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Abstract

Many polyvariant program analyses have been studied in the 1990s,
including k-CFA, polymorphic splitting, and the cartesian product al-
gorithm. The idea of polyvariance is to analyze functions more than
once and thereby obtain better precision for each call site. In this pa-
per we present an equivalence theorem which relates a co-inductively-
defined family of polyvariant flow analyses and a standard type sys-
tem. The proof embodies a way of understanding polyvariant flow
information in terms of union and intersection types, and, conversely,
a way of understanding union and intersection types in terms of poly-
variant flow information. We use the theorem as basis for a new
flow-type system in the spirit of the λ

CIL-calculus of Wells, Dimock,
Muller, and Turbak, in which types are annotated with flow infor-
mation. A flow-type system is useful as an interface between a flow-
analysis algorithm and a program optimizer. Derived systematically
via our equivalence theorem, our flow-type system should be a good
interface to the family of polyvariant analyses that we study.
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1 Introduction

1.1 Background

Flow analysis of higher-order programs is done for a variety of reasons, in-
cluding: closure conversion [65], binding-time analysis [12], optimizing strict
functional programs [32], optimizing non-strict functional programs [23], op-
timizing object-oriented programs [53], optimizing concurrent programs [55],
safety checking [24, 50], and detecting uncaught exceptions [69]. A basic,
often-seen form of flow analyses can be done in O(n3) time where n is the
size of the program. This so-called monovariant form of analysis can be
varied in minor ways without changing the time complexity [28], and for
simplicity we will refer to all of these variations as 0-CFA. (CFA is an ab-
breviation introduced by Shivers [59]; it stands for “control-flow analysis”.)
A common observation is that 0-CFA is sometimes rather imprecise, result-
ing in, for example, little or no optimization. The key property of 0-CFA
is that each function is analyzed just once (or not at all, if the analysis is
demand-driven).

The idea of polyvariance is to analyze functions more than once and
thereby obtain better precision for each call site. Polyvariant analysis was
pioneered by Sharir and Pnueli [58], and Jones and Muchnick [36]. In the
1990s the study of polyvariant analysis has been intensive. Well known are
the k-CFA of Shivers [59], the poly-k-CFA of Jagannathan and Weeks [31],
the polymorphic splitting of Jagannathan and Wright [32], and the cartesian
product algorithm of Agesen [1, 2]. A particularly simple polyvariant analysis
was presented by Schmidt [57]. Frameworks for defining polyvariant analyses
have been presented by Stefanescu and Zhou [60], Jagannathan and Weeks
[31], and Nielson and Nielson [46]. Successful applications of polyvariant
analysis include the optimizing compilers of Emami, Ghiya, and Hendren
[22], Grove, DeFouw, Dean, and Chambers [25], the partial evaluator of
Consel [13], and the application extractor of Agesen and Ungar [3].

Is polyvariance related to polymorphism? This question is becoming in-
creasingly important for the many recent efforts to integrate flow analysis and
type systems, as pioneered by Tang and Jouvelot [61], Heintze [26], Banerjee
[9], and Wells, Dimock, Muller, and Turbak [66, 63, 19]. This line of work
builds on earlier ideas on integrating strictness information and type sys-
tems, as first done by Kuo and Mishra [39] and later by Wright [68], Amtoft
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[7], and others. Benefits of integrating flow analysis and type systems may
include: easy correctness proofs (Heintze [26]), faster flow analysis without
sacrificing precision (Heintze and McAllester [27]), a definition of a both
sound and complete flow analysis (Mossin [44]), and a simplified compiler
structure (Wells, Dimock, Muller, and Turbak [66]). Intuitively, polyvariant
analysis is closer to intersection types [14, 30, 35] and union types [54, 10]
than to universal and existential quantifiers [40], as observed by Banerjee [9],
Wells, Dimock, Muller, and Turbak [66], and others. The insight is that

• “analyzing a function a number of times” can be modeled by an inter-
section type; and

• “a set of abstract values” can be modeled by a union type.

In simple cases these effects can also be achieved via universal quantifiers,
for example, in binding-time analysis (Henglein and Mossin [29]). In general,
polyvariance seems to be a concept distinct from universal and existential
quantification. Further results on using universal quantifiers to achieve a form
of polyvariance have been presented by Jagannathan, Wright, and Weeks [33].

Our goal is a foundation for designing and understanding combinations
of flow analyses and type systems. This leads us to the following question:

Question: How does flow analysis relate to type systems?

Let us first examine the key differences between flow analyses and type
systems. Both may be understood as abstract interpretations, and the dis-
tinction between them lies mostly in how they are usually formulated:

Type System Flow Analysis
finitary may be infinitary
may analyze all code may avoid analyzing dead code
defined inductively may be defined co-inductively
may reject some programs works for all programs

A type system is usually defined using type rules. The rules inductively
define a set of valid type judgments. In the derivation of a valid type judg-
ment for a program, usually only finitely many types will be involved, and
usually all parts of the program will be analyzed. Moreover, for some type
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systems, there will be some “not type correct” programs for which no valid
type judgments exists. In contrast, it has recently been argued that flow
analyses can in a natural way be defined co-inductively [46]. The flow analy-
sis of a program may involve infinitely many abstract values, and often a form
of reachability is built in which avoids the analysis of dead code. Moreover,
there will usually be valid flow judgments for all programs.

When we attempt to relate flow analyses and type systems, we must find
a way of handling the four basic differences. In this paper we choose to do
that by letting the type systems “have it their way.” Following Nielson and
Nielson [46], we give a co-inductive definition of a family of flow analyses, and
then we restrict attention to flow judgments that can be proved using finitely
many abstract values, and which analyze all parts of a program. Moreover,
we enforce safety checks, e.g., checks that the flow set for the operator part
of a function application actually only contains abstract closures, thereby
making the augmented flow analysis accept and reject programs much like
a type checker. With the safety checks in place, we present a type system
which accepts exactly the safety-checkable programs. A similar agenda has
been carried out for 0-CFA by Palsberg and O’Keefe [49], and the related
type system turned out to be the one of Amadio and Cardelli [6] with sub-
typing and recursive types. Three more such results for restrictions of 0-CFA
have later been presented by Heintze [26]. (One of Heintze’s results was not
completely correct; see the paper by Palsberg [48] for a correct version of
that result.) The Amadio-Cardelli type system, in turn, is equivalent to a
form of constrained types [42, 43, 5, 21, 20], as shown by Palsberg and Smith
[51]. In this paper we address the above question for a family of polyvariant
flow analyses.

Let us next examine three of the main approaches to polyvariant flow
analysis. The best known approach may be that of using call-strings, that
is, finite approximations of the dynamic call chain, to differentiate calling
contexts. Examples of such analyses include k-CFA [59] and poly-k-CFA
[31]. A more recent approach to polyvariant analysis is the polymorphic
splitting of Jagannathan and Wright [32], which for a let-bound expression
does a separate analysis for each occurrence of the let-variable. Finally, the
cartesian product algorithm of Agesen [1, 2] will for a given function perform
a separate analysis for each possible static environment of the body.

Nielson and Nielson [46] model the call-string and polymorphic splitting
approaches using so-called mementa (sequences of labels and expressions) and
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mementa environments. We will focus on modeling the style of polyvariance
of the cartesian product algorithm. Our approach is to model a function by an
abstract closure which consists of the function and an abstract environment.
The call-string-oriented analyses, like k-CFA, cannot be expressed in our
framework. In addition to the cartesian product algorithm, our framework
can also model a flow analysis of Schmidt [57], and as a simple case also
0-CFA.

1.2 Our Family of Flow Analyses

Our family of polyvariant flow analyses is based on the notion of cover, as
explained in the following.

Suppose there is a call site where we want to abstractly apply a λ-
abstraction λx.e to a flow set s. If s ⊆ s′, then we may choose to analyze
the body e in an environment where x is bound to s′. If we make the choice
s′ for all call sites, then we effectively do just one analysis of the body e, no
matter how many other call sites there may be where λx.e can be invoked.
This is the approach of 0-CFA-style flow analysis [47], which is a form of
monovariant flow analysis.

In the situation just described, binding x to s′ is a rather conservative
choice. A polyvariant analysis may choose, at a given call site, to bind x

to the flow set s for the actual argument. If we make this choice for all
call sites, then we may get to analyze the body e in a number of different
environments, depending on the number of different flow sets for the actual
arguments. Notice that this number may be less than the number of call
sites where λx.e can be invoked, because two call sites may have arguments
with the same flow set. This is essentially the approach of the relational
closure analysis of Schmidt [57, Section 12]. This style of analysis was later
rediscovered by Grove, DeFouw, Dean, and Chambers [25] who called it
Simple Class Sets (SCS).

We can do a more fine-grained polyvariant analysis by breaking up the
flow set for the actual argument into singleton sets. The idea is to do an
analysis of the body e for each singleton set, and then take the union of the
results. If we make this choice for all call sites, then we may get to analyze
the body e in a number of different environments, depending on the number
of different values in the flow sets for the actual arguments. This is the
approach of the cartesian product algorithm of Agesen [1, 2].

6



To illustrate the differences among 0-CFA, Schmidt’s analysis, and Age-
sen’s analysis, suppose we have a program E, abstract values a1, a2, a3, and
two call sites occurring in E. Suppose also that at each of the call sites
we can invoke the λ-abstraction λx.e, and that the flow sets for the ac-
tual arguments are {a1, a2} and {a2, a3}, respectively. With 0-CFA, we will
do just one analysis of the body e in an environment where x is bound to
{a1, a2} ∪ {a2, a3} = {a1, a2, a3}. With Schmidt’s analysis, we will do two
analyses of the body e: one where x is bound to {a1, a2}, and one where x is
bound to {a2, a3}. With Agesen’s analysis, we will do three analyses of the
body e: one where x is bound to {a1}, one where x is bound to {a2}, and
one where x is bound to {a3}.

In Section 4, we describe a family of polyvariant flow analyses which
subsumes all of the above. The idea is that at a given call site, we will
for each function that can be invoked choose a cover of the flow set for the
actual argument, see Figure 1. A cover is a set of abstract-value sets. The
body of the function will then, at that call site, be analyzed one time for
each element of the cover. The analysis result for the call site is the union of
the results for the individual analyses. We can now summarize the ideas of
0-CFA, Schmidt’s analysis, and Agesen’s analysis in terms of how they cover
the flow set for an actual argument:

• 0-CFA. For a given function, the cover consists of a single set, see
the illustration in Figure 2. That set depends on which function we
consider. For a given function, the set is the union of the flow sets
for the actual arguments at the call sites where the function can be
applied.

• Schmidt’s analysis. The cover of a set of abstract values s is {s},
see the illustration in Figure 3.

• Agesen’s analysis. The cover of a set of abstract values s is { {a} |
a ∈ s }, see the illustration in Figure 4. Notice that if s = ∅, then the
cover is ∅.

We will define the family of flow analyses such that covers can be chosen
independently at different call sites. Thus, we do not require a uniform
covering strategy. This means that our definition captures adaptive styles
of flow analysis, in the spirit of [55], where the degree of polyvariance is
determined during the analysis.
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Figure 1: Cover the argument!
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Figure 2: 0-CFA.
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Figure 3: Schmidt’s analysis.

flow set for e2

e1 e2

Figure 4: Agesen’s analysis.
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Given a program E, we will define a function F which maps sets of flow
judgments to sets of flow judgments. The set of valid flow judgments is
then defined to be the greatest fixed point of F , and an F -analysis of E is
defined to be a prefixed point R of F (that is, R ⊆ F (R)) which contains
a flow judgment for E. Among the analyses captured in this way are those
of Agesen, Schmidt, and as a simple case also 0-CFA. This yields the first
formalization of an analysis in the style of Agesen.

One of the advantages of our definition is that it is flexible enough to
accommodate changes to the covering strategy. For example, Agesen in his
thesis [2] begins with explaining that his covering strategy is to use singleton
sets. Later, he observes that this leads to an uncomputable analysis, and
then he modifies the covering strategy to make the analysis computable.
Our definition of an F -analysis is free from algorithmic concerns. In general,
the set of valid flow judgments for a program is not decidable.

1.3 Our Result

We present an equivalence theorem which relates a co-inductively-defined
family of polyvariant flow analyses and a standard type system. The proof
embodies a way of understanding polyvariant flow information in terms of
union and intersection types, and, conversely, a way of understanding union
and intersection types in terms of polyvariant flow information. We use the

theorem as basis for a new flow-type system in the spirit of the λCIL-calculus
of Wells, Dimock, Muller, and Turbak, in which types are annotated with
flow information. A flow-type system is useful as an interface between a
flow-analysis algorithm and a program optimizer. Derived systematically via
our equivalence theorem, our flow-type system should be a good interface to
the family of polyvariant analyses that we study.

Specifically, we prove that a program can be safety-checked by an analysis
which is finitary (uses finitely many abstract values) and analyzes all parts
of the program if and only if the program can be typed in a type system with
intersection types, union types, subtyping, and recursive types.

To map flows to types, we (1) extract an equation system from the flow
information, (2) solve the equation system, and (3) build a type derivation.
The condition that the employed set of abstract values is finite ensures that
the equation system is finite. We map types to flows in a similar way.
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In slogan form, our result reads:

Polyvariance = Intersection Types + Union Types + Subtyping +
Recursive Types.

The slogan should be taken with a grain of salt: our notion of polyvariance
only covers some of the known approaches to polyvariance.

1.4 On Proving Correctness

We will define a language and equip it with a type system, a family of flow
analyses, and a combined flow-type system. In this section we will discuss our
choice of semantics for the language and its impact on proofs of correctness.

For each of (1) type systems, (2) flow analyses, and (3) flow-type systems
it is of interest to prove type/flow preservation, that is, type/flow informa-
tion is still valid after a number of computation steps. Moreover, for type
systems and flow-type systems we want to establish type soundness, that is,
a typable program cannot go wrong. For a flow analysis, we want to estab-
lish flow soundness, that is, e.g., if a program evaluates to a function, then
that function is represented in the flow information for the program. Usu-
ally, type/flow preservation can be used as a lemma for proving type/flow
soundness.

When attempting to prove the listed properties, the key question is: what
is the style of semantics for the language? We will discuss three of the possi-
ble choices: 1) small-step operational semantics with syntactic substitution,
2) small-step operational semantics with environments, and 3) big-step op-
erational semantics with environments.

Small-step operational semantics with syntactic substitution. This
is the style of semantics used in, for example, [11]. It is convenient for proving
type preservation and type soundness, both for type systems and flow-type
systems, as will be exemplified in Sections 3, 7. It has also been used to prove
flow preservation for a 0-CFA-style flow analysis [47]. Unfortunately, it is
problematic to use this style of semantics to prove flow preservation for the
polyvariant flow analysis we study here. As will be exemplified in Section 4,
our family of flow analyses does not have the flow preservation property with
respect to a standard small-step semantics with syntactic substitution. We
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know of no way of changing the definition of the polyvariant flow analysis such
that flow preservation can be proved with respect to this style of semantics.

Small-step operational semantics with environments. This is also
known as Plotkin-style operational semantics [56]. It has been used by Niel-
son and Nielson [46] to prove flow preservation for a parameterized poly-
variant flow analysis. Can this style of semantics also be used to prove flow
preservation for our analysis? We think the answer may be ’yes’, but we have
not pursued it. The reason is that it seems problematic to use this style of
semantics to prove type preservation for our type system.

Big-step operational semantics with environments. This is also known
as natural semantics [37, 18]. In contrast to the two styles of semantics dis-
cussed above, it cannot handle nonterminating programs. It has been used
by Palsberg and Schwartzbach [50] and by Schmidt [57] to prove correctness
theorems for some flow analyses. Milner and Tofte [41] showed how to use
it to prove type soundness for a type system. Their proof uses co-induction.
We have not tried to use this style of semantics because we want to be able
to handle nonterminating programs.

