
Type Inference with Simple Selftypes
is NP-complete

Jens Palsberg∗ Trevor Jim†

November 27, 2004

Abstract

The metavariable self is fundamental in object-oriented languages.

Typing self in the presence of inheritance has been studied by Abadi

and Cardelli, Bruce, and others. A key concept in these developments

is the notion of selftype, which enables flexible type annotations that

are impossible with recursive types and subtyping. Bruce et al. demon-

strated that, for the language TOOPLE, type checking is decidable.

Open until now is the problem of type inference with selftype.

In this paper we present a simple type system with selftype, re-

cursive types, and subtyping, and we prove that type inference is NP -

complete. With recursive types and subtyping alone, type inference is

known to be P-complete. Our example language is the object calculus

of Abadi and Cardelli. Both our type inference algorithm and our

lower bound are the first such results for a type system with selftype.

Categories and Subject Descriptors: D.3.2 [Programming Languages]: Lan-
guages Classifications—object-oriented languages; F.3.3 [Logics and Mean-
ings of Programs]: Studies of Program Constructs—type structure.

General Terms: Languages, Theory.

Additional Key Words and Phrases: type inference, constraints.

∗Purdue University, Dept of Computer Science, W Lafayette, IN 47907,

palsberg@cs.purdue.edu.
†Department of Computer and Information Science, University of Pennsylvania, 200 S.

33rd Street, Philadelphia, PA 19104–6389, tjim@saul.cis.upenn.edu.

1

1 Introduction

The metavariable self is fundamental in object-oriented languages. It may be
used in a method to refer to the object executing the method. Since methods
can be inherited, the meaning of self cannot be determined statically. This
phenomenon is a key reason why static typing for object-oriented languages
is a challenging problem. For a denotational semantics of inheritance and
self, see for example [8].

Typing self in the presence of inheritance has been studied by Abadi
and Cardelli [3, 2, 1, 4], Bruce [6, 7], Mitchell, Honsell, and Fisher [12, 13],
Palsberg and Schwartzbach [15, 16], and others. These developments all
identify a need to give self a special treatment, as illustrated by the following
standard example.

object Point

...

method move

...

return self

end

end

object ColorPoint extends Point

...

method setcolor

...

end

end

-- Main program:

ColorPoint.move.setcolor

The object ColorPoint is defined by inheritance from Point: it extends
Point with the method setcolor. The only significant aspect of the objects
is that the move method returns self. Now consider the main program. It
executes without errors, but is it typable? With most conventional type

2

systems, the answer is: no! For example, suppose we use a C++ style of
types such that we can annotate the method move with the return type
Point. Then the expression ColorPoint.move has the type Point, and thus
ColorPoint.move.setcolor is not type-correct, since Point does not have
a setcolor method. In C++, we would have to insert an unsafe type cast to
make the program type check.

One way of typing the example without using type casts is to introduce
selftype, that is, a special notation for “the type of self.” If we annotate
the move method with “selftype” as the return type, ColorPoint.move will
have the same type as ColorPoint, so ColorPoint.move.setcolor is type-
correct.

Type systems with selftype have been presented by Abadi and Cardelli [4],
Bruce et al. [6, 7], Mitchell, Honsell, and Fisher [12, 13], and others. A type
system with selftype is used in the language Eiffel [11].

In this paper, we address the following fundamental question:

Fundamental question. Is type inference with selftype feasible?

Of course, the answer will depend on the exact details of the type system.
And there is no common agreement on the “right” type system with self-
type. One of the design issues is the notation for selftype. Bruce et al. use
the keyword Mytype to refer to the type of self, and similarly, Eiffel uses
the notation like Current. Both Mytype and like Current refer to the
“selftype” of the innermost enclosing object; in these systems there is no
way of referring to the “selftype” of other enclosing objects. The systems of
Abadi and Cardelli [4], and Mitchell, Honsell, and Fisher [12, 13], are more
expressive, binding a name for “selftype” in each object type.

Another design issue is the choice of type rules. For example, when
comparing the type rules of Abadi and Cardelli [4] with those of Bruce et al.
[6, 7], we find both striking similarities, such as the rules for message send,
and significant differences. Both of these type systems have been proved
sound, and Bruce et al. have shown that type checking is decidable in their
language, TOOPLE [7]. However, we know of no type inference algorithm
for any system with selftype.

Our approach to type inference with selftype is to begin with a system
of object types where type inference is well understood, and then consider
the simplest possible extension with selftype. We use Abadi and Cardelli’s
system of recursive object types and subtyping as our starting point; type

3

inference in this system is P-complete [14]. The only type constructor in this
type system is the one for object types. The type of an object is of the form
[li : B i∈1..n

i], where each li is a method name and each Bi is a type. The form
of subtyping is the “width” subtyping of Abadi and Cardelli, that is, if A is a
subtype of B, then A has at least the fields of B, and for common fields, A and
B have the same field type. The type system does not contain function types,
base types, etc. Moreover, there are no contravariance or atomic subtyping
in the type system, so the complexity results on type inference of Tiuryn [17]
and Hoang and Mitchell [9] do not apply. Of course, if we introduce more
constructs, then the upper and lower complexity bounds for type inference
may change.

Our extension of the Abadi/Cardelli type system is based on two design
decisions, both aiming for the simplest possible extension. The first decision
is to use the syntax selftype, rather than binding a name for selftype in
each object type. The second decision is related to the observation that the
meaning of selftype is context dependent. We decree that each occurrence
of selftype “comes with its context,” so that its meaning can be recovered.
Specifically, in our type system selftype can only appear as a component of
an object type, and never in isolation. Thus in a typing judgment E ` a : A,
we prohibit the environment E from mapping any variable to selftype, and
our typing rules will guarantee that the derived type A is not selftype.

Our rule for typing a message send, a.l, is as follows.

E ` a : A

E ` a.l : B{A} (where A ≤ [l : B]) .

Here a is an object, l is a method name, A and B are types, and the notation
B{A} is defined

B{A} =

{

A if B = selftype

B otherwise.

The use of the notation B{A} guarantees that selftype cannot be derived as
the type of a.l. Two instances of the rule are

E ` a : [l : []]

E ` a.l : []
, and

E ` a : [l : selftype]

E ` a.l : [l : selftype]
.

In the first instance, B = [] is not selftype, so we conclude a.l : B. In the
second instance, B = selftype, so we instead conclude a.l : A, where a : A

4

and A = [l : selftype]; notice that we use the side condition

A ≤ [l : selftype]

to determine that the meaning of selftype is A.
Let us write the type of Point as [move : selftype] and the type of

ColorPoint as [move : selftype, setcolor : Void]. With the rule above, we
can type the expression ColorPoint.move.setcolor as follows:

∅ ` ColorPoint : [move : selftype, setcolor : Void]

∅ ` ColorPoint.move : [move : selftype, setcolor : Void]

∅ ` ColorPoint.move.setcolor : Void .

Our Result We prove that type inference for our type system with self-
type, recursive types, and subtyping is NP -complete. With recursive types
and subtyping alone, type inference is known to be P-complete [14]. Intu-
itively, the type inference problem is in NP because we can first guess which
methods should be annotated with selftype as the return type, and then solve
the remaining type inference problem in polynomial time. The NP -hardness
emphasizes that there is no efficient way of finding a successful such guess.
Both our type inference algorithm and our lower bound are the first such
results for a type system with selftype. Our NP -hardness result directly
contradicts the intuition that “use selftype whenever possible; it only makes
typing easier.” Certainly, selftype increases expressiveness, but it must be
used judiciously. In particular, a feasible greedy algorithm for placing self-
types does not exist for our type system. See Section 6 for an illustration of
this.

