied twice: once to dy, and once to Axj.x1. In a monovariant higher-order
binding-time analysis, dy dynamizes Ax;.x1, since the first parameter of f can
only have one binding time. Overall, binding-time analysis yields the following
two-level term.

(Af-fQdoQ(fQ@(Az1.21)Qd1))Q(Aa.a)
Here, f has type d — d, 1 has type d, and a has type d (corresponding to the
type of dy). Specialization yields the following residual term.

do@(()\l‘ll’l)@dl)

The context f@[-] occurs twice in the source term. The dynamic value dy
appears in the first occurrence, and the static value Ax.x; appears in the second
occurrence. Since the context can only have one binding time (since it is the
same f), dp pollutes f@Q[-], which in turn pollutes Azy.z1. Since f is in fact Aa.a,
the result of the application becomes dynamic. So the two potentially static
applications of this result, respectively [-|Q(f@Q(A\x;.21)@Qd;) and [-]@Qd;, become
dynamic.

In this situation, a binding-time improvement is possible since both dy and
Azi.xz1 occur (as results) in a potentially static context. We coerce dy by eta-
expanding it (the eta-redex is boxed).



Binding-time analysis now yields the following two-level term.

Here, f has type (d — d) — (d — d), corresponding to statically applying
f to both arguments. zo and x; both have type d, and a has type d — d
(corresponding to the type of A\xj.x1). Specialization yields the residual term

dpQd,

which is more reduced statically.

In this case, the eta-redex effectively prevents the dynamic expression d
from being propagated to f and dynamizing Az;.z; in the remainder of the
computation. Instead, only the occurrence in the static context is affected.

2.4 Summary

In a monovariant binding-time analysis, each time a higher-order static value
occurs both in a potentially static context and in a dynamic context, the dy-
namic context dynamizes the higher-order value, which in turn dynamizes the
potentially static context. Conversely, each time a higher-order static value and
a dynamic value occur in the same potentially static context, the dynamic value
dynamizes the context, which in turn dynamizes the higher-order value. Both
problems can be circumvented by inserting eta-redexes in source programs. The
eta-redex serves as “padding” around a value and inside a context, keeping one
from dynamizing or from being dynamized by the other.

Eta-expanding a higher-order static expression f (when it occurs in a dy-
namic context) into

. fQu

creates a value that can be used for replacement. This prevents the original
expression from being dynamized by a dynamic context. Instead, the new ab-
straction is dynamized.

Eta-expanding a higher-order dynamic expression g (when it occurs in a

potentially static context) into B
Av.gQu

creates a value that can be used for replacement. This prevents a potentially
static context from being dynamized by g. Instead, the new application is dy-
namized.

Informally, eta-expansion changes the two-level type [19] of a term as follows.
Assume that f and g have type t; — t2, where ¢; and t; are ground types.
The first eta-expansion coerces the type t1=ty to be t;—ts. The second eta-
expansion coerces the type t;1—t5 to be t1=t5. Note that inside the redexes, the
type of f is still t1=t5 and the type of g is still t;—t».

Further eta-expansion is necessary if ¢; or 2 are not ground types. In fact,
both kinds of eta-redex synergize. For example, if a higher-order static expression
h has type (t1=t2)=t3 then its associated eta-redex reads

Mv.h@QAw.vQuw) .



In this example, the outer eta-expansion (of a static value in a dynamic context)
creates the occurrence of a dynamic expression in a static context — hence the
inner eta-redex.

To make our approach applicable to untyped languages, we will in the rest of
the paper give dynamic entities the ground type d, as in Lambda-Mix [11, 14],
rather than a two-level type such as t; —t,.

Information to guide the insertion of eta-redexes can not be obtained directly
from the output of a binding-time analysis: at that point all conflicts have been
resolved. Moreover, it would be naive to insert, say, one eta-redex around every
subterm: sometimes more than one is needed for good results, as in the last
example and in the CPS-transformation example in Section 3.2. Alternatively,
programs could be required to be simply typed. Then the type of each subterm
determines the maximal number of eta-redexes that might be necessary for that
subterm. Such type-driven eta-redex insertion is closely related to Danvy’s type-
directed partial evaluation [7].

In the following section we demonstrate how to insert a small and appropriate
number of eta-redexes automatically. Our approach does not require programs
to be typed and both for the example in Section 2.2 and for Plotkin’s CPS
transformation we show that it gives a good result.

3 Automatic insertion of eta-redexes

3.1 The binding-time analysis

Our binding-time analysis is specified in Figure 1. It can easily be extended to
handle products and sums. Details of this together with a correctness proof are
given in [10].

The definition in Figure 1 has three parts. The first part is the binding-time
analysis of Gomard [11], restricted to the pure A-calculus. Types are finite and
generated from the following grammar.

t = d |t1 —to

The type d denotes the type of dynamic entities. The judgment A F e : ¢t >
w means that under hypothesis A, the A-term e can be assigned type t with
annotated term w.

The second part of our analysis is two rules for binding-time coercion. Intu-
itively, the two rules can be understood as being able (1) to coerce the binding-
time type d to any type 7 and (2) to coerce any type 7 to the type d. The
combination of the two rules allows us to coerce the type of any A-term to any
other type.

Eta-expansion itself is defined in the third part of our analysis. It is type-
directed, and thus it can insert several embedded eta-redexes in a way that is
reminiscent of Berger and Schwichtenberg’s normalization of A-terms [2,7].