In summary, each of the three styles of semantics are problematic for our
purposes. One alternative approach would be to have two semantics, and
then 1) use one semantics for proving type preservation, 2) use another se-
mantics for proving flow preservation, and 3) prove that the two semantics
agree. Although this may be doable, we will not pursue it here.

We have chosen to use a small-step operational semantics with syntactic
substitution. With respect to that semantics we will prove type preservation
and type soundness for the type system (Section 3) and the flow-type system
(Section 7). For the pure flow analysis, we will settle for a more coarse-grained
and less powerful correctness result. This correctness result will be obtained
via the equivalence with the type system (Section 5) in the following way.
For a program which is safety-checkable with a finitary polyvariant analysis
which analyzes all parts of the program, we have that the program is typable
in our type system. Since we have type soundness for the type system, it
follows that the program cannot go wrong.
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1.5 Open Problems

Among the future work and open problems are:

• Define a semantics, a type system, and a polyvariant flow analysis in
such a way that type/flow preservation and type/flow soundness all can
be proved.

• Implement and experiment with the translation from flows to types.

• Provide a type inference algorithm for a large subset of our type system,
perhaps a “rank 2” fragment in the spirit of Jim [35]. Our type system
with intersection and union types is more generous than usually found
in papers on type inference with intersection types [15, 64, 34, 9].

• Prove a principal flow property for our family of flow analyses, in the
spirit of the result by Nielson and Nielson [46].

• Extend the results to a combination of our framework and the frame-
work of Nielson and Nielson.

• Prove an equivalence which is based on that the flow analyses “have
it their way,” to as large extent as possible. For example, this entails
working with a type system which avoids type checking dead code.

• Obtain our type rules systematically using the method of Cousot [17].

Paper Outline In the remainder of this section we illustrate our result by
an example. In Section 2 we define an example language, in Section 3 we
define our type system, in Section 4 we present our family of polyvariant flow
analyses, and in Section 5 we prove our equivalence result. In Section 6 we
illustrate how different flow analyses lead to different typings, and in Section
7 we define our flow-type system.

1.6 Example

The running example of this paper is the following program

E = (λf.succ ((ff)0)) (if0 c (λx.x) (λy.λz.z)) .
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This example is chosen because it requires a rather powerful polyvariant
analysis to produce better flow information than 0-CFA. We assume that
the condition c of the if0-expression does not cause any run-time error. If
c terminates and one of the branches is passed to λf.succ ((ff)0), then the
result of (ff) will be the identity function, and the result of evaluating the
whole body will be succ 0. No run-time errors!

Notice also that a safety check based on 0-CFA fails. The 0-CFA flow
information for the if0-expression is s = { λx.x, λy.λz.z }. The flow in-
formation for (ff) will now contain all possible results of applying an ele-
ment of s to an element of s. There are 2 × 2 combinations. The result is
{ λx.x, λz.z, λy.λz.z }. When we then flow analyze (ff)0, we get the flow
information { Int, λz.z }. The safety check for succ ((ff)0) requires that the
flow information for the argument of succ is a subset of {Int} so the safety
check fails. This implies that the program is not typable in the type system
with subtyping and recursive types of Amadio and Cardelli [6], using the
equivalence of Palsberg and O’Keefe [49].

A safety check based on Schmidt’s analysis also fails, for essentially the
same reason that a safety check based on 0-CFA fails.

The problems encountered above during type checking and safety check-
ing are similar. The types/flows for λx.x and λy.λz.z are combined, and later
we cannot get sufficiently precise information about the result of (ff). Age-
sen’s polyvariant analysis improves the situation by enabling separate analy-
ses of two copies of λf.succ ((ff)0), one for each element of { λx.x, λy.λz.z }.
For both copies, the safety check succeeds, so the conclusion is that E does
not cause any run-time error. In Sections 4 and 5 we give full details of ap-
plying an Agesen-style analysis to the example program, and of mapping the
flows to types. Here, we outline how the types obtained that way do indeed
yield a type derivation for the program.

The effect of polyvariant analysis can be obtained in a type system by
a combination of intersection types, union types, subtyping, and recursive
types. For the program E,

1. we check that λx.x has some type σ, and that λy.λz.z has some type
τ , and then we get that the if0-expression has the union type (σ ∨ τ),
and

2. we check that λf.succ ((ff)0) has the types σ → Int and τ → Int, and
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then we combine these types as an intersection type (σ → Int) ∧ (τ →
Int),

3. we have

(σ → Int) ∧ (τ → Int) ≤ (σ ∨ τ) → Int ,

so the standard rule for function application gives that E has type Int.

Here follow details of how to do the first two of these steps. Good choices of
σ and τ are:

σ = µα.((Int → Int) ∧ (α → α))

τ = µβ.(β → (Int → Int)) .

These two types are not found by clever guessing; rather we first performed
an Agesen-style analysis, see Section 4, and then we mapped the obtained
flows to types, see Section 5. The resulting types for λx.x and λy.λz.z are
σ and τ , respectively. Notice that these recursive types satisfy the equations
σ = (Int → Int) ∧ (σ → σ) and τ = τ → (Int → Int). By type checking λx.x
twice we see that it has type σ, and by analyzing λy.λz.z just once, we see
that it has type τ . Now let us type check λf.succ ((ff)0) twice, and let us
use subtyping to do that. First we want to derive f : σ ` ff : Int → Int.
The type derivation is:

f : σ ` f : σ

f : σ ` f : σ → σ
f : σ ` f : σ

f : σ ` ff : σ

f : σ ` ff : Int → Int

where we have used that

σ = (Int → Int) ∧ (σ → σ) ≤ σ → σ

σ = (Int → Int) ∧ (σ → σ) ≤ Int → Int .

Second we want to derive f : τ ` ff : Int → Int. The type derivation is:

f : τ ` f : τ → (Int → Int) f : τ ` f : τ

f : τ ` ff : Int → Int

14



where we have used that τ = τ → (Int → Int). It is now straightforward to
derive ∅ ` λf.succ ((ff)0) : (σ → Int)∧ (τ → Int). Conclusion: E is typable.

Alternative choices of σ and τ are:

σ = (Int → Int) ∧ ((Int → Int) → (Int → Int))

τ = (Int → Int → Int) ∧ ((Int → Int → Int) → Int → Int) .

Notice that these types are not recursive. It remains open if there is a way of
mapping the flow information from the Agesen-style analysis to these types.
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2 The Example Language

Our example language is a set of labeled λ-terms, defined by the following
grammar which is in the style of Nielson and Nielson [46]:

e ∈ Exp (labeled terms)

e ::= tl

t ∈ Term (unlabeled expressions)

t ::= x | λx.e | e1e2 | c | succ e | if0 e1 e2 e3

l ∈ Lab (infinite set of labels)

x ∈ Var (infinite set of variables)

c ∈ IntegerConstant

A program is a closed expression. Let Abs denote the set of elements of Exp of
the form (λx.e)l, and let LabelledIntegerConstant denote the set of elements
of Exp of the form cl. A value is an element of Abs∪LabelledIntegerConstant.
We use v to range over values. We use dce to denote the integer represented
by an integer constant c. A small-step call-by-value operational semantics
for the language is given by the reflexive, transitive closure of the relation
→V :

→V ⊆ Exp × Exp

((λx.e)l1 v)l →V e[x := v] (1)

e1 →V e3

(e1e2)l →V (e3e2)l
(2)

e2 →V e4

(v e2)l →V (v e4)l
(3)

(succ cl11 )l →V cl2 (dc2e = dc1e + 1) (4)

e1 →V e2

(succ e1)l →V (succ e2)l
(5)

(if0 cl1 e2 e3)
l →V e2 (dce = 0) (6)

(if0 cl1 e2 e3)
l →V e3 (dce 6= 0) (7)
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e1 →V e4

(if0 e1 e2 e3)l →V (if0 e4 e2 e3)l
(8)

The notation e[x := e′] denotes e with every free occurrence of x substituted
by e′:

xl[x := e′] ≡ e′

yl[x := e′] ≡ yl (x 6≡ y)

(λx.e1)
l[x := e′] ≡ (λx.e1)

l

(λy.e1)
l[x := e′] ≡ (λz.((e1[y 7→ z])[x := e′]))l (x 6≡ y and z is fresh)

(e1 e2)
l[x := e′] ≡ ((e1[x := e′]) (e2[x := e′]))l

cl[x := e′] ≡ cl

(succ e1)
l[x := e′] ≡ (succ (e1[x := e′]))l

(if0 e1 e2 e3)
l[x := e′] ≡ (if0 (e1[x := e′]) (e2[x := e′]) (e3[x := e′]))l

where, for a fresh variable z, the notation e[y 7→ z] denotes e with every free
occurrence of y renamed to z:

yl[y 7→ z] ≡ zl

xl[y 7→ z] ≡ xl (x 6≡ y)

(λy.e1)
l[y 7→ z] ≡ (λy.e1)

l

(λx.e1)
l[y 7→ z] ≡ (λx.(e1[y 7→ z]))l (x 6≡ y)

(e1 e2)
l[y 7→ z] ≡ ((e1[y 7→ z]) (e2[y 7→ z]))l

cl[y 7→ z] ≡ cl

(succ e1)
l[y 7→ z] ≡ (succ (e1[y 7→ z]))l

(if0 e1 e2 e3)
l[y 7→ z] ≡ (if0 (e1[y 7→ z]) (e2[y 7→ z]) (e3[y 7→ z]))l.

It is convenient to define substitution and renaming separately because sub-
stitution changes both the name and label of xl (the rule xl[x := e′] ≡ e′)
whereas renaming preserves the label (the rule yl[y 7→ z] ≡ zl).

Lemma 2.1 If e is closed, and e→V e′, then e′ is closed.

Proof. This is a well-known lemma for λ-calculi where the λ-terms are un-
labeled, see [11]. The proof is by induction on the structure of the derivation
of e→V e′. We omit the details. 2
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An expression e is stuck if and only if it is not a value and there is
no expression e′ such that e →V e′. A program goes wrong if and only if
it evaluates to a stuck expression. Examples of stuck expressions include
(cl1v)l, (succ (λx.e)l1)l, and (if0 (λx.e)l1 e2 e3)

l. Intuitively, these expressions
are stuck because c is not a function, succ cannot be applied to functions,
and λx.e is not an integer.

Notice that variables are not values. This is because our programs are
closed expressions, and because we allow β-reduction only outside the bodies
of λ-abstractions. If β-reduction is allowed in the body of λ-abstractions,
then the operand-part of a β-redex can be open, even though the whole
program is closed. For example, in (λx.((λy.y1)2x3)4)5, the operand-part
of ((λy.y)2x3)4 is a variable. In such a setting, it would be natural to let
variables be values.

We chose to work with a call-by-value operational semantics because we
can prove that types are preserved during evaluation. It has been observed
by Barbanera, Dezani-Ciancaglini, and de’Liguoru [10], and also by Wells,
Dimock, Muller, and Turbak [66] that in some type systems with intersec-
tion and union types, types are not preserved by more general notions of
reduction.
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3 The Type System

The goal of this section is to define and prove the correctness of the type
system T≤1

. We will do that in two steps. First we define a type system T≤

which is parameterized by a type ordering ≤. We prove that if ≤ is acceptable,
then a program typable in T≤ cannot go wrong (Corollary 3.9). Second we
define the type ordering ≤1 and prove that it is acceptable (Theorem 3.12).

3.1 Terms

Following [38], we give a general definition of (possibly infinite) terms over an
arbitrary finite ranked alphabet Σ. Such terms are essentially labeled trees,
which we represent as partial functions labeling strings over ω (the natural
numbers) with elements of Σ.

Let Σn denote the set of elements of Σ of arity n. Let ω denote the set
of positive natural numbers and let ω∗ denote the set of finite-length strings
over ω.

A term over Σ is a partial function

t : ω∗ → Σ

with domain D(t) satisfying the following properties:

• D(t) is nonempty and prefix-closed;

• if t(α) ∈ Σn, then {i | αi ∈ D(t)} = {1, 2, . . . , n}.

Let t be a term and α ∈ ω∗. Define the partial function t ↓α : ω∗ → Σ
by

t↓α(β) = t(αβ) .

If t↓α has nonempty domain, then it is a term, and is called the subterm of
t at position α.

A term t is said to be regular if it has only finitely many distinct subterms;
i.e., if {t↓α | α ∈ ω∗} is a finite set. Courcelle [16] showed that t is regular
if and only if t can be described by a finite set of equations involving the µ
operator.
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3.2 Types

In this subsection we define a set of types, where each type is of one of the
forms:

∨

i∈I

∧

k∈K

(σik → σ′
ik)

(
∨

i∈I

∧

k∈K

(σik → σ′
ik)) ∨ Int.

In the case of I = ∅, the first form can be simplified to ⊥, and the second
form can be simplified to Int. We will also define a notion of type equality for
such types. We use the style of definition used by Palsberg and Zhao [52].

A type is a regular term over the ranked alphabet

Σ = {Int,⊥,→} ∪ {∧n, n ≥ 2} ∪ {∨n, n ≥ 2},

where Int,⊥ are nullary, → is binary, and ∨n,∧n are of n-ary.
We impose the restrictions that given a type σ and a path α, if σ(α) = ∨n,

then σ(αi) ∈ {Int,⊥,→} ∪ {∧n, n ≥ 2}, for all i ∈ {1..n}, and if σ(α) = ∧n,
then σ(αi) =→, for all i ∈ {1..n}.

Given a type σ, if σ(ε) =→, σ(1) = σ1, and σ(2) = σ2, then we write
the type as σ1 → σ2. If σ(ε) = ∧n and σ(i) = σi ∀i ∈ {1, 2, . . . , n}, then we
write the type σ as ∧n

i=1σi. If σ(ε) = ∨n and σ(i) = σi ∀i ∈ {1, 2, . . . , n},
then we write the type σ as ∨n

i=1σi. If σ(ε) = ⊥, then we write the type as
⊥. If σ(ε) = Int, then we write the type as Int.

The set of types is denoted Type. We use δ, σ, τ to range over types. We
define the set of intersection types to be a subset of Type:

IntersectionType = { σ ∈ Type | σ(ε) = ∧n, for some n, or σ(ε) =→ }.

We use T to range over intersection types. We will use Int as the type
of integer constants, and we will use intersection types as the types of λ-
abstractions. We use u to range over {Int} ∪ IntersectionType.

Intuitively, our restrictions mean that neither union types nor intersection
types can be immediately nested, that is, one cannot form a union type one
of whose immediate components is again a union type, and similarly for
intersection types. We impose this restriction for two reasons:

1. it effectively rules out infinite intersection and union types, and
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2. it ensures that types are in a “normal form” with respect to associa-
tivity and commutativity, that is, the issues of associativity and com-
mutativity are reduced to a matter of the order of the components in
a ∧n

i=1σi type and a ∨n
i=1σi type.

We now define type equality. A relation R is called a bisimulation if it
satisfies the following six conditions:

1. If (∨n
i=1σi,∨

m
j=1τj) ∈ R, then

• for all i ∈ {1..n}, where σi(ε) 6= ⊥: there exists j ∈ {1..m} :
(σi, τj) ∈ R, and

• for all j ∈ {1..m}, where τj(ε) 6= ⊥, there exists i ∈ {1..n} :
(σi, τj) ∈ R.

2. If τ(ε) ∈ {Int,⊥,→} ∪ {∧m, m ≥ 2}, and (∨n
i=1σi, τ) ∈ R, then,

• for all i ∈ {1..n}, where σi(ε) 6= ⊥: (σi, τ) ∈ R, and

• if τ(ε) 6= ⊥, then there exists i ∈ {1..n} : (σi, τ) ∈ R.