Implications In slogan-form, our result reads:

polynomial time type inference + a tiny drop of selftype = NP -complete

This suggests that the answer to our fundamental question is: “no, type
inference with selftype is not feasible.” In contrast to ML where type infer-
ence, in spite of being EXPTIME -complete, is fast for the programs that are
written in practice, the type inference problem for our type system seems to
require exhaustive search regardless of the form of the input program. Type
checking in our system of simple selftypes is in polynomial time. Thus, self-
type seems to be a construct which in practice should be used in languages
with explicit typing.

5

Future Work We have been unable to establish a connection between our
type system and the seemingly more expressive type systems of Abadi and
Cardelli [4], and Bruce et al [6, 7]. This means that although a “tiny drop of
selftype” gives NP -hardness, one can imagine that “a bigger drop of selftype”
may or may not give NP -hardness. In general, one may ask if there is any
sound type system at all which types at least what can be typed by the
type system in this paper, and which has type inference in polynomial time.
(For an investigation of tractable extensions of F≤, see [18].) Moreover,
one may test the robustness of the NP-completeness result and the proof
technique by extending the calculus with, say, object extension. We are so
far unable to provide an intuition which directly explains why the types rules
are able to code SAT. Our proof of NP-hardness begins by reducing SAT to a
particularly simple form of constraint system (Definition 5.1 and Lemma 5.6)
in which Boolean variables and a restricted form of conditional constraints
can be encoded. Afterwards we show (Lemma 5.7) that the type rules can
code such constraints.

Paper Outline In the next section we briefly recall Abadi and Cardelli’s
calculus, and in Section 3 we present our new type system. In Section 4 we
prove that the type inference problem is log-space reducible to a constraint
problem which can be solved in NP time. In Section 5 we prove that the
type inference problem is NP -complete. Finally, in Section 6 we illustrate
some of the constructions in the paper. We use an example program which
is typable with selftype but not without.

2 Abadi and Cardelli’s Object Calculus

We now present Abadi and Cardelli’s untyped object calculus, called the ς-
calculus. We use a, b, c, o to range over ς-terms, which are defined by the
following grammar.

a ::= x variable
| [li = ς(xi)b

i∈1..n
i] (li distinct) object

| a.l field selection / method invocation
| (a.l ⇐ ς(x)b) field update / method override

6

An object [li = ς(xi)b
i∈1..n

i] has method names li and methods ς(xi)bi. The
order of the methods does not matter. Each method binds a name that
means self. Thus, in a method ς(x)b, x is self and b is the body. Since the
names for self can be chosen to be different and since objects can be nested,
one can refer to any enclosing object, as in the Beta language [10].

Abadi and Cardelli define a term rewriting operational semantics by the
following rules.

• If o ≡ [li = ς(xi)b
i∈1..n

i], then, for j ∈ 1..n,

o.lj ; bj[xj := o], and

(o.lj ⇐ ς(y)b) ; o[lj ← ς(y)b].

• If b ; b′ then a[b] ; a[b′].

Here, bj[xj := o] denotes the ς-term bj with o substituted for free occurrences
of xj (renaming bound variables to avoid capture); and o[lj ← ς(y)b] denotes
the ς-term o with the lj field replaced by ς(y)b. A context is an expression
with one hole, and a[b] denotes the term formed by replacing the hole of the
context a[·] by the term b (possibly capturing free variables in b).

A ς-term is said to be an error if it is irreducible and it contains either
o.lj or (o.lj ⇐ ς(y)b), where o ≡ [li = ς(xi)b

i∈1..n
i], and o does not contain

an lj method.
For example, if o ≡ [l = ς(x)x.l], then the expression o.l yields the infinite

computation
o.l ; (x.l)[x := o] ≡ o.l ; · · · ,

the expression o.m is an error, and the expression o.l.m yields the infinite
computation

o.l.m ; ((x.l)[x := o]).m ≡ o.l.m ; · · · .
The rewrite system is confluent.

3 The Type System

The following type system for the ς-calculus catches errors statically, that is,
rejects all programs that may yield errors.

We use U , V to range over type variables drawn from some possibly
infinite set U ; l, m, . . . to range over labels drawn from some possibly

7

infinite set N of method names; and A, B to range over types defined by the
grammar

B ::= selftype | [li : B i∈1..n
i] | V | µ(V)B.

For reasons explained momentarily, strings of the form

· · · (µ(V1) · · ·µ(Vn)V1) · · ·
are not considered to be types; all other strings generated from the grammar
are valid object types.

We identify types with their infinite unfoldings under the rule

µ(V)B → B[V := µ(V)B] .

Because we do not allow types like µ(V1) · · ·µ(Vn)V1, the rule eliminates all
uses of µ in types, so that types are a class of regular trees over the alphabet

Σ = {selftype} ∪ U ∪ {N ⊆ N | N is finite},
with edges labeled by method names. For example, the type µ(X)[move : X]
is identified with the following tree.

?

?

.

.

.

{move}

{move}

{move}

move

move

The set of types over Σ is denoted TΣ. We use strings over N∗ to identify
subtrees of types, writing A ↓α for the subtree of A identified by α, if any.
Thus a type A can be considered a partial function from N∗ to Σ: A(α) is
the symbol at the root of the tree A↓α. We write D(A) for the domain of A

when it is thought of as a function in this way.
The set of object types is ordered by the subtyping relation ≤ as follows.

First,

U ≤ U for U ∈ U
selftype ≤ selftype

8

and second, if A and B both are of the form [li : B i∈1..n
i], then

A ≤ B if and only if ∀l ∈ N : l ∈ D(B)⇒ (l ∈ D(A) ∧ A↓ l = B ↓ l) .

Intuitively, if A ≤ B, then A may contain more fields than B, and for common
fields, A and B must have the same type. For example, [l : A, m : B] ≤ [l : A],
but [l : [m : A]] 6≤ [l : []]. Thus subtyping reduces to equivalence of recursive
types, which in turn reduces to equivalence of finite state automata. Notice
that ≤ is a partial order, and if A ≤ B, then D(B) ⊆ D(A).

As an aside, one might wonder why we do not relax the definition of A ≤B
to allow A ↓ l ≤ B ↓ l, instead of A ↓ l = B ↓ l. Intuitively, this relaxation
would allow “depth” subtyping. Unfortunately, this would make the type
rules below unsound [5].

If A and B are object types, then B{A} is defined

B{A} =

{

A if B = selftype

B otherwise.

The typing rules below allow us to derive judgments of the form E ` a : A,
where E is a type environment, a is a ς-term, and A is an object type. We
do not allow E to assign any variable the type selftype, as this would be a
use of selftype “out of context.” Similarly, our rules will insure that A is not
selftype in any derivable judgment E ` a : A.

E ` x : A (provided E(x) = A) (1)

E ` a : A

E ` a.l : B{A} (where A ≤ [l : B]) (2)

E[xi ← A] ` bi : Bi{A} ∀i ∈ 1..n

E ` [li = ς(xi)b
i∈1..n

i] : A
(where A = [li : B i∈1..n

i]) (3)

E ` a : A E[x← A] ` b : B

E ` a.l ⇐ ς(x)b : A
(where A ≤ [l : B]) (4)

E ` a : A

E ` a : B
(where A ≤ B) (5)

The first four rules express the typing of each of the four constructs in the
object calculus and the last rule is the rule of subsumption. The type rules
may be understood as a generalization of those introduced by Abadi and

9

Cardelli in [3] and studied further by Palsberg in [14]. Specifically, if selftype
is never used, then B{A} = B and the rules take the form used in [14]. Thus,
the type rules above type more terms than the rules in [14].

Theorem 3.1 (Subject Reduction) If E ` a : A and a ; a′, then E `
a′ : A.

Proof. By induction on the structure of the derivation of E ` a : A. 2

We say that a term a is well-typed if E ` a : A is derivable for some
E and A. Along with the observation that no error is well-typed, Subject
Reduction implies that a well-typed term cannot go wrong.