Consider the first binding-time coercion rule in Figure 1. Intuitively, it works
as follows. We are given a A-term e that we would like to assign the type 7. In



Gomard’s binding-time analysis:

At z: A(z) bz

Az — ti]Fe: ta pw Alz —dFe:d>w
AFXze: t1 — ts b AT.W AFAXze:dpvlrw
Al—eoltlﬁtgbwo A|—61:t1l>'U)1

Al 60@61 : to Dwo@wl
AF@U:dDwo AFeldewl
Al eo@er : d >woQu;

Rules for binding-time coercion:

AkFe:dbw Thkz=m Plz—dlFm: T>w
Abe: 1w w/z]

Abe:Tpw ThEz=m flz—71lFm:dpvw
Abe:dp>wiw/z

Rules for eta-expansion:

t1 Fz=2a ta F eQx’ =€

dFe=
€ € t1 = ta F e = A\v.e

Fig. 1. The binding-time analysis.

case we can only assign it type d, and 7 # d, we can use the rule to coerce the
type to be 7. The first hypothesis of the rule is that e has type d and annotated
term w. The second hypothesis of the rule takes a fresh variable z and eta-
expands it according to the type 7. This creates a A-term m with type 7. Notice
that z is the only free variable in m. The third hypothesis of the rule annotates
m under the assumption that z has type d. The result is an annotated term w’
with the type 7 and with a hole of type d (the free variable z) where we can
insert the previously constructed w. Thus, w’ makes the coercion happen. The
second binding-time coercion rule in Figure 1 works in a similar way.

Our binding-time analysis inserts the expected eta-redex in the example pro-
gram (Af.f@Qg@Qf)Q(\a.a) from Section 2.2:

AF fQg: d > fQg Al f:dvo\y.fQy
Al fQgQf : d > f@gQ(\y.fQy) Dg—dz—dFz:dvax
Olg — d) = \f.fQgQf : t — d b Af.fQg@Q(\y.fQy) Olg— d] F Na.a: t > Na.a

Olg = d] - (A f.fQgQf)Q(\a.a) : d > (\f.fQgQ(\y.fQy))Q(\a.a)

where t abbreviates d — d and A abbreviates 0[g — d|[f — {].



Here follows part of the derivation of A f: d > \y.fQy.

AFf:tpf tF 2z = \y.zQy D[z — t] F \y.2Qy : d > \y.2Qy
Al f:dovMy.fQy

Notice that \y.f@y is dynamic while f remain static.

3.2 Example: the CPS transformation

Let us now turn to the transformation of A-terms into continuation-passing style
(CPS). This example is significant because historically, the virtue of eta-redexes
became apparent in connection with partial evaluation of CPS interpreters and
with CPS transformers [3,8]. It also has practical interest since the pattern of
construction and use of higher-order values in the CPS transform is prototypical.
The first part of Figure 2 displays Plotkin’s original CPS transformation for the
call-by-value lambda-calculus [21], written as a two-level term.

Before eta~expansion, where [e] is the CPS-version of the expression e:

[
[x
[Az.e
[[60 @61

: syntax—=CPSsyntax—CPSsyntax

= \k.kQx

— Aek@(Az[e])

= Ak.[eo] @(Avo. [e1]Q(Av1. (v Qv ) Qk))

= e e e

After eta-expansion, where \k.[e]@Av.k@v is the CPS-version of the expression e:
[.] : syntax=(CPSsyntax=CPSsyntax)=CPSsyntax
[z] = A\k.kQx

[Az.e] = Me.k@Q(\z| Me.[e] @ (Av.k@Qv) | )

[eo@er] = Ak.[eo]@(Avo.[e1]@(Av1.(vo@u1)@| (Ave.kQu2) [)

Fig. 2. Two-level formulation of Plotkin’s CPS transformation.

Since the transformation is a syntax constructor, all occurrences of @ and
A are dynamic. And in fact, Gomard’s binding-time analysis does classify all
occurrences to be dynamic.

But CPS terms resulting from this transformation contain redundant “admin-
istrative” beta-redexes, which have to be post-reduced [15]. These beta-redexes
can be avoided by inserting eta-redexes in the CPS transformation, allowing
some beta-redexes in the transformation to become static.



The second part of Figure 2 shows the revised transformation containing
three extra eta-redexes: one for the CPS transformation of applications, and two
for the CPS transformation of abstractions (the eta-redexes are boxed.)

As analyzed by Danvy and Filinski [8], the eta-redex Ak.[e]@k prevents
the outer Ak.... from being dynamized. The two other eta-redexes Av.k@Quv and
Avg.kQug enable k to be kept static. The types of the transformations (shown
in the figures) summarize the binding-time improvement.

Our new analysis inserts exactly these three eta-redexes, given Plotkin’s orig-
inal specification. Here follows part of the derivation for the case of abstraction.
We use the abbreviations t = (d — d) — d and A = 0[[e] — t][k — d — d].

Abk:d—drvk Al Xx.[e] : d > x k. [e]@(Av.kQu)

At kQ(\z.[e]) : d > kQ\z.\k.[e]@(Av.kQv))
O[[e] — t] - Ak.kQ(\z.[€]) : t > Ak k@QAx k. [e]Q(Av.k@Qv))

We need to derive A - Az.[e] : d > Az \k.[e]@(Av.kQv). We use the abbre-
viation F = Ak.zQ(A\v.k@Qu). Here follows the last two steps of the derivation.

Alx —d)F[e] : t >[e] thz=F Pz —t] - E: d > k.2Q(\v.kQv)

Alz — d) F [e] : d > \k.Je]@(Av.kQo)
Al Azfe] : d > Az )k Je]@(Av.kQo)

Bondorf and Dussart’s work [4] relies on two key eta-expansions that are analo-
gous to those studied in this section.
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