3. If τ(ε) ∈ {Int,⊥,→} ∪ {∧m, m ≥ 2}, and (τ,∨n
i=1σi) ∈ R, then,

• for all i ∈ {1..n}, where σi(ε) 6= ⊥: (τ, σi) ∈ R, and

• if τ(ε) 6= ⊥, then there exists i ∈ {1..n} : (τ, σi) ∈ R.

4. If (∧n
i=1σi,∧

n
j=1τj) ∈ R, then there exists a bijection t : {1..n} → {1..n}

such that for all i ∈ {1..n} : (σi, τt(i)) ∈ R.

5. If (σ1 → σ2, τ1 → τ2) ∈ R, then (σ1, τ1) ∈ R and (σ2, τ2) ∈ R.

6. If (σ, τ) ∈ R, then either

σ = τ = ⊥

σ = τ = Int

σ(ε) = τ(ε) =→

σ(ε) = τ(ε) = ∧n

σ(ε) = ∨n, or

τ(ε) = ∨n.
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Bisimulation are closed under union, therefore, there exists a largest bisimu-
lation

E =
⋃
{ R | R is a bisimulation}.

The set E is our notion of type equality. We may apply the principle of co-
induction to prove that two types are related in E , that is, to show (σ, τ) ∈ E ,
it is sufficient to find a bisimulation R such that (σ, τ) ∈ R.

Theorem 3.1 The following assertions are true:

• E is a congruence relation,

• if ∧n
i=1σi is a type and t : {1..n} → {1..n} is a bijection, then (∧n

i=1σi,∧
n
i=1σt(i)) ∈

E , and

• if ∨n
i=1σi is a type and t : {1..n} → {1..n} is a bijection, then (∨n

i=1σi,∨
n
i=1σt(i)) ∈

E .

Proof. By co-induction, we omit the details. 2

Type equality as defined by E can be decided in polynomial time. The
case without union types is covered by the algorithm of Palsberg and Zhao
[52], and it is straightforward to extend their algorithm to handle our notion
of union types, we omit the details.

We use I, J to range over finite and possibly empty index sets. We use
K to range over finite and nonempty index sets. From Theorem 3.1 we have
that for type equality the ordering of the components is not important when
considering intersection and union types. So, we will use the notation

∧

k∈K

σk

∨

i∈I

σi

to denote intersection types and union types where the orderings of the com-
ponents are left unspecified. By convention, if K is a singleton set, say
K = {k0}, then

∧
k∈K σk denotes σk0

. Similarly, if I is a singleton set, say
I = {i0}, then

∨
i∈I σi denotes σi0 . Moreover, if I = ∅, then

∨
i∈I σi denotes

⊥.
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We will use the notation
n∧

k=1

(σk → σ′
k) ≡ (σ1 → σ′

1) ∧ . . . ∧ (σn → σ′
n)

n∨

i=1

σi ≡ σ1 ∨ . . . ∨ σn.

For union types, we will even go a bit further and allow a notation where the
binary ∨ is applied to two types that may be union types. This should be
seen as a shorthand for a “flattened” type that satisfies the restriction that
union types cannot be nested. It is straightforward to show, by co-induction,
that

σ ∨ ⊥ = ⊥ ∨ σ = σ ∨ σ = σ.

3.3 Type Orderings

Pierce studied type orderings on intersection and union types [54]. Here we
begin by stating conditions on type orderings which will be sufficient to prove
type soundness. Later we will give examples of type orderings which satisfy
the conditions.

Definition 3.2 (Acceptable Type Orderings) We say that an ordering
≤ on types is acceptable if and only if ≤ satisfies the five conditions:

1. ≤ is reflexive,

2. ≤ is transitive,

3. if
∧

k∈K(σk → σ′
k) ≤ (τ1 → τ2), and u ≤ τ1, then there exists k0 ∈ K

such that u ≤ σk0
and σ′

k0
≤ τ2,

4.
∧

k∈K(σk → τk) 6≤ Int, and

5. Int 6≤ σ → τ .

2

For example, the identity relation on types is an acceptable type ordering. If
≤ is an acceptable type ordering, and σ ≤ τ then we say that “σ is a subtype
of τ”.
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3.4 Type Rules

If F is a partial function from D1 to a set D2, and d ∈ D1, then F [x :
d] denotes a partial function which maps x to d, and maps y, where y 6=
x, to F(y). If F is a partial function, then dom(F) denotes the set of
points on which F is defined. We use ∅ to denote the partial function for
which dom(∅) = ∅. We use ↪→ to denote the constructor of spaces of partial
functions with finite domain.

Define

A ∈ TypeEnv = Var ↪→ Type
TypeJudgment = TypeEnv × Exp × Type.

A type environment is a partial function from variables to types. A type
judgment is a triple which will be written A ` e : τ . Intuitively, such a type
judgment indicates that in the type environment A, the expression e has type
τ .

We now define a type system T≤ which is parameterized by a type ordering
≤. Given a type ordering ≤, we will inductively define a set of valid type
judgments. We write T≤ . A ` e : τ if and only if the judgment A ` e : τ
follows by Rules (9)–(15), where all applications of Rule (15) use the ordering
≤.

A[x : τ ] ` xl : τ (9)

∀k ∈ K : A[x : σk] ` e : τk
A ` (λx.e)l :

∧
k∈K(σk → τk)

(10)

A ` e1 : σ → τ A ` e2 : σ

A ` (e1e2)l : τ
(11)

A ` cl : Int (12)

A ` e : Int

A ` (succ e)l : Int
(13)

A ` e1 : Int A ` e2 : τ A ` e3 : τ

A ` (if0 e1 e2 e3)l : τ
(14)
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A ` e : σ

A ` e : τ
(σ ≤ τ) (15)

Rule (10) is unusual because it assigns a λ-abstraction an intersection of
function types rather than a single function type.

We say that e is typable in T≤ if and only if there exist A, τ such that
T≤ . A ` e : τ .

3.5 Correctness

We will now prove that for an acceptable type ordering ≤, a program typable
in T≤ cannot go wrong. We use the proof technique of Nielson [45] and others
that was popularized by Wright and Felleisen [67].

Lemma 3.3 (Strengthening) If T≤ .A[x : σ] ` e : τ , and x does not occur
free in e, then T≤ . A ` e : τ .

Proof. The proof is by a straightforward induction on the structure of
the derivation of A[x : σ] ` e : τ . We omit the details. 2

Lemma 3.4 (Renaming) If T≤ .A[x : σ] ` e : τ , and z does not occur free
in e, then T≤ . A[z : σ] ` e[x 7→ z] : τ in such a way that the two derivations
are of the same height.

Proof. The proof is by a straightforward induction on the structure of
the derivation of A[x : σ] ` e : τ . We omit the details. 2

Lemma 3.5 (Substitution) If T≤ . A[x : σ] ` e : τ and T≤ . A ` e′ : σ,
then T≤ . A ` e[x := e′] : τ .

Proof. We proceed by induction on the height of the derivation of A[x :
σ] ` e : τ . There are now seven subcases depending on which one of Rules
(9)–(15) was the last one used in the derivation of A[x : σ] ` e : τ .

• Rule (9). We have e ≡ yl. There are two subcases.

– x ≡ y. We have yl[x := e′] ≡ e′. The whole derivation of A[x :
σ] ` e : τ is of the form

A[y : τ ] ` yl : τ

so σ = τ , and therefore the desired conclusion is identical to the
second hypothesis.
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– x 6≡ y. We have yl[x := e′] ≡ yl. The whole derivation of A[x :
σ] ` e : τ is of the form

A′[y : τ ][x : σ] ` yl : τ,

where A = A′[y : τ ], and from Rule (9) we derive A′[y : τ ] ` yl : τ .

• Rule (10). We have e ≡ (λy.e1)
l. There are two subcases.

– x ≡ y. We have (λy.e1)
l[x := e′] ≡ (λy.e1)

l. Since x does not
occur free in (λy.e1)

l, we can from the derivation of A[x : σ] `
(λy.e1)

l : τ and Lemma 3.3 produce a derivation of A ` (λy.e1)
l :

τ .

– x 6≡ y. We have (λy.e1)
l[x := e′] ≡ (λz.((e1[y 7→ z])[x := e′]))l,

where z is fresh. The last step in the derivation of A[x : σ] ` e : τ
is of the form

∀k ∈ K : A[x : σ][y : σk] ` e1 : τk
A[x : σ] ` (λy.e1)l :

∧
k∈K(σk → τk)

For all k ∈ K, from the derivation of A[x : σ][y : σk] ` e1 : τk,
and Lemma 3.4, we can produce a derivation of A[x : σ][z : σk] `
e1[y 7→ z] : τk of the same height. From the induction hypothesis
we have that we can derive A[z : σk] ` e1[y 7→ z][x := e′] : τk, so
from Rule (10) we can derive A ` (λz.((e1[y 7→ z])[x := e′]))l :∧

k∈K(σk → τk).

• Rule (11). We have e ≡ (e1 e2)
l, and (e1 e2)

l[x := e′] ≡ ((e1[x :=
e′]) (e2[x := e′]))l. The last step in the derivation of A[x : σ] ` e : τ is
of the form

A[x : σ] ` e1 : τ2 → τ A[x : σ] ` e2 : τ2
A[x : σ] ` (e1 e2)l : τ

From the induction hypothesis we have that we can derive A ` e1[x :=
e′] : τ2 → τ and A ` e2[x := e′] : τ2, and from Rule (11) we can derive
A ` ((e1[x := e′]) (e2[x := e′]))l : τ .

• Rule (12). We have e ≡ cl, and cl[x := e′] ≡ cl. The last step in the
derivation of A[x : σ] ` e : τ is of the form

A[x : σ] ` cl : Int
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and from Rule (12) we can derive A ` cl : Int.

• Rule (13), Rule (14), Rule (15). Each of these cases is similar to the
case of Rule (11). We omit the details.

2

We will say that a type derivation is in canonical form if and only if
each application of Rules (9)–(14) is followed by exactly one application
of Rule (15), possibly except the last application of one of Rules (9)–(14).
Notice that if a type derivation is in canonical form, then all its subtrees
are also in canonical form. For a reflexive and transitive type ordering ≤,
if we have a type derivation of A ` e : τ , then we can transform it into a
canonical-form derivation of A ` e : τ .

Theorem 3.6 (Type Preservation) For an acceptable type ordering ≤, if
T≤ . A ` e : τ and e→V e′, then T≤ . A ` e′ : τ .

Proof. It is sufficient to show the result for all canonical-form derivations
of A ` e : τ . We proceed by induction on the structure of the derivation of
A ` e : τ . There are now seven subcases depending on which one of Rules
(9)–(15) was the last one used in the derivation of A ` e : τ .

• Rule (9). We have e ≡ xl, so e→V e′ is not possible.

• Rule (10). We have e ≡ (λx.e1)
l, so e→V e′ is not possible.

• Rule (11). We have e ≡ (e1e2)
l. There are now three subcases de-

pending on which one of Rules (1)–(3) was the last one used in the
derivation of e→V e′.

– Rule (1). We have e ≡ ((λx.e1)
l1v)l and e′ ≡ e1[x := v]. The last

part of the derivation of A ` e : τ is of the form

∀k ∈ K : A[x : σk] ` e1 : τk
A ` (λx.e1)l1 :

∧
k∈K(σk → τk)

A ` (λx.e1)l1 : σ → τ

A ` v : u

A ` v : σ

A ` ((λx.e1)l1v)l : τ

where
∧

k∈K(σk → τk) ≤ σ → τ and u ≤ σ. From Definition 3.2
(condition 3) we have that there exists k0 ∈ K such that u ≤ σk0
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and τk0
≤ τ . From A ` v : u and u ≤ σk0

and Rule (15) we derive
A ` v : σk0

. From Lemma 3.5, A[x : σk0
] ` e1 : τk0

, and A ` v : σk0

we derive A ` e1[x := v] : τk0
. From Rule (15) and τk0

≤ τ , we
can finally derive A ` e1[x := v] : τ .

– Rules (2)–(3). In each case a derivation of A ` e′ : τ is provided
by the induction hypothesis and Rule (11).

• Rule (12). We have e ≡ cl, so e→V e′ is not possible.

• Rule (13). We have e ≡ (succ e1)
l. There are now two subcases de-

pending on which one of Rules (4)–(5) was the last one used in the
derivation of e→V e′.

– Rule (4). We have e ≡ (succ cl11 )l and e′ ≡ cl2, where dc2e =
dc1e + 1. The last type judgment in the derivation of A ` e : τ
is of the form A ` (succ cl11 )l : Int, and from Rule (12) we derive
A ` cl2 : Int.

– Rule (5). We have e ≡ (succ e1)
l and e′ ≡ (succ e2)

l, and e1 →V e2.
The last part of the derivation of A ` e : τ is of the form

A ` e1 : Int

A ` (succ e1)l : Int

The induction hypothesis provides a derivation of A ` e2 : Int,
and from Rule (13) we derive A ` (succ e2)

l : Int.

• Rule (14). We have e ≡ (if0 e1 e2 e3)
l. There are now three subcases

depending on which one of Rules (6)–(8) was the last one used in the
derivation of e →V e′. In each case A ` e′ : τ is easily derived using
the induction hypothesis.

• Rule (15). The last part of the derivation of A ` e : τ is of the form

A ` e : σ

A ` e : τ
(σ ≤ τ)

and from A ` e : σ, the induction hypothesis provides a derivation of
A ` e′ : σ. From this and Rule (15) we derive A ` e′ : τ .

2
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Lemma 3.7 For an acceptable type ordering ≤, if T≤ .A ` v : Int, then v is
of the form cl; and if T≤ . A ` v : σ → τ , then v is of the form (λx.e)l.

Proof. Suppose first that we have a canonical-form derivation of A ` v :
Int. If v ≡ (λx.e)l, then the last part of the derivation of A ` v : Int is of the
form

A ` (λx.e)l :
∧

k∈K(σk → τk)

A ` (λx.e)l : Int

where
∧

k∈K(σk → τk) ≤ Int. From Definition 3.2 (condition 4) we have that
this is impossible, so the assumption that v ≡ (λx.e)l is wrong, and hence v
is must be of the form cl.

Suppose then that we have a canonical-form derivation of A ` v : σ → τ .
If v ≡ cl, then the last part of the derivation of A ` v : σ → τ is of the form

A ` cl : Int

A ` cl : σ → τ

where Int ≤ σ → τ . From Definition 3.2 (condition 5) we have that this is
impossible, so the assumption that v ≡ cl is wrong, and hence v is must be
of the form (λx.e)l. 2

The following lemma states that a typable program is not stuck.

Lemma 3.8 (Progress) For an acceptable type ordering ≤, if e is a closed
expression, and T≤ .A ` e : τ , then either e is a value, or there exists e′ such
that e→V e′.

Proof. We proceed by induction on the structure of the derivation of
A ` e : τ . There are now seven subcases depending on which one of Rules
(9)–(15) was the last one used in the derivation of A ` e : τ .

• Rule (9). We have e ≡ x, and x is not closed.

• Rule (10). We have e ≡ (λx.e1)
l, so e is a value.

• Rule (11). We have e ≡ (e1e2)
l. We have that e is closed, so also e1, e2

are closed. The last step in the derivation of A ` e : τ is of the form

A ` e1 : σ → τ A ` e2 : σ

A ` (e1e2)l : τ

29



From the induction hypothesis we have that (1) either e1 is a value, or
there exists e′1 such that e1 →V e′1 and (2) either e2 is a value, or there
exists e′2 such that e2 →V e′2. We proceed by case analysis.

– If there exists e′1 such that e1 →V e′1, then (e1e2)
l →V (e′1e2)

l by
Rule (2).

– If e1 is a value, and there exists e′2 such that e2 →V e′2, then
(e1e2)

l →V (e1e
′
2)

l by Rule (3).