Note in the method override rule (4) that the type B cannot be selftype;
it appears in the antecedent as the derived type of the judgment E[x← A] `
b : B, and no derived type is selftype in our system. Therefore, it is not
possible for a method returning selftype to be overridden in our type system.
At first, this seems like an overly severe restriction, and we might be tempted
instead to use the rule

E ` a : A E[x← A] ` b : B{A}
E ` a.l ⇐ ς(x)b : A

(where A ≤ [l : B]).

However, this rule is not sound (Subject Reduction fails), as noted by Abadi
(personal communication). Both Abadi and Cardelli, and Bruce et al., define
sound extensions of our rule, but their extensions require that typing judg-
ments include syntactic assumptions that resolve the meaning of selftype.
While not as expressive, our system is considerably more simple.

By a simple induction on typing derivations, we obtain the following
syntax-directed characterization of typings. The characterization will be used
in the next section, where we reduce type inference to the solution of a
particular system of constraints.

Lemma 3.2 (Characterization of Typings) E ` c : A if and only if one
of the following cases holds:

• c = x and E(x) ≤ A;

• c = a.l, and for some B and C, E ` a : B, B ≤ [l : C] and C{B} ≤ A;

10

• c = [li = ς(xi)b
i∈1..n

i], and for some C and Bi for i ∈ 1..n, E[xi ←
C] ` bi : Bi{C}, and C = [li : B i∈1..n

i] ≤ A; or

• c = a.l ⇐ ς(x)b, and for some B and C, E ` a : B, E[x← B] ` b : C,
B ≤ [l : C] and B ≤ A.

4 Type Inference in NP time

In this section we prove that the following type inference problem is com-
putable in NP time.

Type inference: given a ς-term c, either produce an environ-
ment E and type A such that E ` c : A, or halt and fail if no
such E and A exist.

We do this by first reducing the type inference problem to solving a
finite system of type constraints (Lemma 4.2), and then showing that the
constraints can be solved in NP time (Corollary 4.4).

We work with constraints of the form W1 ≤ W2, where W ’s are defined
by the grammar

W ::= U | [li : U i∈1..n
i] | selftype | U{U ′}

We use U{U ′} here in a syntactic way, in contrast with its use in the typing
rules of the last section. This syntax is eliminated as follows: for any function
L : U → TΣ, we define L̃ by

L̃(W) =































L(U) if W = U{U ′} and L(U) 6= selftype

L(U ′) if W = U{U ′} and L(U) = selftype

L(U) if W = U

[li : L(Ui)
i∈1..n] if W = [li : U i∈1..n

i]
selftype if W = selftype

Definition 4.1 For any denumerable set U of variables and subset U0 ⊆ U ,
an S-system (selftype-system) over U and U0 is a finite set of constraints
whose variables are drawn from U . A solution to an S-system C is a function
L : U → TΣ such that for all W ≤ W ′ in C, L̃(W) ≤ L̃(W ′), and such that
for all U ∈ U0, L(U) 6= selftype. 2

11

For an example of an S-system, see Section 6. In comparison with the
AC-systems of [14], the novel aspect of S-systems is the use of selftype and
the notation U{U ′}.

We now show how to reduce type inference for a term c to the solution
of an S-system C(c).

Given a ς-term c, assume that it has been α-converted so that all free
and bound variables are pairwise distinct. We will now generate an S-system
where the variables of c are a subset of the variables used in the constraint
system. This will be convenient in the proof of Lemma 4.2 below.

We define U(c), U0(c), and C(c) as follows.

• U(c) is a set of variables. It consists of: every variable x that appears
in c; a variable [[b]] for each occurrence of a subterm of b of c; a variable
〈a.l〉 for each occurrence of a subterm a.l of c; and a variable 〈〈bi〉〉
for each occurrence of a subterm [li = ς(xi)b

i∈1..n
i] of c and for each

i ∈ 1..n.

• U0(c) is the subset of U(c) consisting of the variables x where x appears
in c and variables [[b]] where b is a subterm of c.

• C(c) is the S-system over U(c) and U0(c) consisting of the following
constraints:

for every occurrence in c of a variable x, the constraint

x ≤ [[x]] (6)

for every occurrence in c of a subterm of the form a.l, the two
constraints

[[a]] ≤ [l : 〈a.l〉] (7)

〈a.l〉{[[a]]} ≤ [[a.l]] (8)

for every occurrence in c of a subterm of the form [li = ς(xi)b
i∈1..n

i],
the constraint

[li : 〈〈bi〉〉 i∈1..n] ≤ [[[li = ς(xi)b
i∈1..n

i]]] (9)

and for every j ∈ 1..n, the two constraints

xj = [li : 〈〈bi〉〉 i∈1..n] (10)

[[bj]] ≤ 〈〈bj〉〉{xj} (11)

12

for every occurrence in c of a subterm of the form a.l ⇐ ς(x)b, the
three constraints

[[a]] ≤ [[a.l ⇐ ς(x)b]] (12)

[[a]] = x (13)

[[a]] ≤ [l : [[b]]] . (14)

In the definition of U(c), the notations [[b]], 〈a.l〉, and 〈〈bi〉〉 are ambiguous
because there may be more than one occurrence of the terms b, a.l, or bi in c.
However, it will always be clear from context which occurrence is meant.
In the definition of C(c), each equality A = B denotes the two inequalities
A ≤ B and B ≤ A.

For a ς-term of size n, the S-system C(c) is of size O(n), and it is generated
using polynomial time. We show below that the solutions of C(c) correspond
to the possible type annotations of c in a sense made precise by Lemma 4.2.
For an example of an S-system generated from a ς-term, see Section 6.

For any term c, type environment E, and function L : U → TΣ, we say
that L and E agree on (the free variables of) c iff L(x) = E(x) for all x free
in c.

Lemma 4.2 The judgment E ` c : A is derivable if and only if there exists
a solution L of C(c) such that L([[c]]) = A, and L and E agree on c.

Proof. (⇐) We prove the following stronger statement:

If L is a solution to C(c), and L′ is the restriction of L to the variables
appearing in c, then L′ ` c0 : L([[c0]]) for every subterm c0 of c.

The proof is by induction on c0.

• If c0 = x, then L′ ` x : L′(x) by rule (1). And by (6), L′(x) = L(x) ≤
L([[x]]), so L′ ` x : L([[x]]) by rule (5).

• If c0 = a.l, then by induction, L′ ` a : L([[a]]). By (7), L([[a]]) ≤
L̃([l : 〈a.l〉]), so by rule (2), L′ ` a.l : L̃(〈a.l〉{[[a]]}). Finally by (8),
L̃(〈a.l〉{[[a]]}) ≤ L([[a.l]]), so by rule (5), L′ ` a.l : L([[a.l]]).

• If c0 = [li = ς(xi)b
i∈1..n

i], then by induction, for j ∈ 1..n we have
L′ ` bj : L([[bj]]).

13

Note that L′ = L′[xj ← L′(xj)], and by (11), L([[bj]]) ≤ L̃(〈〈bj〉〉{xj});
then by rule (5), L′[xj ← L′(xj)] ` bj : L̃(〈〈bj〉〉{xj}).
So by rule (3), L′ ` c0 : L(xj) for any j ∈ 1..n.

By (10), L(xj) = L̃([li : 〈〈bi〉〉 i∈1..n]), and by (9), L̃([li : 〈〈bi〉〉 i∈1..n]) ≤
L([[c0]]), so by rule (5), L′ ` c0 : L([[c0]]).

• If c0 = (a.l ⇐ ς(x)b), by induction we have L′ ` a : L([[a]]) and
L′ ` b : L([[b]]).