– If e1, e2 are values, then from A ` e1 : σ → τ and Lemma 3.7 we
have that e1 is of the form λx.e3, and hence (e1e2)

l →V e3[x := e2]
by Rule (1).

• Rule (12). We have e ≡ cl, so e is a value.

• Rule (13). We have e ≡ (succ e1)
l. We have that e is closed, so also e1

is closed. The last step in the derivation of A ` e : τ is of the form

A ` e1 : Int

A ` (succ e1)l : Int

From the induction hypothesis we have that either e1 is a value, or
there exists e′1 such that e1 →V e′1. We proceed by case analysis.

– If e1 is a value, then from A ` e1 : Int and Lemma 3.7 we have
that e1 is of the form cl11 , and hence (succ cl11 )l →V cl2 where
dc2e = dc1e + 1 by Rule (4).

– If there exists e′1 such that e1 →V e′1, then (succ e1)
l →V (succ e′1)

l

by Rule (5).

• Rule (14). We have e ≡ (if0 e1 e2 e3)
l. We have that e is closed, so

also e1, e2, e3 are closed. The last step in the derivation of A ` e : τ is
of the form

A ` e1 : Int A ` e2 : τ A ` e3 : τ

A ` (if0 e1 e2 e3)l : τ

From the induction hypothesis we have that either e1 is a value, or
there exists e′1 such that e1 →V e′1. We proceed by case analysis.
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– If e1 is a value, then from A ` e1 : Int and Lemma 3.7 we have
that e1 is of the form cl1 so either e→V e2 by Rule (6) or e→V e3
by Rule (7).

– If there exists e′1 such that e1 →V e′1, then (if0 e1 e2 e3)
l →V

(if0 e′1 e2 e3)
l by Rule (8).

• Rule (15). The last part of the derivation of A ` e : τ is of the form

A ` e : σ

A ` e : τ
(σ ≤ τ)

and from A ` e : σ and the induction hypothesis we have that either e
is a value or there exists e′ such that e→V e′.

2

Corollary 3.9 (Type Soundness) For an acceptable type ordering ≤, a
program typable in T≤ cannot go wrong.

Proof. Suppose we have a program e which is typable in T≤, that is, e
is closed and we have A, τ such that T≤ . A ` e : τ . Suppose also that e
can go wrong, that is, there exists a stuck expression e′ such that e →∗

V e′.
From Lemma 2.1 we have that e′ is closed. From Theorem 3.6 we have that
T≤.A ` e′ : τ . From Lemma 3.8 we have that e′ is not stuck, a contradiction.
We conclude that e′ does not exist so e cannot go wrong. 2
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3.6 An Acceptable Type Ordering

We will now define an acceptable type ordering ≤1. We write σ ≤1 τ if and
only if we can derive σ ≤1 τ using the following rules.

σ ≤1 δ δ ≤1 τ

σ ≤1 τ
(16)

σ ≤1 σ ∨ τ ′ (17)

∀i ∈ I : σi ≤1 τ1 → τ2∨
i∈I σi ≤1 τ1 → τ2

(18)

τ1 ≤1 σ1 σ2 ≤1 τ2

σ1 → σ2 ≤1 τ1 → τ2
(19)

∧
k∈K(σk → σ′

k) ≤1 τ1 → τ2∧
k∈K′(σk → σ′

k) ≤1 τ1 → τ2
(K ⊆ K ′) (20)

∧

k∈K

(σk → σ′
k) ≤1 (

∨

k∈K

σk) → (
∨

k∈K

σ′
k) (21)

Rule (16) is the rule for transitivity. Rule (17) is an introduction rule for
union types, and Rule (18) is an elimination rule for union types. Rule (19)
is the classical rule of subtyping for function types. Rules (20) and Rule (21)
are elimination rules for intersection types. Rule (21) is closely related to the
(∨ elim)-rule in [66]. Recall that intersection types are introduced by type
rule (10).

The relation ≤1 is not antisymmetric. For example for

σ = Int → Int

τ = (Int → Int) → (Int → Int)

we have

σ ≤1 σ ∨ (σ ∧ τ) (from Rule 17)
σ ∨ (σ ∧ τ) ≤1 σ (from Rule 18,20)

and yet σ 6= σ ∨ (σ ∧ τ).
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Lemma 3.10 (Characterization of Subtyping) We have σ ≤1 τ if and
only if

(i) either τ = σ ∨ τ ′,

(ii) or σ =
∨

i∈I

∧
k∈Ki

(σik → σ′
ik), and τ = (τ1 → τ2) ∨ τ ′, and ∀i ∈ I :

∃Ji : [ τ1 ≤1
∨

k∈Ji
σik, and

∨
k∈Ji

σ′
ik ≤1 τ2, and Ji ⊆ Ki ].

Proof. For ⇐, there are two cases. If τ = σ ∨ τ ′, then we can derive
σ ≤1 τ using Rule (17).

Suppose σ =
∨

i∈I

∧
k∈Ki

(σik → σ′
ik), and τ = (τ1 → τ2) ∨ τ

′, and ∀i ∈ I :
∃Ji : [ τ1 ≤1

∨
k∈Ji

σik, and
∨

k∈Ji
σ′

ik ≤1 τ2, and Ji ⊆ Ki ]. For all i ∈ I, we
have

∧

k∈Ji

(σik → σ′
ik) ≤1 (

∨

k∈Ji

σik) → (
∨

k∈Ji

σ′
ik) Rule (21)

(
∨

k∈Ji

σik) → (
∨

k∈Ji

σ′
ik) ≤1 τ1 → τ2 Rule (19)

and from these two inequalities and Rule (16) we have
∧

k∈Ji

(σik → σ′
ik) ≤1 τ1 → τ2.

For all i ∈ I, from
∧

k∈Ji
(σik → σ′

ik) ≤1 τ1 → τ2, Ji ⊆ K, and Rule (20) we
have

∧

k∈K

(σik → σ′
ik) ≤1 τ1 → τ2.

We can now use Rule (18) to derive
∨

i∈I

∧

k∈K

(σik → σ′
ik) ≤1 τ1 → τ2,

and from Rule (17) we also have

τ1 → τ2 ≤1 (τ1 → τ2) ∨ τ
′.

Finally, an application of Rule (16) derives σ ≤1 τ .
For ⇒, we proceed by induction on the structure of the derivation of

σ ≤1 τ . There are six cases. If the last rule used in the derivation of σ ≤1 τ

is Rule (17), then we have τ = σ ∨ τ ′, so (i) is satisfied. If the last rule used
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in the derivation of σ ≤1 τ is one of Rules (18–21), then it is in each case
straightforward to show that (ii) is satisfied with τ ′ = ⊥. If the last rule
used in the derivation of σ ≤1 τ is Rule (16), then we have the situation

σ ≤1 δ δ ≤1 τ

σ ≤1 τ

By applying the induction hypothesis to both σ ≤1 δ and δ ≤1 τ , we get that
there are four subcases, which we will consider in turn.

First, suppose δ = σ ∨ δ′, and τ = δ ∨ τ ′. We have τ = σ ∨ (δ′ ∨ τ ′), so
(i) is satisfied.

Second, suppose δ = σ ∨ δ′, and δ =
∨

i∈I

∧
k∈Ki

(δik → δ′ik), and τ =
(τ1 → τ2) ∨ τ ′, and ∀i ∈ I : ∃Ji : [ τ1 ≤1

∨
k∈Ji

δik, and
∨

k∈Ji
δ′ik ≤1 τ2,

and Ji ⊆ Ki ]. We have σ =
∨

i∈I′

∧
k∈Ki

(δik → δ′ik) where I ′ ⊆ I, so
∀i ∈ I ′ : [ τ1 ≤1

∨
k∈Ji

δik, and
∨

k∈Ji
δ′ik ≤1 τ2, and Ji ⊆ Ki ], so (ii) is

satisfied.
Third, suppose σ =

∨
i∈I

∧
k∈Ki

(σik → σ′
ik), and δ = (δ1 → δ2) ∨ δ

′, and
∀i ∈ I : ∃Ji : [ δ1 ≤1

∨
k∈Ji

σik, and
∨

k∈Ji
σ′

ik ≤1 δ2, and Ji ⊆ Ki ], and
τ = δ ∨ τ ′. We have τ = (δ1 → δ2) ∨ (δ′ ∨ τ ′), so (ii) is satisfied.

Fourth, suppose σ =
∨

i∈I

∧
k∈Ki

(σik → σ′
ik), and δ = (δ1 → δ2) ∨ δ

′, and
∀i ∈ I : ∃Ji : [ δ1 ≤1

∨
k∈Ji

σik, and
∨

k∈Ji
σ′

ik ≤1 δ2, and Ji ⊆ Ki ], and
δ =

∨
i∈I′

∧
k∈K′

i
(δik → δ′ik), and τ = (τ1 → τ2) ∨ τ ′, and ∀i ∈ I ′ : ∃J ′

i :
[ τ1 ≤1

∨
k∈J ′

i
δik, and

∨
k∈J ′

i
δ′ik ≤1 τ2, and J ′

i ⊆ K ′
i ]. From δ = (δ1 →

δ2) ∨ δ
′ =

∨
i∈I′

∧
k∈K′

i
(δik → δ′ik) we have that there exists i0 ∈ I ′ such that

δ1 → δ2 =
∧

k∈K′

i0

(δi0k → δ′i0k). Moreover, for all k ∈ K ′
i0

we have δ1 = δi0k

and δ2 = δ′i0k. We have ∀i ∈ I : ∃Ji : [ τ1 ≤1
∨

k∈J ′

i0

δi0k = δ1 ≤1
∨

k∈Ji
σik,

and
∨

k∈Ji
σ′

ik ≤1 δ2 =
∨

k∈J ′

i0

δ′i0k ≤1 τ2, and Ji ⊆ Ki ], so (ii) is satisfied. 2

Lemma 3.11 If u ≤1
∨

i∈I δi, then there exists i0 ∈ I such that u ≤1 δi0 .

Proof. From Lemma 3.10 we have that there are two cases.
If

∨
i∈I δi = u ∨ δ′, we have i0 ∈ I such that u ≤1 δi0 .

If u =
∧

k∈K(σk → σ′
k) and

∨
i∈I δi = (τ1 → τ2) ∨ τ ′, and ∃J : [ τ1 ≤1∨

k∈J σk and
∨

k∈J σ
′
k ≤1 τ2 and J ⊆ K ], then choose i0 ∈ I such that

τ1 → τ2 ≤1 δi0 . From Lemma 3.10 we have that u ≤1 τ1 → τ2. From
Rule (16), u ≤1 τ1 → τ2, and τ1 → τ2 ≤1 δi0 , derive u ≤1 δi0 . 2

Theorem 3.12 The relation ≤1 is an acceptable type ordering.
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Proof. We will prove that each of the five conditions from Definition 3.2
are satisfied.

1. The relation ≤1 is reflexive because τ ≤1 τ ∨ ⊥ = τ .

2. The relation ≤1 is transitive by Rule (16).

3. We must show that if
∧

k∈K(σk → σ′
k) ≤1 (τ1 → τ2), and u ≤1 τ1,

then there exists k0 ∈ K such that u ≤1 σk0
and σ′

k0
≤1 τ2. From

Lemma 3.10 we have that there are two cases.

If τ1 → τ2 = (
∧

k∈K(σk → σ′
k)) ∨ τ

′, then τ1 → τ2 = (
∧

k∈K(σk → σ′
k)).

Choose k0 ∈ K such that τ1 → τ2 = σk0
→ σ′

k0
. We have u ≤1 τ1 = σk0

and σ′
k0

= τ2.

If ∃J : τ1 ≤1
∨

k∈J σk and
∨

k∈J σ
′
k ≤1 τ2 and J ⊆ K, then from

Lemma 3.11 we have k0 ∈ J such that u ≤1 σk0
. Moreover, σ′

k0
≤1∨

k∈J σ
′
k ≤1 τ2.

4. We have
∧

k∈K(σk → τk) 6≤1 Int from Lemma 3.10.

5. We have Int 6≤1 σ → τ from Lemma 3.10.

2

Corollary 3.13 A program typable in T≤1
cannot go wrong.

Proof. Combine Corollary 3.9 and Theorem 3.12. 2

Notice that (i) there is no separate rule for comparing recursive types, (ii)
⊥ is a least type in the ≤1-ordering because ⊥ ≤1 ⊥∨ τ = τ , (iii) if τ ≤1 ⊥,
then τ = ⊥, and (iv) there is no greatest type >. The observation (iii) is
straightforward to prove by induction on the structure of the derivation of
τ ≤1 ⊥ (and it also follows from Lemma 3.10).

In general, an expression does not have a ≤1-minimal type in T≤1
. For

example, we have

T≤1
. ∅ ` (λx.x1)2 : Int → Int

T≤1
. ∅ ` (λx.x1)2 : ⊥ → ⊥.

The types Int → Int and ⊥ → ⊥ have a greatest lower bound in ≤1 which is
Int → ⊥, but we do not have T≤1

. ∅ ` (λx.x1)2 : Int → ⊥.
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4 Polyvariant Flow Analysis

4.1 Domains

We begin by defining domains for the flow analysis. We use E to range over
closed expressions. Our domains are parameterized by an expression E:

a ∈ Val(E) = Closure(E) ∪ {Int} (abstract values)
s ∈ ValSet(E) = P(Val(E))

Exp(E) = { e ∈ Exp | e occurs in E }
Abs(E) = { (λx.e)l ∈ Exp | (λx.e)l occurs in E }
Var(E) = { x ∈ V ar | ∃e, l : (λx.e)l occurs in E }
Closure(E) = Abs(E) × FlowEnv(E) (abstract closures)

ρ ∈ FlowEnv(E) = Var(E) ↪→ ValSet(E)
FlowJudgment(E) = FlowEnv(E) × Exp(E) × ValSet(E)

R ∈ FlowJudgmentSet(E) = P(FlowJudgment(E))
C ∈ Cover(E) = P(ValSet(E)).

An abstract value a ∈ Val(E) is either an abstract closure or the constant Int.
Our flow sets are sets of abstract values, that is, elements of ValSet(E). The
function P maps a set to its powerset. An abstract closure is an abstraction
of a usual closure. A usual closure is a pair of a λ-abstraction and a static
environment. An abstract closure contains a flow environment in place of
the static environment. We will write elements of products as (x, y), etc.,
except for type judgments which we write as A ` e : τ , as seen earlier, and
elements of Closure(E) which we write as 〈(λx.e)l, ρ〉, etc., for readability.
A flow environment is a partial function with finite domain from Var(E) to
ValSet(E). We use → to denote the constructor of spaces of total functions.
(We also use → to denote the function-type constructor, but the intended
meaning of → will always be clear from the context.)

A flow judgment (ρ, e, s) indicates that in the flow environment ρ, the
expression e abstractly evaluates to the flow set s. Below, we define the
valid flow judgments. Let us compare a flow judgment (ρ, e, s) to a type
judgment A ` e : τ . The flow environment ρ and the type environment A
play analogous roles. Similarly, the flow set s and the type τ play analogous
roles.
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4.2 The Family of Analyses

We define the set Valid(E) of valid flow judgments as the greatest fixed point
of the function F defined below. The interesting case is that of function
application. At every call site, and for every function that can be invoked at
that call site, we want to cover the set s2 of abstract values for the actual
argument. Thus, the cover is a set of sets of abstract values, and the union
of the sets in the cover must contain s2. Moreover, each function body must
be analyzed as many times as the number of elements in the cover.