By (13), L′(x) = L(x) = L([[a]]), so L′[x← L([[a]])] ` b : L([[b]]).

By (14), L([[a]]) ≤ L̃([l : [[b]]]), so by rule (4) we have L′ ` c0 : L([[a]]).

Finally by (12), L([[a]]) ≤ L([[c0]]) so L′ ` c0 : L([[c0]]) by rule (5).

(⇒) First we introduce some convenient notation. We say the domain
of a function L : U → TΣ is the set {U | L(U) 6= U}. We write {U1 :=
A1, . . . , Un := An} for the function with domain {U1, . . . , Un} mapping Ui to
Ai for i ∈ 1..n. If L1 : U → TΣ and L2 : U → TΣ, and L1(U) = L2(U) for
every U in the domain of both L1 and L2, then L1 ∪ L2 is the function from
U to TΣ defined by

(L1 ∪ L2)(U) =











L1(U) if U is in the domain of L1

L2(U) if U is in the domain of L2

U otherwise

We now prove the following statement by induction on c, using Lemma 3.2:

If E ` c : A is derivable then there exists a solution L of C(c) such that
L([[c]]) = A, L has domain U(c), and L and E agree on c.

• If c = x, then E(x) ≤ A and C(c) = {x ≤ [[x]]}. Then let L = {x :=
E(x), [[x]] := A}; clearly L solves C(c), L([[c]]) = A, L has domain U(c),
and L and E agree on c.

• If c = a.l, then for some B and C, E ` a : B, B ≤ [l : C], C{B} ≤ A,
and C(c) = C(a) ∪ {[[a]] ≤ [l : 〈a.l〉], 〈a.l〉{[[a]]} ≤ [[a.l]]}.
By induction there is a solution L′ of C(a) such that L′([[a]]) = B, L′

has domain U(a), and L′ agrees with E on a.

Define L = L′ ∪ {[[a]] := B, 〈a.l〉 := C, [[a.l]] := A}. Clearly L solves
C(c), L([[c]]) = A, L has domain U(c), and L and E agree on c.

14

• If c = [li = ς(xi)b
i∈1..n

i], then for some C and Bi for i ∈ 1..n, E[xi ←
C] ` bi : Bi{C}, C = [li : B i∈1..n

i] ≤ A, and

C(c) = {[li : 〈〈bi〉〉 i∈1..n] ≤ [[c]]}
∪ {xj = [li : 〈〈bi〉〉 i∈1..n] | j ∈ 1..n}
∪ {[[bj]] ≤ 〈〈bj〉〉{xj}}
∪ (

⋃

i∈1..n C(bi)).

By induction, for i ∈ 1..n there is a solution Li for C(bi) such that
Li([[bi]]) = Bi{C}, Li has domain U(bi), and Li agrees with E[xi ← C]
on bi.

Define L = {[[c]] := A} ∪ (
⋃

i∈1..n(Li ∪ {〈〈bi〉〉 := Bi, xi := C})). This is
well-defined because a variable x is in the domain of both Li and Lj iff
x is free in both bi and bj, in which case Li(x) = E(x) = Lj(x).

Then L solves C(c), L([[c]]) = A, L has domain U(c), and L and E agree
on c.

• If c = (a.l ⇐ ς(x)b), then for some B and C, E ` a : B, E[x ← B] `
b : C, B ≤ [l : C] B ≤ A, and

C(c) = C(a) ∪ C(b) ∪ {[[a]] ≤ [[c]], [[a]] = x, [[a]] ≤ [l : [[b]]]}.

By induction there is a solution L1 of C(a) such that L1([[a]]) = B, L1

has domain U(a), and L1 agrees with E on a; and a solution L2 of
C(b) such that L2([[b]]) = C, L2 has domain U(b), and L2 agrees with
E[x← B] on b.

Let L = {[[c]] := A} ∪ L1 ∪ L2; this is well-defined because a variable
x is in the domain of both L1 and L2 iff x is free in both a and b, in
which case L1(x) = E(x) = L2(x).

Then L solves C(c), L([[c]]) = A, L has domain U(c), and L and E agree
on c. 2

To solve an arbitrary S-system, we proceed in two steps. First we define
a family of transformations. Each transformation eliminates the components
of the form U{U ′} in an S-system. Given these transformations, it is straight-
forward that an S-system can be solved in NP time.

15

The family of mappings FS from S-systems to S-systems is defined as
follows. Let C be an S-system over U and U0, and let S ⊆ (U\U0). Intuitively,
S is a guess on the set of variables that some solution of C would map to
selftype. Define FS(C) to be the S-system over U and (U \ S) where

• For each U ∈ S, the constraint U ≤ selftype is in FS(C).

• If a constraint of the form W ≤ W ′ is in C, then fS(W) ≤ fS(W ′) is in
FS(C), where:

fS(W) =











U ′ if W = U{U ′} and U ∈ S,

U if W = U{U ′} and U 6∈ S,

W otherwise.

We can now characterize solvability of S-systems in terms of the mappings
FS.

Lemma 4.3 Suppose C is an S-system over U and U0. Then C is solvable if
and only if there exists S ⊆ (U \ U0) such that FS(C) is solvable over U and
U \ S.

Proof. Suppose first that C has solution L. Define S = {U ∈ U | L(U) =
selftype}. It is straightforward to show that FS(C) has solution L.

Suppose then that we have S ⊆ U such that FS(C) has solution L. It is
straightforward to show that C has solution L. 2

Corollary 4.4 Solvability of S-systems is in NP time.

Proof. Suppose C is an S-system over U and U0. Guess S ⊆ (U \ U0).
Transform C into FS(C), using polynomial time. It follows from Lemma 4.3
that it is sufficient to decide if FS(C) is solvable. This is in turn equivalent
to deciding if FS(C) has a solution L where no L(U) contains free variables.
This can be done in O(n3) time using a slightly modified version of the
algorithm in [14]. (The algorithm in [14] handles so-called AC-systems, that
is, S-systems without U{U ′} and without selftype. In the journal version
of [14], it is indicated how to extend the constraint solving algorithm for
AC-systems to handle functions and records. It is equally easy to extend
the algorithm to handle a constant such as selftype and the condition that
variables in U \ S cannot be mapped to selftype.) 2

16

Lemma 4.2 and Corollary 4.4 imply the main result of this section.

Theorem 4.5 The type inference problem for the type system with selftype,
recursive types, and subtyping can be decided in nondeterministic polynomial
time.

5 Type Inference is NP-hard

In this section we prove that the type inference problem is NP -hard. We do
this by first proving that a certain constraint problem is NP -hard (Lemma 5.6),
and then showing that the constraint problem reduces to the type inference
problem (Lemma 5.7).

Definition 5.1 Given a denumerable set U of variables, a CS-system (core
selftype system) over U is a finite set of constraints of the forms:

(i) V ≤ [l : []]

(ii) V ≤ [l : [m : []]]

(iii) V ≤ U{[l : U]}

(iv) V ≤ [l : U] ∧ U{V } ≤ V ′

where U, V, V ′ ∈ U . If [l : U] appears in a CS-system, then there is exactly
one constraint of form (iii) which involves [l : U]. If [l : U] and [l′ : U ′] appear
in a CS-system, then either l = l′ and U = U ′, or l 6= l′ and U 6= U ′.

A solution for a CS-system is a function L : U → TΣ such that all
constraints are satisfied when elements of U are mapped to types by L.

For a given CS-system C, denote by V(C) the set of variables of C which
do not occur as part of any [l : U]. 2

Notice that if the CS-system C is solvable, then no variable in V(C) is
mapped to selftype; in each case (i–iv) the only possible member of V(C) is
V or V ′, and each V or V ′ is related directly or indirectly to a record type.