F ∈ FlowJudgmentSet(E) → FlowJudgmentSet(E)

F (R) = { (ρ[x : s′], xl, s) | s′ ⊆ s }

∪ { (ρ, (λx.e)l, s) | 〈(λx.e)l, ρ〉 ∈ s }

∪ { (ρ, (e1 e2)
l, s) |

∃s1, s2 : (ρ, e1, s1), (ρ, e2, s2) ∈ R and

∀〈(λx.e)l′ , ρ′〉 ∈ s1 : ∃C ∈ Cover(E) :

s2 ⊆
⋃
C and

∀s′ ∈ C : ∃s′′ : (ρ′[x : s′], e, s′′) ∈ R and s′′ ⊆ s }

∪ { (ρ, cl, s) | Int ∈ s }

∪ { (ρ, (succ e1)
l, s) | Int ∈ s and ∃s1 : (ρ, e1, s1) ∈ R }

∪ { (ρ, (if0 e1 e2 e3)
l, s) |

∃s1, s2, s3 : (ρ, e1, s1), (ρ, e2, s2), (ρ, e3, s3) ∈ R and

s2 ⊆ s and s3 ⊆ s }

We leave implicit that all the expressions mentioned in the definition of F
must occur in E. The notation

⋃
C means “the union of the sets that are

elements of C.” The cases for xl, (λx.e)l, cl serve as “base cases” for the
definition of F , as they do not refer to R.

The case for (λx.e)l indicates that our closures are not “flat” in the sense
of Appel [8]: in a closure 〈(λx.e)l, ρ〉, we can have that ρ is defined on a
variable which does not occur free in (λx.e)l. Our choice of definition helps
simplify the algorithm which translates type information into flow informa-
tion, see Section 5.3.

The case for (if0 e1 e2 e3)
l indicates that the analysis does not attempt to

statically decide which branch will be taken. The type system in Section 3
does not attempt to do that either. One might change the flow analysis
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to have more fine-grained information about integers, and then attempt to
decide if a condition will always (or never) evaluate to 0. To change the type
system in a similar way, one possibility is to use the conditional types of
Aiken, Wimmers, and Lakshman [4].

All six cases in the definition of F allow the resulting flow set s to be
larger than strictly necessary. Thus, one can view the rules as having a
form of “subsumption” built in, as expressed by the following lemma. As
a consequence, there are many valid flow judgments for a given expression,
just like there can be many valid type judgments for a given expression.

Lemma 4.1 (Flow Subsumption) For R ∈ FlowJudgmentSet(E), if (ρ, e, s) ∈
F (R) and s ⊆ s′, then (ρ, e, s′) ∈ F (R).

Proof. By a straightforward case analysis on (ρ, e, s). 2

Notice that FlowJudgmentSet(E) with ⊆ as ordering is a complete lattice.
It is straightforward to show that F is monotone, that is, if R1 ⊆ R2, then
F (R1) ⊆ F (R2). From Tarski’s fixed-point theorem [62] we have that F has
a greatest fixed point which we will denote by Valid(E).

Lemma 4.2 If R ⊆ F (R), then R ⊆ Valid(E).

Proof. From Tarski’s fixed point theorem we have that

Valid(E) =
⋃
{ R | R ⊆ F (R) }

so if R ⊆ F (R), then R ⊆ Valid(E). 2

Lemma 4.2 justifies the proof technique of co-induction [41] which we will
use repeatedly:

Proof by co-induction: Suppose R ⊆ FlowJudgment(E). In
order to prove R ⊆ Valid(E), it is sufficient to prove R ⊆ F (R).

We have already seen that a flow judgment (ρ, e, s) and a type judgment
A ` e : τ play analogous roles.

Question: What plays a role analogous to a type derivation of
a type judgment A ` e : τ ?
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It should be a set of valid flow judgments that contains at least one judgment
for e. Moreover, just like a type derivation can be checked independently of
other type derivations, we want to be able to check the validity of the set
of flow judgments independently of other flow judgments. Such indepen-
dent checking can be done by co-induction, and we arrive at the following
definition.

Definition 4.3 We say that R ∈ FlowJudgmentSet(E) is an F -analysis of
an expression e in a program E if and only if R ⊆ F (R) and ∃ρ : ∃s :
(ρ, e, s) ∈ R. 2

Given an F -analysis R of E, Lemma 4.2 shows that R ⊆ Valid(E). In
Section 5 we will define mappings from F -analyses to type derivations, and
back.

The self-contained nature of an F -analysis is largely made possible by
the use of sets of flow judgments and “local” environments that need not
be defined on all bound variables in the whole program. In contrast, Niel-
son and Nielson [46] use a cache of flow information for the whole program
(rather than sets of flow judgments), and “global” (rather than “local”) en-
vironments.

In the introduction we discussed how various analyses can be understood
in terms of how they cover the flow set for an actual argument. In the
following two cases, we can make the intuition precise by specializing the
definition of F . It is done by, in the case for (e1e2)

l, after “∃C ∈ Cover(E),”
inserting an extra condition on C:

• Schmidt’s analysis. C = {s2}.

• Agesen’s analysis. C = { {a} | a ∈ s2 }.

We say that an F -analysis R of E is a 0-CFA-style analysis if and only if R
satisfies that there exists ρ ∈ FlowEnv(E) such that:

• if 〈(λy.e)l, ρ′〉 ∈ ρ(x), then ρ′ = ρ;

• if (ρ′, e, s) ∈ R, then ρ′ = ρ;

• if (ρ, e, s) ∈ R and 〈(λy.e′)l, ρ′〉 ∈ s, then ρ′ = ρ; and

• if (ρ, e, s), (ρ, e, s′) ∈ R, then s = s′.
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These conditions express that a unique environment ρ is the only one used
in R, and that there is a single judgment for each expression e in E. The
conditions entail that each cover consists of a single set. To see that, notice
that in the case for (e1e2)

l in the definition of F , if 〈(λx.e)l′ , ρ〉 ∈ s1, then
C = {ρ(x)} and s2 ⊆ ρ(x).

For some programs, the least and the greatest fixed points of F are differ-
ent. For example, consider the following λ-term and definitions. To distin-
guish environments, we will use numbers as subscripts. We will choose the
numbers to be different from the labels of expressions.

E = ((λx.(x1 x2)3)4 (λy.(y5 y6)7)8)9

aλx = 〈(λx.(x1 x2)3)4, ∅〉

aλy = 〈(λy.(y5 y6)7)8, ∅〉

ρ20 = ∅[x : {aλy}]

ρ21 = ∅[y : {aλy}]

R = { (ρ20, x
1, {aλy}), (ρ20, x

2, {aλy}),

(ρ20, (x
1 x2)3, ∅), (∅, (λx.(x1 x2)3)4, {aλx}),

(ρ21, y
5, {aλy}), (ρ21, y

6, {aλy}),

(ρ21, (y
5 y6)7, ∅), (∅, (λy.(y5 y6)7)8, {aλy}),

(∅, E, ∅) }

It is straightforward to show R ⊆ F (R) by case analysis of the elements of
R, so R is an F -analysis of E. Define

R′ = { (ρ[x : s′], x1, s) | s′ ⊆ s }

∪ { (ρ[x : s′], x2, s) | s′ ⊆ s }

∪ { (ρ, (λx.(x1 x2)3)4, s) | 〈(λx.(x1 x2)3)4, ρ〉 ∈ s }

∪ { (ρ[y : s′], y5, s) | s′ ⊆ s }

∪ { (ρ[y : s′], y6, s) | s′ ⊆ s }

∪ { (ρ, (λy.(y5 y6)7)8, s) | 〈(λy.(y5 y6)7)8, ρ〉 ∈ s }

It is straightforward to show F (∅) = R′ and F (R′) = R′, so R′ is the least
fixed point of F . Notice that there are no flow judgments in R′ for appli-
cations, while, for example, (∅, E, ∅) ∈ R ⊆ Valid(E). We conclude that
R′ 6= Valid(E), that is, for E the least and the greatest fixed points of F are
different.
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Nielson and Nielson [46] also gave an example, in the setting of a different
flow analysis, of how the least and greatest fixed points can be different. In
our paper, the main result, which relates the flow analysis to a type system,
relies on that Valid(E) is defined as the greatest fixed point of F .

As mentioned in the introduction, flow preservation does not hold:

It is false that if (ρ, e, s) ∈ Valid(E) and e→V e′, then (ρ, e′, s) ∈
Valid(E).

For example, consider the program E and the definitions of ρ, aλy, aλx, R:

E = ((λx.(λy.x1)2)3 84)5

ρ = ∅[x : {Int}]

aλy = 〈(λy.x1)2, ρ〉

aλx = 〈(λx.(λy.x1)2)3, ∅〉

R = { (∅, E, {aλy}), (∅, (λx.(λy.x
1)2)3, {aλx}),

(∅, 84, {Int}), (ρ, (λy.x1)2, {aλy}) }

It is straightforward to show R ⊆ F (R) by case analysis of the elements
of R, so R is an F -analysis of E. We have (∅, E, {aλy}) ∈ Valid(E) and
E →V (λy.84)2, but (∅, (λy.84)2, {aλy}) 6∈ Valid(E).

We will present a more coarse-grained correctness result in Section 5
(Corollary 5.2). Moreover, the flow-type system that we will study in Section
7 embodies the ideas of the flow analysis from this section, and for that flow-
type system we do have flow-type preservation and flow-type soundness.

41



4.3 Example

We now continue the example from Section 1 by presenting an Agesen-style
analysis of the following program:

E = ((λf.(succ ((f 1f 2)3
0

4)5)6)7 (if0 c (λx.x8)9 (λy.(λz.z10)11)12)13)14 .

Define

aλf = 〈(λf.(succ ((f 1f 2)3
0

4)5)6)7, ∅〉

aλx = 〈(λx.x8)9, ∅〉

aλy = 〈(λy.(λz.z10)11)12, ∅〉

ρ20 = ∅[y : {aλy}]

aλz = 〈(λz.z10)11, ρ20〉

ρ21 = ∅[f : {aλx}]

ρ22 = ∅[f : {aλy}]

ρ23 = ∅[x : {Int}]

ρ24 = ∅[x : {aλx}]

ρ25 = ∅[y : {aλy}] [z : {Int}]

R = { (ρ21, f
1, { aλx }), (ρ21, f

2, { aλx }), (ρ21, (f
1f 2)3, { aλx }),

(ρ21, 0
4, { Int }), (ρ21, ((f

1f 2)3
0

4)5, { Int }),

(ρ21, (succ ((f 1f 2)3
0

4)5)6, { Int }),

(ρ22, f
1, { aλy }), (ρ22, f

2, { aλy }), (ρ22, (f
1f 2)3, { aλz }),

(ρ22, 0
4, { Int }), (ρ22, ((f

1f 2)3
0

4)5, { Int }),

(ρ22, (succ ((f 1f 2)3
0

4)5)6, { Int }),

(∅, (λf.(succ ((f 1f 2)3
0

4)5)6)7, { aλf }),

(ρ23, x
8, { Int }), (ρ24, x

8, { aλx }), (∅, (λx.x8)9, { aλx }),

(ρ25, z
10, { Int }), (ρ20, (λz.z

10)11, { aλz }),

(∅, (λy.(λz.z10)11)12, { aλy }),

(∅, (if0 c (λx.x8)9 (λy.(λz.z10)11)12)13, { aλx, aλy}),

(∅, E, { Int }),

}

It is straightforward to show R ⊆ F (R) by case analysis of the elements of
R, so R is an F -analysis of E.
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5 Equivalence

In this section we prove our main result which is the following theorem. The
statement of the theorem uses the concept of F -flow-safe which is defined in
Section 5.1.

Theorem 5.1 (Main Theorem) A program is typable in T≤1
if and only

if it is F -flow-safe.

Proof. The two implications are given by Theorems 5.6, 5.8. 2

Corollary 5.2 If a program is F -flow-safe, then it cannot go wrong.

Proof. Combine Corollary 3.13 and Theorem 5.1. 2

5.1 Basic Definitions

For the purpose of proving equivalences between type systems and flow anal-
yses we will need the following definitions.

collect ∈ FlowJudgmentSet(E) → ValSet(E)

collect(R) = { a ∈ Val(E) |

(ρ, e, s) ∈ R and either

− a ∈ subtrees(ρ(x)) and x ∈ dom(ρ), or

− a ∈ subtrees(s) }

subtrees ∈ ValSet(E) → ValSet(E)

subtrees is the pointwise ⊆-smallest function such that

subtrees(s) = { a ∈ Val(E) |

either a ∈ s,

or ∃〈(λx.e)l, ρ〉 ∈ s : ∃y ∈ dom(ρ) : a ∈ subtrees(ρ(y)) }

argres ∈ (Closure(E) × FlowJudgmentSet(E)) → P(ValSet(E) × ValSet(E))

argres(〈(λx.e)l, ρ〉, R) = { (s′, s′′) | (ρ[x : s′], e, s′′) ∈ R }

Intuitively, collect(R) is the set of abstract values involved in R. To cap-
ture that an abstract value can be part of the environment of another ab-
stract value, we use the function subtrees. We use argres(a, R) to model the
argument-result behavior of a with respect to R.

For R ∈ FlowJudgmentSet(E), define
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• R is safe if and only if

– if (e1 e2)
l ∈ Exp(E), and (ρ, e1, s) ∈ R, then Int 6∈ s;

– if (succ e1)
l ∈ Exp(E), and (ρ, e1, s) ∈ R, then s ⊆ {Int};

– if (if0 e1 e2 e3)
l ∈ Exp(E), and (ρ, e1, s) ∈ R, then s ⊆ {Int}

• R is finitary if and only if collect(R) is a finite set

• R analyzes all its closure bodies if and only if ∀a ∈ collect(R)∩Closure(E) :
argres(a, R) 6= ∅.

The conditions for R being safe correspond to the safety checks of [50, 49].
Note that R can be finite without being finitary because an element of

R may contain infinitely many distinct subtrees. A 0-CFA-style analysis is
always finitary, while an Agesen-style analysis need not be finitary [2]. For
Schmidt’s analysis, it remains open whether it is always finitary.

Intuitively, we have the following correspondences:

Flows Types
safe type safe
finitary all intersection and union types

have a finite number of components
analyzes all closure bodies all intersection types are nonempty

that is, even “dead code” must be well typed.

We can now define the key notion of a program being F -flow-safe.

Definition 5.3 We say that E is F -flow-safe if and only if there exists an
F -analysis R of E, such that R is safe, finitary, and analyzes all its closure
bodies. 2

We will need the following observation to ensure that certain sets are
finite.

Lemma 5.4 For R ∈ FlowJudgmentSet(E), if R is finitary and a ∈ collect(R)∩
Closure(E), then argres(a, R) is a finite set.
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Proof. Notice that

argres(a, R) ⊆ P(collect(R) × collect(R)),

and that collect(R) is a finite set by assumption. 2

Define (f ◦ g)(x) = f(g(x)). We will use the notational convention that
f ◦ g(x) should be grouped as (f ◦ g)(x).

5.2 From Flows to Types

Given R ∈ FlowJudgmentSet(E), where R is finitary and analyzes all its
closure bodies, we define a system of type equations TypeEqSys(R):

• Type Variables: In TypeEqSys(R) the set of type variables is de-
noted by W(R) and it consists of one type variable Wa for each a ∈
collect(R) ∩ Closure(E). Notice that W(R) is a finite set because R is
finitary. We assume that W(R) ⊆ TypeVar , where TypeVar is the set
of type variables from Section 3.

• Auxiliary Function: Define

τ ∈ EquationType(R)

τ ::= Int | ⊥ | τ ∨ τ ′ | W

where W ranges over W(R). Define

f : collect(R) → EquationType(R)

f(∅) = ⊥

f({Int}) = Int

f({a}) = Wa (a ∈ Closure(E))

f(s1 ∪ s2) = f(s1) ∨ f(s2).

Notice that f(s) is a finite disjunction because R is finitary. For exam-
ple,

f({ 〈(λx.x8)9, ∅〉, 〈(λy.(λz.z10)11)12, ∅〉 }) = W〈(λx.x8)9,∅〉 ∨W〈(λy.(λz.z10)11)12,∅〉 .
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• Equations: For each Wa ∈ W(R), TypeEqSys(R) contains the equa-
tion

Wa =
∧

(s′,s′′)∈argres(a,R)

(f(s′) → f(s′′)), (22)

where the two applications of f should be replaced by their results to
obtain the actual equation. From Lemma 5.4 and since R is finitary
and analyzes all its closure bodies, we have that the conjunction is
nonempty and finite. Since W(R) is a finite set, there are finitely
many equations.

• Solutions: A solution of TypeEqSys(E) is a mapping

ψ : W(R) → Type

such that if we have an equation of the form (22), then

ψ•(Wa) =
∧

(s′,s′′)∈argres(a,R)

((ψ• ◦ f(s′)) → (ψ• ◦ f(s′′))),

where

ψ• : EquationType(R) → Type

is the unique extension of ψ to a type-homomorphism:

ψ•(⊥) = ⊥

ψ•(Int) = Int

ψ•(Wa) = ψ(Wa)

ψ•(τ1 ∨ τ2) = ψ•(τ1) ∨ ψ
•(τ2).

Unique Solution: Every equation system TypeEqSys(R) has a unique
solution [16]. To see that, notice that for every variable in the equa-
tion system, there is exactly one equation with that variable as left-
hand side. Moreover, on the right-hand sides of the equations, all type
variables occur below at least one function type constructor. Thus,
intuitively, we obtain the unique solution by using each equation as an
unfolding rule, possibly infinitely often.
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Lemma 5.5 The following are true:

1. If s ⊆ s′, then f(s) ≤1 f(s′).

2. If τ ≤1 τ
′, then ψ•(τ) ≤1 ψ

•(τ ′).

3. ψ• ◦ f ◦ (ρ[x : s]) = (ψ• ◦ f ◦ ρ)[c : (ψ• ◦ f)(s)].

4. If we can derive A ` e : ψ• ◦ f(s), and s ⊆ s′, then we can derive
A ` e : ψ• ◦ f(s′).

Proof. The properties (1), (2), (3) are immediate. For property 4, notice
that s ⊆ s′ and the properties (1), (2) imply ψ• ◦f(s) ≤1 ψ

• ◦f(s′). So, from
A ` e : ψ• ◦ f(s) and Rule (15), we can derive A ` e : ψ• ◦ f(s′). 2

Theorem 5.6 If E is F -flow-safe, then E is typable in T≤1
.

Proof. From E being F -flow-safe we have an F -analysis R of E such that
R is safe, finitary, and analyzes all its closure bodies. Since R is finitary and
analyzes all its closure bodies, we can construct TypeEqSys(R). Let ψ be the
unique solution of TypeEqSys(R). We will show

∀e ∈ Exp(E) : ∀ρ, s :

if (ρ, e, s) ∈ R,

then T≤1
. ψ• ◦ f ◦ ρ ` e : ψ• ◦ f(s).

From R being an F -analysis of E we have that there exist ρ, s such that
(ρ, E, s) ∈ R, so from the property just stated we have that E is typable in
T≤1

.
To prove the stated property, we proceed by induction on the structure

of e. We will use repeatedly that since R is an analysis of E, then R ⊆ F (R).
Furthermore, we will use that Int = ψ• ◦ f({Int}). Finally, we will use that
R is safe.

There are now six cases depending on e.

• e ≡ xl. From (ρ, xl, s) ∈ R ⊆ F (R) we have ρ ≡ ρ′[x : s′] and s′ ⊆ s.
From Lemma 5.5, item (3), we have ψ• ◦ f ◦ ρ = (ψ• ◦ f ◦ ρ′)[x :
(ψ• ◦ f)(s′)], so we can derive

ψ• ◦ f ◦ ρ ` xl : ψ• ◦ f(s′)

ψ• ◦ f ◦ ρ ` xl : ψ• ◦ f(s)
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using Rule (9) and Lemma 5.5, item (4).

• e ≡ (λx.e1)
l. From (ρ, (λx.e1)

l, s) ∈ R ⊆ F (R) we have a ∈ s where
a = 〈(λx.e1)

l, ρ〉, so a ∈ collect(R) ∩ Closure(E). Since R analyzes
all its closure bodies, we have argres(a, R) 6= ∅, and for all (s′, s′′) ∈
argres(a, R), we have (ρ[x : s′], e1, s

′′) ∈ R. From the induction hy-
pothesis we have that we can derive, for every (s′, s′′) ∈ argres(a, R),

ψ• ◦ f ◦ (ρ[x : s′]) ` e1 : ψ• ◦ f(s′′).

This can also be written

(ψ• ◦ f ◦ ρ)[x : ψ• ◦ f(s′)] ` e1 : ψ• ◦ f(s′′).

Derive

ψ• ◦ f ◦ ρ ` (λx.e1)
l :

∧

(s′,s′′)∈argres(a,R)

(ψ• ◦ f(s′)) → (ψ• ◦ f(s′′))

using Rule (10). In TypeEqSys(R) we have

Wa =
∧

(s′,s′′)∈argres(a,R)

(f(s′) → f(s′′)) .

so we can rewrite the previous type judgment as

ψ• ◦ f ◦ ρ ` (λx.e1)
l : ψ•(Wa) .

Derive

ψ• ◦ f ◦ ρ ` (λx.e1)
l : ψ• ◦ f(s)

using a ∈ s and Lemma 5.5, item (4).
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• e ≡ (e1e2)
l. From (ρ, (e1e2)

l, s) ∈ R ⊆ F (R) we have s1, s2 such that

(ρ, e1, s1), (ρ, e2, s2) ∈ R and

∀〈(λx.e3)
l′, ρ′〉 ∈ s1 : ∃C ∈ Cover(E) :

s2 ⊆
⋃
C and

∀s′ ∈ C : ∃s′′ : (ρ′[x : s′], e3, s
′′) ∈ R and s′′ ⊆ s

Since R is safe we have Int 6∈ s1. From the induction hypothesis we
have that we can derive

ψ• ◦ f ◦ ρ ` e1 : ψ• ◦ f(s1)

ψ• ◦ f ◦ ρ ` e2 : ψ• ◦ f(s2).

Choose an index set I such that { ai | i ∈ I } = s1 ⊆ Closure(E), and
write ai = 〈(λx.e′i)

li, ρi〉 for all i ∈ I. For all i ∈ I, let Ki be an index
set such that, for k ∈ Ki, (s′ik, s

′′
ik) are the elements of argres(ai, R).

For all i ∈ I, choose Ci ∈ Cover(E) such that

s2 ⊆
⋃
Ci and

∀s′ ∈ Ci : ∃s′′ : (ρi[x : s′], e′i, s
′′) ∈ R and s′′ ⊆ s.

For all i ∈ I, we have

Ci ⊆ { s′ik | (s′ik, s
′′
ik) ∈ argres(ai, R) }

so choose Ji such that Ji ⊆ Ki and Ci = { s′ik | k ∈ Ji }. For all i ∈ I,
we derive from the properties of Ci that

s2 ⊆
⋃

k∈Ji

s′ik

⋃

k∈Ji

s′′ik ⊆ s.
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Notice

ψ• ◦ f(s1) = ψ•(
∨

i∈I

Wai
)

=
∨

i∈I

∧

(s′,s′′)∈argres(ai,R)

((ψ• ◦ f(s′)) → (ψ• ◦ f(s′′)))

=
∨

i∈I

∧

k∈Ki

((ψ• ◦ f(s′ik)) → (ψ• ◦ f(s′′ik)))

≤1 (ψ• ◦ f(s2)) → (ψ• ◦ f(s))

where the inequality is obtained from Lemma 3.10 because for all i ∈ I

we have ψ• ◦ f(s2) ≤1
∨

k∈Ji
(ψ• ◦ f(s′ik)) and

∨
k∈Ji

(ψ• ◦ f(s′′ik)) ≤1

ψ• ◦ f(s) and Ji ⊆ Ki. Finally derive

ψ• ◦ f ◦ ρ ` (e1e2)
l : ψ• ◦ f(s)

using Rules (15), (11).

• e ≡ cl. From (ρ, cl, s) ∈ R ⊆ F (R) we have Int ∈ s. Derive

ψ• ◦ f ◦ ρ ` cl : Int

ψ• ◦ f ◦ ρ ` cl : ψ• ◦ f(s)

using Rule (12) and Lemma 5.5, item (4).

• e ≡ (succ e1)
l. From (ρ, (succ e1)

l, s) ∈ R ⊆ F (R) we have Int ∈ s

and we have s1 such that (ρ, e1, s1) ∈ R. From R being safe we have
s1 ⊆ {Int}. From the induction hypothesis, Lemma 5.5, item (4), Rule
(13), and again Lemma 5.5, item (4), derive

ψ• ◦ f ◦ ρ ` e1 : ψ• ◦ f(s1)

ψ• ◦ f ◦ ρ ` e1 : Int

ψ• ◦ f ◦ ρ ` (succ e1)l : Int

ψ• ◦ f ◦ ρ ` (succ e1)l : ψ• ◦ f(s)
.

• e ≡ (if0 e1 e2 e3)
l. From (ρ, (if0 e1 e2 e3)

l, s) ∈ R ⊆ F (R) we have
s1, s2, s3 such that (ρ, e1, s1), (ρ, e2, s2), (ρ, e3, s3) ∈ R and s2 ⊆ s and
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s3 ⊆ s. From R being safe we have s1 ⊆ {Int}. The induction hypoth-
esis provides derivations of

ψ• ◦ f ◦ ρ ` e1 : ψ• ◦ f(s1)

ψ• ◦ f ◦ ρ ` e2 : ψ• ◦ f(s2)

ψ• ◦ f ◦ ρ ` e3 : ψ• ◦ f(s3),

and we can then use Lemma 5.5, item (4) to derive

ψ• ◦ f ◦ ρ ` e1 : Int

ψ• ◦ f ◦ ρ ` e2 : ψ• ◦ f(s)

ψ• ◦ f ◦ ρ ` e3 : ψ• ◦ f(s)

Finally use Rule (14) to derive

ψ• ◦ f ◦ ρ ` (if0 e1 e2 e3)
l : ψ• ◦ f(s).

2
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We now complete the example from Section 1, using the R defined in
Section 4.3 which we have established is an F -analysis of E. It is straight-
forward to show that R is safe, finitary, and analyzes all its closure bodies.
Recall that

aλf = 〈(λf.(succ ((f 1f 2)3
0

4)5)6)7, ∅〉

aλx = 〈(λx.x8)9, ∅〉

aλy = 〈(λy.(λz.z10)11)12, ∅〉

ρ20 = ∅[y : {〈(λy.(λz.z10)11)12, ∅〉}]

aλz = 〈(λz.z10)11, ρ20〉.

We have

collect(R) = { aλf , aλx, aλy, aλz, Int }

argres(aλf , R) = { ({aλx}, {Int}), ({aλy}, {Int}) }

argres(aλx, R) = { ({Int}, {Int}), ({aλx}, {aλx}) }

argres(aλy, R) = { ({aλy}, {aλz}) }

argres(aλz, R) = { ({Int}, {Int}), }

The equation system TypeEqSys(R) contains the following four equations:

Waλf
= (Waλx

→ Int) ∧ (Waλy
→ Int)

Waλx
= (Int → Int) ∧ (Waλx

→Waλx
)

Waλy
= Waλy

→ Waλz

Waλz
= Int → Int

Here is the unique solution ψ of TypeEqSys(E):

ψ(Waλf
) = (σ → Int) ∧ (τ → Int)

ψ(Waλx
) = σ

ψ(Waλy
) = τ

ψ(Waλz
) = Int → Int

where

σ = µα.((Int → Int) ∧ (α → α))

τ = µβ.(β → (Int → Int)).

We invite the reader to revisit the example in Section 1 to see again how σ

and τ indeed yield a type derivation which shows T≤1
. ∅ ` E : Int.
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5.3 From Types to Flows

We use TypeDerivation(T≤) to denote the set of type derivations that are
possible in T≤.

Define

types ∈ TypeDerivation(T≤) → P(Type)

types(D) = { σ | ∃A, e, τ : (A ` e : τ) occurs in D, and either

− τ = σ ∨ τ ′, or

− A(x) = σ ∨ τ ′, and x ∈ dom(A) }

lamenv ∈ (Type × TypeDerivation(T≤)) → P(Abs × TypeEnv)

lamenv(τ,D) = { ((λx.e)l, A) | ∃σ : (A ` (λx.e)l : σ) occurs in D and σ ≤ τ }.

Given D ∈ TypeDerivation(T≤), where the root of D is ∅ ` E : τ for some
type τ , we define a system of set equations SetEqSys(D):

• Set Variables: In SetEqSys(D) the set of set variables ranging over
ValSet(E) is denoted by Z(D) and it consists of one set variable ZT

for each T ∈ types(D)∩ IntersectionType. Notice that Z(D) is a finite
set because types(D) is finite.

• Auxiliary Function: The function g maps types in types(D) to set
expressions:

g(⊥) = ∅

g(Int) = {Int}

g(T ) = ZT (T ∈ IntersectionType)

g(τ1 ∨ τ2) = g(τ1) ∪ g(τ2).

Notice that g(σ) is a finite union. For example,

g(Int ∨ (Int → Int)) = {Int} ∪ ZInt→Int.

• Equations: For each T ∈ types(D) ∩ IntersectionType, SetEqSys(D)
contains the equation

ZT =
⋃

((λx.e)l,A)∈lamenv(T,D)

{〈(λx.e)l, g ◦ A〉}, (23)
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where the occurrence of g should be applied to all types in A to obtain
the actual equation. Notice that the union is finite, and that there are
finitely many equations.

• Solutions: A solution of SetEqSys(D) is a mapping ϕ from elements
of Z(D) to elements of ValSet(E) such that if we have equation of the
form (23), then

ϕ•(ZT ) =
⋃

((λx.e)l,A)∈lamenv(T,D)

{〈(λx.e)l, ϕ• ◦ g ◦ A〉}

where ϕ• is the unique extension of ϕ to a set-expression-homomorphism:

ϕ•(∅) = ∅

ϕ•({Int}) = {Int}

ϕ•(ZT ) = ϕ(ZT )

ϕ•(s1 ∪ s2) = ϕ•(s1) ∪ ϕ
•(s2).

Unique Solution: Every equation system SetEqSys(D) has a unique
solution. To see that, notice that for every variable in the equation sys-
tem, there is exactly one equation with that variable as left-hand side.
Moreover, on the right-hand sides of the equations, all set variables
occur below at least one constructor. Thus, intuitively, we obtain the
unique solution by using each equation as an unfolding rule, possibly
infinitely often.

Lemma 5.7 Given D ∈ TypeDerivation(T≤1
), and σ, τ ∈ types(D), let ϕ be

the unique solution of SetEqSys(D). If σ ≤1 τ , then ϕ• ◦ g(σ) ⊆ ϕ• ◦ g(τ).

Proof. From Lemma 3.10 we have that there are two cases:

• First, suppose τ = σ ∨ τ ′. From the definitions of ϕ• and g we have

ϕ• ◦ g(τ)

= ϕ• ◦ g(σ ∨ τ ′)

= ϕ•(g(σ) ∪ g(τ ′))

= (ϕ• ◦ g(σ)) ∪ (ϕ• ◦ g(τ ′))

⊇ ϕ• ◦ g(σ).
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• Second, suppose σ =
∨

i∈I

∧
k∈Ki

(σik → σ′
ik), and τ = (τ1 → τ2) ∨ τ ′,

and ∀i ∈ I : ∃Ji : [ τ1 ≤1
∨

k∈Ji
σik, and

∨
k∈Ji

σ′
ik ≤1 τ2, and Ji ⊆ Ki ].