We now define a CS-system which will be used to encode Boolean vari-
ables. The construction is based on the observation that the types [m : []]
and [m : [m : []]] do not have a common lower bound, since [] 6= [m : []].

17

Definition 5.2 Let x be a Boolean variable. Define

Ux = {Ux, Ux, Vx, V
′
x, V

′′
x , V ′′′

x , V A
x , V B

x } .

The CS-system Cx over Ux consists of the following seven constraints:

(i) Vx ≤ [lx : Ux] ∧ Ux{Vx} ≤ V A
x

(ii) Vx ≤ [lx : Ux] ∧ Ux{Vx} ≤ V B
x

(iii) V ′
x ≤ [lx : Ux] ∧ Ux{V ′

x} ≤ V ′′
x

(iv) V ′′
x ≤ Ux{[lx : Ux]}

(v) V ′′′
x ≤ Ux{[lx : Ux]}

(vi) V A
x ≤ [mx : []]

(vii) V B
x ≤ [mx : [mx : []]]

2

Lemma 5.3 If Cx has solution L, then L(V A
x) and L(V B

x) have no common
lower bound.

Proof. Suppose Cx has solution L, and suppose that P is a common
lower bound for L(V A

x) and L(V B
x). Then P ≤ L(V A

x) ≤ [mx : []] and
P ≤ L(V B

x) ≤ [mx : [mx : []]]. Thus we have both P ↓ mx = [] and
P ↓mx = [mx : []], a contradiction. 2

The next two lemmas show that Ux and Ux can be used as boolean vari-
ables.

Lemma 5.4 There is no solution L of Cx such that L(Ux) = selftype = L(Ux)
or L(Ux) 6= selftype 6= L(Ux).

Proof. If L(Ux) = L(Ux) = selftype, then by 5.2(i) and (ii), L(Vx) ≤
L(V A

x) and L(Vx) ≤ L(V B
x), contradicting Lemma 5.3. If L(Ux) 6= selftype

and L(Ux) 6= selftype, then by 5.2(i), L(Ux) ≤ L(V A
x), and by 5.2(iii), (iv),

and (ii), L(Ux) ≤ L(V ′′
x) ≤ L(Ux) ≤ L(V B

x), contradicting Lemma 5.3. 2

18

Lemma 5.5 Cx has both a solution L where L(Ux) = selftype 6= L(Ux), and
a solution L′ where L′(Ux) 6= selftype = L′(Ux).

Proof. First choose two types A and B such that A ≤ [mx : []] and
B ≤ [mx : [mx : []]], and such that lx and lx are not fields of either of A and
B. For types A1 and A2, define A1⊕A2 to be union of A1 and A2 thought of
as functions, assuming that the domains are disjoint. We now list a solution
L of Cx with L(Ux) = selftype, and a solution L′ of Cx with L′(Ux) 6= selftype.

L L′

Ux selftype [lx : selftype]⊕ A

Ux B selftype

Vx [lx : selftype, lx : B]⊕ A [lx : [lx : selftype]⊕ A, lx : selftype]⊕ B

V ′
x [lx : selftype]⊕ B [lx : [lx : selftype]⊕ A]

V ′′
x B [lx : selftype]

V ′′′
x [lx : selftype] [lx : selftype]⊕ A

V A
x A A

V B
x B B

2

Lemma 5.6 Solvability of CS-systems is NP-hard.

Proof. We reduce SAT to solvability of CS-systems. Given a CNF formula
ϕ ≡ ∏n

i=1

∑ni

j=1 ei
j where each ei

j is either a variable or its negation, and where
for each i, ei

1, . . . , e
i
ni

are different. Define

Uϕ = (
⋃

x

Ux) ∪ (
n
⋃

i=1

ni
⋃

j=1

{V i
j }) .

The CS-system C(ϕ) over Uϕ consists of the constraints:

• For each variable x in ϕ: Cx

• For all i ∈ 1..n:

V i
1 ≤ [li : []]

V i
ni
≤ [li : [li : []]]

For j ∈ 1..ni: V i
j ≤ [lei

j
: Uei

j
] ∧ Uei

j
{V i

j } ≤ V i
j+1.

19

We will prove that ϕ is satisfiable if and only if C(ϕ) is solvable.
Suppose first that ϕ is satisfiable. Let s be a satisfying assignment. We

can assume, without loss of generality, that there is a total ordering v of
the literals such that for each i, if j ≤ j ′, then ei

j w ei
j′ and s(ei

j) ⇐ s(ei
j′).

(This can be obtained by, for each i, reordering the literals.) We now define
a solution L of C(ϕ). For a literal ρ where s(ρ) = false, define L(Uρ) =
selftype, and for each occurrence ei

j of ρ, define L(V i
j) = [lei

j
: selftype, . . . , lei

ni
:

selftype, li : [li : []]]. We will process the literals ρ for which s(ρ) = true
in the order v, beginning with the smallest. Let ρ be a literal for which
s(ρ) = true. Define

L(Uρ) =
⊕

occ. ei
j

of ρ

(L(V i
j+1) ⊕ [li : [] (only if j = 1)])

⊕ [mx : [], lx : selftype (only if ρ ≡ x)

mx : [mx : []] (only if ρ ≡ x)]

For each occurrence ei
j of ρ, define L(V i

j) = [lei
j

: L(Uei
j
)]. Finally, define, for

each i, L(V i
ni

) = [li : [li : []]]. It is straightforward to show that C(ϕ) has
solution L.

Conversely, suppose C(ϕ) is solvable. Let L be a solution. Suppose we
have i such that all Uei

j
are selftype under L. Then L is a solution of

V i
1 ≤ [li : []]

V i
1 ≤ . . . ≤ V i

ni
≤ [li : [li : []]] ,

a contradiction. Thus, for each i, at least on of Uei
j

is not selftype under L.

Define

s(x) =

{

false if L(Ux) = selftype

true otherwise .

It is straightforward to show that s satisfies ϕ. 2

Lemma 5.7 Solvability of CS-systems is reducible to the type inference prob-
lem.

Proof. Let C be a CS-system. Let aC denote the following ς-term:

20

[kV = ς(x)((x.kV ⇐ ς(y)(x.kV)).kV)
for each variable V ∈ V(C)

kR = ς(x)[l = ς(y)[]]
for each constraint V ≤ R in C,
where R ≡ [l : []].

kR = ς(x)[l = ς(y)[m = ς(z)[]]]
for each constraint V ≤ R in C,
where R ≡ [l : [m : []]].

kP = ς(x)((x.kR ⇐ ς(y)(x.kV)).kR.l)
for each constraint P ≡ (V ≤ R) in C,
where R ≡ [l : []].

kP = ς(x)((x.kR ⇐ ς(y)(x.kV)).kR.l.m)
for each constraint P ≡ (V ≤ R) in C,
where R ≡ [l : [m : []]].

k[l:U] = ς(x)[l = ς(y)(x.kV)]
for each constraint V ≤ U{[l : U]} in C.

k′
[l:U] = ς(x)(x.k[l:U].l)

for each constraint V ≤ U{[l : U]} in C.
kP = ς(x)((x.k[l:U] ⇐ ς(y)(x.kV)).kV)

for each constraint P ≡ (V ≤ [l : U] ∧ U{V } ≤ V ′) in C.
k′

P = ς(x)((x.kV ′ ⇐ ς(y)(x.kV .l)).kV)
for each constraint P ≡ (V ≤ [l : U] ∧ U{V } ≤ V ′) in C.

]

We first prove that if C is solvable, then aC is typable. Suppose C has solution
L. Let A denote the following type:

21

[kV : L(V)
for each variable V ∈ V(C)

kR : [l : []]
for each constraint V ≤ R in C,
where R ≡ [l : []].

kR : [l : [m : []]]
for each constraint V ≤ R in C,
where R ≡ [l : [m : []]].

kP : []
for each constraint P ≡ (V ≤ R) in C,
where R ≡ [l : []].

kP : []
for each constraint P ≡ (V ≤ R) in C,
where R ≡ [l : [m : []]].

k[l:U] : [l : L(U)]
for each constraint V ≤ U{[l : U]} in C.

k′
[l:U] : L(U){[l : L(U)]}

for each constraint V ≤ U{[l : U]} in C.
kP : L(V)

for each constraint P ≡ (V ≤ [l : U] ∧ U{V } ≤ V ′) in C.
k′

P : L(V)
for each constraint P ≡ (V ≤ [l : U] ∧ U{V } ≤ V ′) in C.

]

It is straightforward to show that ∅ ` aC : A is derivable.
Now we prove that if aC is typable, then C is solvable. Suppose aC

is typable. From Lemma 4.2 we get a solution M of C(aC). Notice that
each method in aC binds a variable x. Each of these variables corresponds
to a distinct type variable in C(aC). Since M is a solution of C(aC), and
C(aC) contains constraints of the form x = [. . .] for each method in aC (from
rule (10)), all those type variables are mapped by M to the same type. Thus,
we can think of all the bound variables in aC as being related to the same
type variable, which we will write as x.

Let L : U → TΣ be defined by

L(V) = M(x)↓kV for V ∈ V(C)
L(U) = M(x)↓k[l:U]↓ l for U ∈ U \ V(C) .

22

The definition is justified by the two properties listed below. We will proceed
by first showing the two properties and then showing that C has solution L.

• Property 1 If V ∈ V(C), then M(x)↓kV is defined and M(x)↓kV 6=
selftype.

• Property 2 For each constraint V ≤ U{[l : U]} in C,

(i) M(x)↓k[l:U] = [l : A] for some A ∈ TΣ, and

(ii) M(x)↓kV ≤ A{[l : A]} where A = M(x)↓k[l:U] ↓ l.

To see Property 1, notice that in the body of the method kV we have the
expression x.kV ⇐ ς(y)(x.kV). Since M is a solution of C(aC), we have from
the rules (6) and (14) that M satisfies

x ≤ [[x]] ≤ [kV : [[x.kV]]] .

Thus, M(x)↓kV = M([[x.kV]]) is defined, and since [[x.kV]] ∈ U0(a
C), we have

M([[x.kV]]) 6= selftype, so M(x)↓kV 6= selftype.
To see Property 2, notice that in the body of the method k′

[l:U] we have

the expression x.k[l:U].l. Since M is a solution of C(aC), we have from the
rules (6), (7), (8), and (7) that M satisfies

x ≤ [[x]] ≤ [k[l:U] : 〈x.k[l:U]〉] (15)

〈x.k[l:U]〉{[[x]]} ≤ [[x.k[l:U]]] (16)

[[x.k[l:U]]] ≤ [l : 〈x.k[l:U].l〉] . (17)

Moreover, in the body of the method k[l:U] we have the expression [l =
ς(y)(x.kV)]. Since M is a solution of C(aC), we have from the rules (9),
(10), (11), (6), (7), and (8), that M satisfies

[l : 〈〈x.kV 〉〉] ≤ [[[l = ς(y)(x.kV)]]] (18)

y = [l : 〈〈x.kV 〉〉] (19)

[[x.kV]] ≤ 〈〈x.kV 〉〉{y} (20)

x ≤ [[x]] ≤ [kV : 〈x.kV 〉] (21)

〈x.kV 〉{[[x]]} ≤ [[x.kV]] . (22)

23

Finally, from aC itself and the rules (10) and (11), we get that M satisfies

x = [. . . k[l:U] : 〈〈[l = ς(y)(x.kV)]〉〉 . . .] (23)

[[[l = ς(y)(x.kV)]]] ≤ 〈〈[l = ς(y)(x.kV)]〉〉{x} . (24)

From (15) we get M(x)↓k[l:U] = M(〈x.k[l:U]〉), and from (23) we get M(x)↓
k[l:U] = M(〈〈[l = ς(y)(x.kV)]〉〉). Hence,

M(〈〈[l = ς(y)(x.kV)]〉〉) = M(〈x.k[l:U]〉) (25)

We get

[l : M(〈〈x.kV 〉〉)] ≤ M([[[l = ς(y)(x.kV)]]]) from (18)
≤ (M(〈〈[l = ς(y)(x.kV)]〉〉)){M(x)} from (24)
= (M(〈x.k[l:U]〉)){M(x)} from (25)
≤ (M(〈x.k[l:U]〉)){M([[x]])} from (6)
≤ M([[x.k[l:U]]]) from (16)
≤ [l : M(〈x.k[l:U].l〉)] from (17).

From this calculation we get that M(〈〈x.kV 〉〉) = M(〈x.k[l:U].l〉), so

(M(〈x.k[l:U]〉)){M(x)} = [l : M(〈〈x.kV 〉〉)] .

Hence, M(〈x.k[l:U]〉) 6= selftype, since M(〈x.k[l:U]〉) = selftype would imply
M(x) = [l : M(〈〈x.kV 〉〉)] which clearly is false. Thus,

M(〈x.k[l:U]〉) = [l : M(〈〈x.kV 〉〉)]

so M(x) ↓ k[l:U] ↓ l = M(〈x.k[l:U]〉) ↓ l = [l : M(〈〈x.kV 〉〉)] ↓ l = M(〈〈x.kV 〉〉) is
defined, and by defining A = M(〈〈x.kV 〉〉) we get M(x)↓k[l:U] = [l : A]. From
Property 1 we get that M(x)↓kV 6= selftype, so

M(x)↓kV = M(〈x.kV 〉) from (21)
≤ M([[x.kV]]) from (22)
≤ (M(〈〈x.kV 〉〉)){M(y)} from (20)
= (M(〈〈x.kV 〉〉)){[l : M(〈〈x.kV 〉〉)]} from (19)
= A{[l : A]} by definition.

24

This establishes Property 2. We now show that C has solution L.
Consider first a constraint V ≤ U{[l : U]} in C. From Property 2 we

get that L(V) = M(x) ↓ kV ≤ (L(U)){[l : L(U)]}. Thus, L satisfies the
constraint.

Consider then a constraint P ≡ (V ≤ [l : U] ∧ U{V } ≤ V ′) in C. In the
body of the method kP we have the expression x′.k[l:U] ⇐ ς(y)(x.kV) where
we, for clarity, have written the first occurrence of x as x′. Since M is a
solution of C(aC), we have from the rules (6), (14), (6), (7), and (8), that M

satisfies

x ≤ [[x′]] ≤ [k[l:U] : [[x.kV]]] (26)

x ≤ [[x]] ≤ [kV : 〈x.kV 〉] (27)

〈x.kV 〉{[[x]]} ≤ [[x.kV]] . (28)

From (27) we get M(x) ↓ kV = M(〈x.kV 〉). By Property 1, M(x) ↓ kV 6=
selftype, so from (28) and (26) we get M(〈x.kV 〉) ≤M([[x.kV]]) = M(x)↓k[l:U].
We conclude L(V) = M(x) ↓ kV ≤ M(x) ↓ k[l:U] = [l : M(x) ↓ k[l:U] ↓ l] = [l :
L(U)], using Property 2. It follows that

M(x)↓k[l:U]↓ l = M(x)↓kV ↓ l (29)

In the body of the method k′
P we have the expression x′.kV ′ ⇐ ς(y)(x.kV .l)

where we, for clarity, have written the first occurrence of x as x′. Since M

is a solution of C(aC), we have from the rules (6), (14), (6), (7), (8), (7), and
(8), that M satisfies

x ≤ [[x′]] ≤ [kV ′ : [[x.kV .l]]] (30)

x ≤ [[x]] ≤ [kV : 〈x.kV 〉] (31)