For all i ∈ I, define

Ti =
∧

k∈Ki

(σik → σ′
ik).

Notice that, for all i ∈ I, we have Ti ∈ types(D)∩IntersectionType, and
Ti ≤1 τ1 → τ2. We can now use the above together with the definitions
of ϕ• and g to do the following calculation. We will use that if σ ≤1 τ ,
then lamenv(σ,D) ⊆ lamenv(τ,D).

ϕ• ◦ g(σ)

= ϕ• ◦ g(
∨

i∈I

∧

k∈Ki

(σik → σ′
ik))

= ϕ• ◦ g(
∨

i∈I

Ti)

= ϕ•(
⋃

i∈I

g(Ti))

= ϕ•(
⋃

i∈I

ZTi
)

=
⋃

i∈I

ϕ•(ZTi
)

=
⋃

i∈I

⋃

((λx.e)l,A)∈lamenv(Ti,D)

{〈(λx.e)l, ϕ• ◦ g ◦A〉}

⊆
⋃

i∈I

⋃

((λx.e)l,A)∈lamenv(τ1→τ2,D)

{〈(λx.e)l, ϕ• ◦ g ◦ A〉}

=
⋃

i∈I

ϕ•(Zτ1→τ2)

= ϕ•(Zτ1→τ2)

= ϕ• ◦ g(τ1 → τ2)

⊆ (ϕ• ◦ g(τ1 → τ2)) ∪ (ϕ• ◦ g(τ ′))

= ϕ•(g(τ1 → τ2) ∪ g(τ
′))

= ϕ• ◦ g((τ1 → τ2) ∨ g(τ
′))

= ϕ• ◦ g(τ).
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2

Theorem 5.8 If E is typable in T≤1
, then E is F -flow-safe.

Proof. From E being typable in T≤1
we have a canonical-form type deriva-

tion DE ∈ TypeDerivation(T≤1
) with root ∅ ` E : τE for some type τE. Let ϕ

be the unique solution of SetEqSys(DE). Define R ∈ FlowJudgmentSet(E)
such that

R = { (ϕ• ◦ g ◦ A, e, ϕ• ◦ g(τ)) | (A ` e : τ) occurs in DE }

Notice that (∅, E, ϕ• ◦ g(τE)) ∈ R.
We have

collect(R) ⊆ {Int} ∪ (
⋃

T∈types(DE)∩IntersectionType

ϕ•(ZT )).

Notice that types(DE) ∩ IntersectionType is finite, and that each ϕ•(ZT ) is
finite, so collect(R) is finite, hence R is finitary. Notice also that for every
(λx.e)l ∈ Exp(E), we have in DE:

∀k ∈ K : A[x : σk] ` e : τk
A ` (λx.e)l :

∧
k∈K(σk → τk)

so 〈(λx.e)l, ϕ• ◦ g ◦A〉 ∈ collect(R) ∩ Closure(E), and, for all k ∈ K,

((ϕ• ◦ g ◦A)[x : ϕ• ◦ g(σk)], e, ϕ
• ◦ g(τk)) ∈ R,

so argres(〈(λx.e)l, ϕ• ◦ g ◦ A〉, R) 6= ∅, hence R analyzes all its closure bodies.
To show that R is safe, consider (e1 e2)

l ∈ Exp(E). Notice that every
occurrence of a judgment in DE with e1 as the second component is of the
form A ` e1 : δ, where δ ≤1 σ → τ , hence every judgment in R with e1 as
the second component is of the form

(ϕ• ◦ g ◦ A, e1, ϕ
• ◦ g(δ)).

From Lemma 3.10 and δ ≤1 σ → τ we have that either δ = σ → τ , or
δ =

∨
i∈I Ti, where, for all i ∈ I, Ti ∈ IntersectionType. From the definitions

of ϕ• and g, we have Int 6∈ ϕ• ◦ g(δ). Similar arguments can be given for
occurrences of (succ e)l, (if0 e1 e2 e3)

l, so we conclude that R is safe.
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To show that E is F -flow-safe, it remains to be shown that R ⊆ F (R).
It is sufficient to show

∀D ∈ TypeDerivation(T≤1
) : ∀A : ∀e : ∀τ :

if D is a subtree of DE, and D has root A ` e : τ,

then (ϕ• ◦ g ◦ A, e, ϕ• ◦ g(τ)) ∈ F (R).

To prove this, we proceed by induction on the structure of D.
There are now seven subcases depending on which one of Rules (9)–(15)

was the last one used in the derivation of A ` e : τ .

• Rule (9). We have e ≡ xl and the derivation of A ` e : τ if of the form
A′[x : τ ] ` xl : τ . Notice that

ϕ• ◦ g ◦ (A′[x : τ ]) = (ϕ• ◦ g ◦ A′)[x : (ϕ• ◦ g(τ))],

and hence we have (ϕ• ◦ g ◦ (A′[x : τ ]), xl, ϕ• ◦ g(τ)) ∈ F (R).

• Rule (10). We have e ≡ (λx.e1)
l, and the last judgment of the deriva-

tion of A ` e : τ is of the form A ` (λx.e1)
l : τ . We have ((λx.e1)

l, A) ∈
lamenv(τ,DE), so 〈(λx.e1)

l, ϕ• ◦ g ◦ A〉 ∈ ϕ•(Zτ ) = ϕ•◦g(τ), and hence
(ϕ• ◦ g ◦ A, (λx.e1)

l, ϕ• ◦ g(τ)) ∈ F (R).

• Rule (11). We have e ≡ (e1 e2)
l, and the last part of the derivation of

A ` e : τ is of the form

A ` e1 : σ → τ A ` e2 : σ

A ` (e1e2)l : τ

From the two hypotheses of this, and from the definition of R, we have

(ϕ• ◦ g ◦A, e1, ϕ
• ◦ g(σ → τ)) ∈ R

(ϕ• ◦ g ◦A, e2, ϕ
• ◦ g(σ)) ∈ R.

Suppose 〈(λx.e3)
l′, ρ′〉 ∈ ϕ• ◦g(σ → τ) = ϕ(Zσ→τ ). From the definition

of ϕ we have that ρ′ = ϕ• ◦ g ◦ A′ for some A′, and ((λx.e3)
l′, A′) ∈

lamenv(σ → τ,DE). From the definition of lamenv we have that there
exists a type δ such that δ ≤1 (σ → τ) and A′ ` (λx.e3)

l′ : δ occurs
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in DE, and the last rule used to derive this judgment is Rule (10).
We can write δ =

∧
k∈K(σk → τk). The last part of the derivation of

A′ ` (λx.e3)
l′ : δ is of the form

∀k ∈ K : A′[x : σk] ` e3 : τk
A′ ` (λx.e3)l′ :

∧
k∈K(σk → τk)

From the hypotheses of this rule and definition of R we have, for all
k ∈ K,

(ϕ• ◦ g ◦ (A′[x : σk]), e, ϕ
• ◦ g(τk)) ∈ R.

Notice that, for all k ∈ K, ϕ•◦g◦(A′[x : σk]) = (ϕ•◦g◦A′)[x : ϕ•◦g(σk)].
We thus have, for all k ∈ K, ((ϕ•◦g◦A′)[x : ϕ•◦g(σk)], e, ϕ

•◦g(τk)) ∈ R.
Define CJ = { ϕ• ◦ g(σk) | k ∈ J }. It is now sufficient to show that
there exists J such that J ⊆ K and

ϕ• ◦ g(σ) ⊆
⋃

k∈J

(ϕ• ◦ g(σk))

⋃

k∈J

(ϕ• ◦ g(τk)) ⊆ ϕ• ◦ g(τ).

From Lemma 3.10 and δ ≤1 σ → τ we have that there are two cases.

1. If δ = σ → τ , then K is a singleton set, so we choose J = K and
the two properties are immediate.

2. If we have J such that J ⊆ K and σ ≤1
∨

k∈J σk and
∨

k∈J τk ≤1 τ ,
then we use that particular J and then the two properties follow
from Lemma 5.7.

• Rule (12). We have e ≡ cl, and the derivation of A ` e : τ is of the
form A ` cl : Int. Notice that ϕ• ◦ g(Int) = {Int}, and hence we have
(ϕ• ◦ g ◦ A, cl, ϕ• ◦ g(Int)) ∈ F (R).

• Rule (13). We have e ≡ (succ e1)
l, and the last step of the derivation

of A ` e : τ is of the form

A ` e1 : Int

A ` (succ e1)l : Int
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From A ` e1 : Int and the definition of R we have (ϕ• ◦ g ◦ A, e1, ϕ
• ◦

g(Int)) ∈ R. Notice that ϕ•◦g(Int) = {Int}, so (ϕ•◦g◦A, (succ e1)
l, {Int}) ∈

F (R).

• Rule (14). We have e ≡ (if0 e1 e2 e3)
l, and the last part of the derivation

of A ` e : τ is of the form

A ` e1 : Int A ` e2 : τ A ` e3 : τ

A ` (if0 e1 e2 e3)l : τ

From the three hypothesis of this, and from the definition of R, we
have

(ϕ• ◦ g ◦A, e1, ϕ
• ◦ g(Int)) ∈ R,

(ϕ• ◦ g ◦A, e2, ϕ
• ◦ g(τ)) ∈ R,

(ϕ• ◦ g ◦A, e3, ϕ
• ◦ g(τ)) ∈ R,

so

(ϕ• ◦ g ◦A, (if0 e1 e2 e3)
l, ϕ• ◦ g(τ)) ∈ F (R).

• Rule (15). The last part of the derivation of A ` e : τ is of the form

A ` e : σ

A ` e : τ
(σ ≤1 τ)

From A ` e : σ and the induction hypothesis we have

(ϕ• ◦ g ◦ A, e, ϕ• ◦ g(σ)) ∈ F (R).

From σ ≤1 τ and Lemma 5.7 we have ϕ• ◦ g(σ) ⊆ ϕ• ◦ g(τ), and from
this and Lemma 4.1 we have

(ϕ• ◦ g ◦ A, e, ϕ• ◦ g(τ)) ∈ F (R).

2
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In the proof of Theorem 5.8, the induction hypothesis is used only in the
case of Rule (15). It is particularly important for the case of Rule (11) where
e ≡ (e1 e2)

l that the induction hypothesis is not used to prove anything
about (λx.e3)

l′, because (λx.e3)
l′ needs not be a subterm of e; it could occur

anywhere.
Franklyn Turbak and Torben Amtoft have observed that the translation

from flows to types and back to flows can lose precision. For example, con-
sider the λ-term

E = ((λx.101)2 ((λy.303)4 505)6)7

and the F -analysis

R = {(∅[x : {Int}], 101, {Int}),

(∅, (λx.101)2, {〈(λx.101)2, ∅〉}),

(∅[y : {Int}], 303, {Int}),

(∅, (λy.303)4, {〈(λx.101)2, ∅〉}),

(∅, 505, {Int}),

(∅, ((λy.303)4 505)6, {Int}),

(∅, E, {Int})}.

The translation from flows to types maps R into the type derivation D:

∅[x : Int] ` 101 : Int

∅ ` (λx.101)2 : Int → Int

∅[y : Int] ` 303 : Int

∅ ` (λy.303)4 : Int → Int
∅ ` 505 : Int

∅ ` ((λy.303)4 505)6 : Int

∅ ` E : Int

Notice that (λx.101)2, (λy.303)4 both have type Int → Int in D. The transla-
tion from types to flows maps Int → Int to the set

s = { 〈(λx.101)2, ∅〉, 〈(λy.303)4, ∅〉 }

and it maps D into an F -analysis that contains the judgments:

(∅, (λx.101)2, s)

(∅, (λx.303)4, s),

that is, a less precise F -analysis than R.
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6 Example

We will now illustrate how different flow analyses lead to different typings.
We will give details of the flow analysis and typing of the λ-term

E = ((λg.(if0 c (g1 g2)3 (g4 (λy.(y5
0

6)7)8)9)10)11 (λf.(f 12 (λx.x13)14)15)16)17 .

This λ-term was suggested by Joe Wells, and it illustrates a key difference
between 0-CFA and Schmidt’s analysis. Like in the earlier example of the
paper, we assume that the condition c of the if0-expression does not cause
any run-time error. Written without the labels and with the notation let x =
e in e′ standing for (λx.e′)e, the λ-term E looks like:

let g = λf.f(λx.x)

in if0 c (gg) (g(λy.y0)) .

We will present two flow analyses of E. One will be in the style of 0-CFA
and one will be in the style of Schmidt, and we will show that they lead to
different typings.

First, we will do a 0-CFA-style analysis of the λ-term. Define aλg, aλy, aλf , aλx ∈
Closure(E), ρ ∈ FlowEnv(E) to be the unique solution to the next five equa-
tions, and define next R0-CFA:

aλg = 〈(λg.(if0 c (g1 g2)3 (g4 (λy.(y5
0

6)7)8)9)10)11, ρ〉

aλy = 〈(λy.(y5
0

6)7)8, ρ〉

aλf = 〈(λf.(f 12 (λx.x13)14)15)16, ρ〉

aλx = 〈(λx.x13)14, ρ〉

ρ = ∅[g : {aλf}][y : {aλx}][f : {aλf , aλy, aλx}][x : {aλx, Int}]

R0-CFA = { (ρ, g1, { aλf }),

(ρ, g2, { aλf }),

(ρ, (g1 g2)3, { aλx, Int }),

(ρ, g4, { aλf }),

(ρ, y5, { aλx }),

(ρ, 06, { Int }),

(ρ, (y5
0

6)7, { aλx, Int }),

(ρ, (λy.(y5
0

6)7)8, { aλy }),

61



(ρ, (g4 (λy.(y5
0

6)7)8)9, { aλx, Int }),

(ρ, (if0 c (g1 g2)3 (g4 (λy.(y5
0

6)7)8)9)10, { aλx, Int }),

(ρ, (λg.(if0 c (g1 g2)3 (g4 (λy.(y5
0

6)7)8)9)10)11, { aλg }),

(ρ, f 12, { aλf , aλy, aλx })

(ρ, x13, { aλx, Int }),

(ρ, (λx.x13)14, { aλx }),

(ρ, (f 12 (λx.x13)14)15, { aλx, Int }),

(ρ, (λf.(f 12 (λx.x13)14)15)16, { aλf }),

(ρ, E, { aλx, Int }),

}

Notice that we have (ρ, (y5 06)7, { aλx, Int }) rather than (ρ, (y5 06)7, { Int }).
This is because y can evaluate to (λx.x13)14, and (λx.x13)14 is applied to both
(λx.x13)14 and an integer, so the flow information for x is {aλx, Int}. Sim-
ilarly, we have (ρ, (g1 g2)3, {aλx, Int}) rather than (ρ, (g1 g2)3, {aλx}). The
reader is invited to check that R0-CFA ⊆ F (R0-CFA), R0-CFA is safe, and
R0-CFA analyzes all its closure bodies.

Notice that

collect(R0-CFA) = { aλg, aλf , aλy, aλx, Int } .

Notice also that

argres(aλg, R0-CFA) = { ({aλf}, {aλx, Int}) }

argres(aλy, R0-CFA) = { ({aλx}, {aλx, Int}) }

argres(aλf , R0-CFA) = { ({aλf , aλy, aλx}, {aλx, Int}) }

argres(aλx, R0-CFA) = { ({aλx, Int}, {aλx, Int}) }

The equation system TypeEqSys(R0-CFA) contains the following four equa-
tions:

Waλg
= Waλf

→ (Waλx
∨ Int)

Waλy
= Waλx

→ (Waλx
∨ Int)

Waλf
= (Waλf

∨Waλy
∨Waλx

) → (Waλx
∨ Int)

Waλx
= (Waλx

∨ Int) → (Waλx
∨ Int)
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Here is a solution ψ of TypeEqSys(R0-CFA):

ψ(Waλg
) = τ ′ → σ

ψ(Waλy
) = (σ → σ) → σ

ψ(Waλf
) = τ ′

ψ(Waλx
) = σ → σ

where

τ = µα.((α ∨ Int) → (α ∨ Int))

σ = τ ∨ Int

τ ′ = µα.((α ∨ ((σ → σ) → σ) ∨ (σ → σ)) → σ) .