〈x.kV 〉{[[x]]} ≤ [[x.kV]] (32)

[[x.kV]] ≤ [l : 〈x.kV .l〉] (33)

〈x.kV .l〉{[[x.kV]]} ≤ [[x.kV .l]] . (34)

From (31) we get M(x) ↓ kV = M(〈x.kV 〉). By Property 1, M(x) ↓ kV 6=
selftype, so from (32) and (33) we get M(〈x.kV 〉) ≤ M([[x.kV]]) ≤ [l :
M(〈x.kV .l〉)]. Thus,

M(x)↓kV ≤ M([[x.kV]]) (35)

M(x)↓kV ↓ l = M(〈x.kV .l〉) . (36)

We conclude

25

(L(U)){L(V)} = (M(x)↓k[l:U]↓ l){M(x)↓kV } by definition
= (M(x)↓kV ↓ l){M(x)↓kV } from (29)
= (M(〈x.kV .l〉)){M(x)↓kV } from (36)
≤ (M(〈x.kV .l〉)){M([[x.kV]])} from (35)
≤ M([[x.kV .l]]) from (34)
= M(x)↓kV ′ from (30)
= L(V ′) by definition.

Thus, L satisfies the constraint P .
The remaining two cases of constraints of the forms V ≤ [l : []] and

V ≤ [l : [m : []]] are handled similarly. We omit the details. 2

By combining Theorem 4.5, Lemma 5.6, and Lemma 5.7 we obtain our
main theorem.

Theorem 5.8 The type inference problem for the type system with selftype,
recursive types, and subtyping is NP-complete.

It also follows that solvability of S-systems and solvability of CS-systems
are NP-complete.

26

6 Example

We now illustrate some of the constructions in the paper. Consider the
following program skeleton.

object Point object Circle

... ...

method move method center

... return Point

return self end

end ...

end end

object ColorPoint object ColorCircle overrides Circle

... ...

method move method center

... return ColorPoint.move.setcolor

return self end

end end

method setcolor

... -- Main program:

return self

end ColorCircle.center.move

end

The only significant aspect of the Point and ColorPoint objects is that
their methods return self. The object Circle returns the Point object
when asked for its center. The object ColorCircle is defined by inheri-
tance from Circle: it overrides the center method. When asked for its
center, the ColorCircle first slightly changes the coordinates and color of
the ColorPoint, and then it returns the resulting object. The main program
executes without errors.

27

The key aspects of the example can be directly represented in the object
calculus of Abadi and Cardelli as follows.

Point ≡ [move = ς(x)x]

ColorPoint ≡ [move = ς(y)y , setcolor = ς(z)z]

Circle ≡ [center = ς(d)Point]

ColorCircle ≡ Circle.center ⇐ ς(e)(ColorPoint.move.setcolor)

Main ≡ ColorCircle.center.move .

We may then ask: can the program be typed in Abadi and Cardelli’s first-
order type system with recursive types and subtyping? The answer is, per-
haps surprisingly: no! This answer can be obtained by running the type
inference algorithm of Palsberg [14]. The key reason for the untypability is
that the body of the ColorCircle’s center method forces ColorPoint to have
a type which is not a subtype of the type of Point, intuitively as follows.

Point : µ(X)[move : X]

ColorPoint : µ(X)[move, setcolor : X]

µ(X)[move, setcolor : X] 6≤ µ(X)[move : X]

Moreover : ColorCircle.center.move is not typable .

In our type system with selftype, however, ColorPoint can be given a type
that is a subtype of the type of Point, and the program is typable:

Point : [move : selftype]

ColorPoint : [move, setcolor : selftype]

[move, setcolor : selftype] ≤ [move : selftype]

Moreover : ColorCircle.center.move is typable .

More specifically, define

P ≡ [move : selftype]

Q ≡ [move, setcolor : selftype]

E ≡ ∅[d← [center : P]]

F ≡ ∅[e← P] .

28

We can then derive ∅ ` ColorCircle.center.move : P as follows.

E[x← P] ` x : P

E ` Point : P

∅ ` Circle : [center : P]

F [y ← Q] ` y : Q F [z ← Q] ` z : Q

F ` ColorPoint : Q

F ` ColorPoint.move : Q

F ` ColorPoint.move.setcolor : Q

F ` ColorPoint.move.setcolor : P

∅ ` ColorCircle : [center : P]

∅ ` ColorCircle.center : P

∅ ` ColorCircle.center.move : P

Notice the use of subsumption with Q ≤ P .
We now show how the NP -time type inference algorithm works when

given the above program. The expression

ColorCircle.center.move

yields the following S-system.

Occurrence Constraints
x x ≤ [[x]]

Point [move : 〈〈x〉〉] ≤ [[Point]]

x = [move : 〈〈x〉〉]

[[x]] ≤ 〈〈x〉〉{x}

y y ≤ [[y]]

z z ≤ [[z]]

ColorPoint [move : 〈〈y〉〉 setcolor : 〈〈z〉〉] ≤ [[ColorPoint]]

y = [move : 〈〈y〉〉 setcolor : 〈〈z〉〉]

z = [move : 〈〈y〉〉 setcolor : 〈〈z〉〉]

[[y]] ≤ 〈〈y〉〉{y}

[[z]] ≤ 〈〈z〉〉{z}

Circle [center : 〈〈Point〉〉] ≤ [[Circle]]

d = [center : 〈〈Point〉〉]

[[Point]] ≤ 〈〈Point〉〉{d}

ColorCircle [[Circle]] ≤ [[ColorCircle]]

[[Circle]] = e

[[Circle]] ≤ [center : [[ColorPoint.move.setcolor]]]

ColorPoint.move [[ColorPoint]] ≤ [move : 〈ColorPoint.move〉]

〈ColorPoint.move〉{[[ColorPoint]]} ≤ [[ColorPoint.move]]

ColorPoint.move.setcolor [[ColorPoint.move]] ≤ [setcolor : 〈ColorPoint.move.setcolor〉]

〈ColorPoint.move.setcolor〉{[[ColorPoint.move]]} ≤ [[ColorPoint.move.setcolor]]

29

ColorCircle.center [[ColorCircle]] ≤ [center : 〈ColorCircle.center〉]

〈ColorCircle.center〉{[[ColorCircle]]} ≤ [[ColorCircle.center]]

ColorCircle.center.move [[ColorCircle.center]] ≤ [move : 〈ColorCircle.center.move〉]

〈ColorCircle.center.move〉{[[ColorCircle.center]]} ≤ [[ColorCircle.center.move]]

In the left column are all occurrences of subterms of ColorCircle.center.move.
In the right column we show the constraints that are generated for each oc-
currence, according to the rules (6)–(14) in Section 4.

We denote this S-system by C. Choose

S = { 〈〈x〉〉, 〈〈y〉〉, 〈〈z〉〉,
〈ColorPoint.move〉, 〈ColorPoint.move.setcolor〉,
〈ColorCircle.center.move〉 } .

The S-system FS(C) looks as follows.
〈〈x〉〉 = selftype x ≤ [[x]]
〈〈y〉〉 = selftype [move : 〈〈x〉〉] ≤ [[Point]]
〈〈z〉〉 = selftype x = [move : 〈〈x〉〉]
〈ColorPoint.move〉 = selftype [[x]] ≤ x

〈ColorPoint.move.setcolor〉 = selftype y ≤ [[y]]
〈ColorCircle.center.move〉 = selftype z ≤ [[z]]
〈〈Point〉〉 ≤ [] [move : 〈〈y〉〉 setcolor : 〈〈z〉〉] ≤ [[ColorPoint]]
〈ColorCircle.center〉 ≤ [] y = [move : 〈〈y〉〉 setcolor : 〈〈z〉〉]
x ≤ [] z = [move : 〈〈y〉〉 setcolor : 〈〈z〉〉]
y ≤ [] [[y]] ≤ y

z ≤ [] [[z]] ≤ z

d ≤ [] [center : 〈〈Point〉〉] ≤ [[Circle]]
e ≤ [] d = [center : 〈〈Point〉〉]
[[x]] ≤ [] [[Point]] ≤ 〈〈Point〉〉
[[y]] ≤ [] [[Circle]] ≤ [[ColorCircle]]
[[z]] ≤ [] [[Circle]] = e

[[Point]] ≤ [] [[Circle]] ≤ [center : [[ColorPoint.move.setcolor]]]
[[ColorPoint.move.setcolor]] ≤ [] [[ColorPoint]] ≤ [move : 〈ColorPoint.move〉]
[[ColorCircle.center]] ≤ [] [[ColorPoint]] ≤ [[ColorPoint.move]]
[[ColorCircle.center.move]] ≤ [] [[ColorPoint.move]] ≤ [setcolor : 〈ColorPoint.move.setcolor〉]
[[ColorPoint]] ≤ [] [[ColorPoint.move]] ≤ [[ColorPoint.move.setcolor]]
[[ColorPoint.move]] ≤ [] [[ColorCircle]] ≤ [center : 〈ColorCircle.center〉]
[[Circle]] ≤ [] 〈ColorCircle.center〉 ≤ [[ColorCircle.center]]
[[ColorCircle]] ≤ [] [[ColorCircle.center]] ≤ [move : 〈ColorCircle.center.move〉]

[[ColorCircle.center]] ≤ [[ColorCircle.center.move]]

The constraint system FS(C) has the solution L where:

30

L(W) =







































selftype if W ∈ S

[move : selftype] if W ∈ { x, [[x]], [[Point]], 〈〈Point〉〉,
[[ColorPoint.move.setcolor]],
[[ColorCircle.center]],
〈ColorCircle.center〉,
[[ColorCircle.center.move]] }

[move : selftype setcolor : selftype] if W ∈ { y, [[y]], z, [[z]], [[ColorPoint]],
[[ColorPoint.move]] }

[center : [move : selftype]] if W ∈ { d, e, [[Circle]], [[ColorCircle]] }

In conclusion, if we annotate the two move methods and the setcolor method
with selftype as the return type, then the program is typable.

Notice that L does not assign selftype to 〈〈Point〉〉 and 〈〈ColorCircle.center〉〉.
If we define L′ such that it agrees with L except

L′(〈〈Point〉〉) = L′(〈〈ColorCircle.center〉〉) = selftype ,

then L′ is not a solution of C. To see this, notice the constraints

[center : 〈〈Point〉〉] ≤ [[Circle]]

[[Circle]] ≤ [[ColorCircle]]

〈ColorCircle.center〉{[[ColorCircle]]} ≤ [[ColorCircle.center]]

[[ColorCircle.center]] ≤ [move : 〈ColorCircle.center.move〉] .

From L′(〈ColorCircle.center〉) = selftype and the transitivity of ≤ we have
that L′ should satisfy

[center : selftype] ≤ [move : selftype] ,

which is impossible.

7 Conclusion

Throughout, we have considered a type system with recursive types. Our
constructions also work without recursive types (the details of checking this
are left to the reader). We have thus completed the following table.

Selftype Recursive types Subtyping Type inference√
O(n3) time, P-complete [14]√ √
O(n3) time, P-complete [14]√ √
NP -complete [this paper]√ √ √
NP -complete [this paper]

31

Acknowledgments We thank Mart́ın Abadi, Kim Bruce, and Luca Cardelli
for helpful discussions. We also thank the anonymous referees for many
insightful suggestions and comments. The first author was supported by
BRICS (Basic Research in Computer Science, Centre of the Danish National
Research Foundation). The second author was supported by NSF grant
CCR–9417382 and ONR Contract N00014–92–J–1310.

References

[1] Mart́ın Abadi and Luca Cardelli. A semantics of object types. In Proc.
LICS’94, Ninth Annual IEEE Symposium on Logic in Computer Sci-
ence, pages 332–341, 1994.

[2] Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Second-
order systems. In Proc. ESOP’94, European Symposium on Program-
ming, pages 1–25. Springer-Verlag (LNCS 788), 1994.

[3] Mart́ın Abadi and Luca Cardelli. A theory of primitive objects: Un-
typed and first-order systems. In Proc. TACS’94, Theoretical Aspects of
Computing Software, pages 296–320. Springer-Verlag (LNCS 789), 1994.

[4] Mart́ın Abadi and Luca Cardelli. An imperative object calculus. In Proc.
TAPSOFT’95, Theory and Practice of Software Development, pages
471–485. Springer-Verlag (LNCS 915), Aarhus, Denmark, May 1995.

[5] Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag,
1996.

[6] Kim B. Bruce. Safe type checking in a statically typed object-
oriented programming language. In Proc. POPL’93, Twentieth Annual
SIGPLAN–SIGACT Symposium on Principles of Programming Lan-
guages, pages 285–298, 1993.

[7] Kim B. Bruce, Jon Crabtree, Thomas P. Murtagh, Robert van Gent,
Allyn Dimock, and Robert Muller. Safe and decidable type checking
in an object-oriented language. In Proc. OOPSLA’93, ACM SIGPLAN
Eighth Annual Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 29–46, 1993.

32

[8] William Cook and Jens Palsberg. A denotational semantics of inher-
itance and its correctness. Information and Computation, 114(2):329–
350, 1994. Preliminary version in Proc. OOPSLA’89, ACM SIGPLAN
Fourth Annual Conference on Object-Oriented Programming Systems,
Languages and Applications, pages 433–443, New Orleans, Louisiana,
October 1989.

[9] My Hoang and John C. Mitchell. Lower bounds on type inference with
subtypes. In Proc. POPL’95, 22nd Annual SIGPLAN–SIGACT Sym-
posium on Principles of Programming Languages, pages 176–185, 1995.

[10] Bent B. Kristensen, Ole Lehrmann Madsen, Birger Møller-Pedersen, and
Kristen Nygaard. The BETA programming language. In Bruce Shriver
and Peter Wegner, editors, Research Directions in Object-Oriented Pro-
gramming, pages 7–48. MIT Press, 1987.

[11] Bertrand Meyer. Object-Oriented Software Construction. Prentice-Hall,
Englewood Cliffs, NJ, 1988.

[12] John C. Mitchell. Toward a typed foundation for method specialization
and inheritance. In Seventeenth Symposium on Principles of Program-
ming Languages, pages 109–124, 1990.

[13] John C. Mitchell, Furio Honsell, and Kathleen Fisher. A lambda calculus
of objects and method specialization. Nordic Journal of Computing,
1(1):3–37, 1994. Also in Proc. LICS’93, pp.26–38.

[14] Jens Palsberg. Efficient inference of object types. Information and Com-
putation, 123(2):198–209, 1995. Preliminary version in Proc. LICS’94,
Ninth Annual IEEE Symposium on Logic in Computer Science, pages
186–195, Paris, France, July 1994.

[15] Jens Palsberg and Michael I. Schwartzbach. Object-Oriented Type Sys-
tems. John Wiley & Sons, 1994.

[16] Jens Palsberg and Michael I. Schwartzbach. Static typing for object-
oriented programming. Science of Computer Programming, 23(1):19–53,
1994.

33

[17] Jerzy Tiuryn. Subtype inequalities. In LICS’92, Seventh Annual IEEE
Symposium on Logic in Computer Science, pages 308–315, 1992.

[18] Sergei Vorobyov. Structural decidable extensions of bounded quantifica-
tion. In Proc. POPL’95, 22nd Annual SIGPLAN–SIGACT Symposium
on Principles of Programming Languages, 1995.

34