Notice that σ → σ = τ ≤ σ. To see that τ ′ is a type for (λf.(f 12 (λx.x13)14)15)16,
notice that

τ ′ = [τ ′ ∨ ((σ → σ) → σ) ∨ (σ → σ)] → σ

and from Lemma (3.10) we have

τ ′ ∨ ((σ → σ) → σ) ∨ (σ → σ) ≤1 (σ → σ) → σ.

From this we conclude that f 12 has type (σ → σ) → σ, and moreover
(λx.x13)14 has type σ → σ, so (f 12 (λx.x13)14)15 has type σ, as required.

Next, we will do a Schmidt-style analysis of the λ-term. It turns out
that for E, the Schmidt-style analysis gives the same result as an Agesen-
style analysis, since the argument sets of all the argument-result pairs are
singletons, see below. Define

a1
λg, a

1
λy, a

1
λf , a

1
λx, a

2
λx, a

3
λx ∈ Closure(E),

ρ21, ρ22, ρ23, ρ24, ρ2h, ρ26, ρ27, ρ28 ∈ FlowEnv(E),

RSchmidt ∈ FlowJudgmentSet(E)

as follows:

a1
λg = 〈(λg.(if0 c (g1 g2)3 (g4 (λy.(y5

0
6)7)8)9)10)11, ∅〉

a1
λy = 〈(λy.(y5

0
6)7)8, ρ21〉

a1
λf = 〈(λf.(f 12 (λx.x13)14)15)16, ∅〉
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a1
λx = 〈(λx.x13)14, ρ22〉

a2
λx = 〈(λx.x13)14, ρ23〉

a3
λx = 〈(λx.x13)14, ρ25〉

ρ21 = { g : {a1
λf} }

ρ22 = { f : {a1
λf} }

ρ23 = { f : {a1
λy} }

ρ24 = ρ21[y : {a2
λx}]

ρ25 = { f : {a1
λx} }

ρ26 = ρ22[x : {a3
λx}]

ρ27 = ρ23[x : {Int}]

ρ28 = ρ25[x : ∅]

RSchmidt = { (ρ21, g
1, { a1

λf }),

(ρ21, g
2, { a1

λf }),

(ρ21, (g
1 g2)3, { a3

λx }),

(ρ21, g
4, { a1

λf }),

(ρ24, y
5, { a2

λx }),

(ρ24, 0
6, { Int }),

(ρ24, (y
5

0
6)7, { Int }),

(ρ21, (λy.(y
5
0

6)7)8, { a1
λy }),

(ρ21, (g
4 (λy.(y5

0
6)7)8)9, { Int }),

(ρ21, (if0 c (g1 g2)3 (g4 (λy.(y5
0

6)7)8)9)10, { a3
λx, Int }),

(∅, (λg.(if0 c (g1 g2)3 (g4 (λy.(y5
0

6)7)8)9)10)11, { a1
λg }),

(ρ22, f
12, { a1

λf })

(ρ23, f
12, { a1

λy })

(ρ25, f
12, { a1

λx })

(ρ26, x
13, { a3

λx }),

(ρ27, x
13, { Int }),

(ρ28, x
13, ∅),

(ρ22, (λx.x
13)14, { a1

λx }),

(ρ23, (λx.x
13)14, { a2

λx }),
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(ρ25, (λx.x
13)14, { a3

λx }),

(ρ22, (f
12 (λx.x13)14)15, { a3

λx }),

(ρ23, (f
12 (λx.x13)14)15, { Int }),

(ρ25, (f
12 (λx.x13)14)15, { a3

λx }),

(∅, (λf.(f 12 (λx.x13)14)15)16, { a1
λf }),

(∅, E, { a3
λx, Int }),

}

Notice that (ρ28, x
13, ∅) ∈ RSchmidt , reflecting that E can evaluate to a copy of

(λx.x13)14 that is never applied. The judgment (ρ28, x
13, ∅) helps ensure that

RSchmidt analyzes all its closure bodies. The reader is invited to check that
RSchmidt ⊆ F (RSchmidt), RSchmidt is safe, and RSchmidt analyzes all its closure
bodies.

Notice that

collect(RSchmidt) = { a1
λg, a

1
λf , a

1
λy, a

1
λx, a

2
λx, a

3
λx, Int } .

Notice also that

argres(a1
λg, RSchmidt) = { ({a1

λf}, {a
3
λx, Int}) }

argres(a1
λy, RSchmidt) = { ({a2

λx}, {Int}) }

argres(a1
λf , RSchmidt) = { ({a1

λf}, {a
3
λx}), ({a1

λy}, {Int}), ({a1
λx}, {a

3
λx}) }

argres(a1
λx, RSchmidt) = { ({a3

λx}, {a
3
λx}) }

argres(a2
λx, RSchmidt) = { ({Int}, {Int}) }

argres(a3
λx, RSchmidt) = { (∅, ∅) }

The equation system TypeEqSys(RSchmidt) contains the following six equa-
tions:

Wa1

λg
= Wa1

λf
→ (Wa3

λx
∨ Int)

Wa1

λy
= Wa2

λx
→ Int

Wa1

λf
= (Wa1

λf
→Wa3

λx
) ∧ (Wa1

λy
→ Int) ∧ (Wa1

λx
→Wa3

λx
)

Wa1

λx
= Wa3

λx
→Wa3

λx

Wa2

λx
= Int → Int

Wa3

λx
= ⊥ → ⊥
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Here is a solution ψ of TypeEqSys(RSchmidt):

ψ(Wa1

λg
) = τ ′′ → ((⊥ → ⊥) ∨ Int)

ψ(Wa1

λy
) = (Int → Int) → Int

ψ(Wa1

λf
) = τ ′′

ψ(Wa1

λx
) = (⊥ → ⊥) → (⊥ → ⊥)

ψ(Wa2

λx
) = Int → Int

ψ(Wa3

λx
) = ⊥ → ⊥

where

τ ′′ = µα.((α→ (⊥ → ⊥)) ∧

(((Int → Int) → Int) → Int) ∧

(((⊥ → ⊥) → (⊥ → ⊥)) → (⊥ → ⊥))) .

The typing produced via the Schmidt-style analysis is more precise. For
example, it gives λy.y0 the type (Int → Int) → Int, where 0-CFA leads to the
type (σ → σ) → σ, where σ = τ ∨ Int, and τ = µα.((α ∨ Int) → (α ∨ Int)).

In [49], Palsberg and O’Keefe present a mapping from 0-CFA flow in-
formation to the types of Amadio and Cardelli [6]. The type system of [6]
involves subtyping and recursive types but not intersection and union types.
We will now compare the mapping of this paper with the mapping of Pals-
berg and O’Keefe. We do this by showing the result of mapping the 0-CFA
flow information for the λ-term E studied in this section to the types of
Amadio and Cardelli using the mapping of Palsberg and O’Keefe. For our
purposes here, we will not need the recursive types so we only recall the non-
recursive fragment of the Amadio/Cardelli type system. Types are defined
by the following grammar:

t, u ::= t→ t | Int | ⊥ | > .

The type rules are the same as in Section 3, with the straightforward modi-
fication that Rule (10), that is, the rule for λ-abstraction, introduces just a
single function type rather than an intersection of function types. Subtyping
is defined by the rules:

t′ ≤ t u ≤ u′

t→ u ≤ t′ → u′
⊥ ≤ t t ≤ > Int ≤ Int .
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It is straightforward to show that ≤ is reflexive and transitive.
The mapping of Palsberg and O’Keefe maps the 0-CFA flow information

for E to a type derivation for E which we sketch here:

A = ∅[g : ((> → >) → >) → >,

y : > → >,

f : (> → >) → >,

x : >]

A ` (g1 g2)3 : >

A ` 0
6 : >

A ` (λy.(y5
0

6)7)8 : (> → >) → >

A ` (λg.(if0 c (g1 g2)3 (g4 (λy.(y5
0

6)7)8)9)10)11 :

(((> → >) → >) → >) → >

A ` (λx.x13)14 : > → >

A ` (λf.(f 12 (λx.x13)14)15)16 : (((> → >) → >) → >

A ` E : >.

Subtyping is needed twice in that type derivation: 1) to show A ` (g1 g2)3 : >
we need

((> → >) → >) → > ≤ (> → >) → >,

and 2) to show A ` 06 : > we need Int ≤ >.
Compared with the previous 0-CFA-based typing, the biggest difference is

the type for (λf.(f 12 (λx.x13)14)15)16. The type > plays the role of σ = τ∨Int.
By the way, it is straightforward to show that E cannot be typed in the

fragment of the Amadio/Cardelli type system which excludes the rule for
comparing function types. This was noticed by Joe Wells.
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7 A Flow-Type System

In a flow-type system, types and flow information are combined. Such flow-
type systems have been studied by several authors, for example [61, 26, 9, 66,
63, 19]. A flow-type system is useful as an interface between a flow-analysis
algorithm and a program optimizer. We will use our equivalence theorem to
guide the design of a new flow-type system. Our flow-type system is based
on three design decisions:

1. We want the set of typable terms to be the same as the set of terms
typable in T≤1

. We achieve that by annotating the types from T≤1
with

flow information.

2. We want to annotate the types in a way which is suggested by the
mapping from flows to types in Section 5.2. The key property of that
mapping is that a closure is mapped to an intersection type. Thus, we
choose to annotate the intersection types.

3. Following Wells, Dimock, Muller, and Turbak [66], we want to annotate
the intersection types with sets of labels, not sets of closures.

We use π to range over finite sets of labels. Flow types are of one of the
forms:

∨

i∈I

(
∧

k∈K

(σik → σ′
ik))

πi

(
∨

i∈I

(
∧

k∈K

(σik → σ′
ik))

πi) ∨ Int.

A precise definition of the set of types and of type equality can be given like
in Section 3, we omit the details. We use FlowType to denote the set of flow
types. We use δ, σ, τ to range over flow types. We use FlowIntersectionType
to the denote the set of flow types of the form (

∧
k∈K(σk → σ′

k))
π. We use Q

to range over FlowIntersectionType. We use T to range over phrases of the
form

∧
k∈K(σik → σ′

ik). We use u to range over type expressions of the forms
Int and Q.

Definition 7.1 (Acceptable Flow-Type Orderings) We say that an or-
dering ≤ on flow types is acceptable if and only if ≤ satisfies the five condi-
tions:
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1. ≤ is reflexive,

2. ≤ is transitive,

3. if (
∧

k∈K(σk → σ′
k))

π ≤ (τ1 → τ2)
π′

, and u ≤ τ1, then there exists
k0 ∈ K such that u ≤ σk0

and σ′
k0

≤ τ2,

4. (
∧

k∈K(σk → τk))
π 6≤ Int, and

5. Int 6≤ (σ → τ)π.

2

As in Section 3.4, the type system is parameterized by a type ordering.
Given a type ordering ≤, we will inductively define the set T F

≤ of valid type
judgments. The rules are (9)–(15), except that the rules for abstraction and
application are modified to look as follows:

∀k ∈ K : A[x : σk] ` e : τk
A ` (λx.e)l : (

∧
k∈K(σk → τk))π

(l ∈ π) (24)

A ` e1 : (σ → τ)π A ` e2 : σ

A ` (e1e2)l : τ
(25)

To obtain a type preservation result, we can repeat the proofs of Theo-
rem 3.6 and the associated lemmas, with small modifications, and obtain the
following result. We omit the proof.

Theorem 7.2 (Flow-Type Preservation) For an acceptable flow-type or-
dering ≤, if T F

≤ . A ` e : τ and e→V e′, then T F
≤ . A ` e′ : τ .

Define

LabSet : FlowType → P(Lab)

LabSet(Int) = ∅

LabSet(⊥) = ∅

LabSet(τ ∨ τ ′) = LabSet(τ) ∪ LabSet(τ ′)

LabSet(T π) = π

We say that an ordering ≤ on flow types respects flow if and only if

if σ ≤ τ, then LabSet(σ) ⊆ LabSet(τ).
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Theorem 7.3 (Flow Soundness) For an acceptable flow-type ordering ≤
which respects flow, if T F

≤ .A ` e : τ and e→∗
V (λx.e′)l, then l ∈ LabSet(τ).

Proof. From Theorem 7.2 and an induction argument we have T F
≤ . A `

(λx.e′)l : τ . There are now two cases depending on which flow-type rule was
the last one used in the derivation of A ` (λx.e′)l : τ .

• Rule (24). We have τ = (
∧

k∈K(σk → τk))
π, where l ∈ π = LabSet(τ).

• Rule (15). The last part of the derivation of A ` (λx.e′)l : τ is of the
form

A ` e : σ

A ` e : τ
(σ ≤ τ)

where σ = (
∧

k∈K(σk → τk))
π, and l ∈ π = LabSet(σ) ⊆ LabSet(τ).

2

We will now define an acceptable flow-type ordering ≤2 which respects
flow. We write σ ≤2 τ if and only if we can derive σ ≤2 τ using the following
rules.

σ ≤2 δ δ ≤2 τ

σ ≤2 τ

σ ≤2 σ ∨ τ ′

∀i ∈ I : σi ≤2 (τ1 → τ2)
π

∨
i∈I σi ≤2 (τ1 → τ2)π

τ1 ≤2 σ1 σ2 ≤2 τ2

(σ1 → σ2)π′ ≤2 (τ1 → τ2)π
(π′ ⊆ π)

(
∧

k∈K(σk → σ′
k))

π′

≤2 (τ1 → τ2)
π

(
∧

k∈K′(σk → σ′
k))

π′ ≤2 (τ1 → τ2)π
(K ⊆ K ′)

(
∧

k∈K

(σk → σ′
k))

π ≤2 ((
∨

k∈K

σk) → (
∨

k∈K

σ′
k))

π
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Theorem 7.4 The relation ≤2 is an acceptable flow-type ordering which re-
spects flow.

We omit the proof; it is similar to the proof of Theorem 3.12 with a
straightforward extension to show that ≤2 respects flow.

It is straightforward to show that a program is typable in T≤1
if and only

if it is typable in T F
≤2

. From this observation and Corollary 3.9 we get that a
program typable in T F

≤2
cannot go wrong.

We invite the reader to construct a flow-type derivation for the example
program in Section 6.

This completes our development of the flow-type system. Let us now
compare it with the one of Wells, Dimock, Muller, Turbak [66]. Notable
differences include:

• In [66], there is a general ∧-introduction rule. In our system, ∧ can
only be introduced at the point of typing a λ-abstraction.

• In [66], individual function types are annotated. In our system, inter-
section types (possibly consisting of just one function type) are anno-
tated.

• In [66], the types are annotated with two labels sets, one for abstraction
labels and one for call-site labels. In our system, the types are anno-
tated with just one label set, although it is straightforward to extend
our system to annotate in the style of [66].

• In [66], the calculus is explicitly typed. Our calculus is implicitly typed.
It should be possible to construct an explicitly-typed version of our
calculus, using ideas from [66].

• In [66], subtyping for function types allows adding abstraction labels
and removing call-site labels. Our notion of subtyping also allows
adding abstraction labels and, in addition, it allows “deep subtyping”,
that is, changes to the argument and the result type.

• In [66], intersection and union types do not enjoy any algebraic laws
like they do in our calculus. The design choice in [66] has advantages
in the setting of program optimization; see [66] for details.
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In spite of these differences, the calculi in [66] and this paper are quite similar.
Derived systematically via our equivalence theorem, our flow-type system
should be a good interface to the family of polyvariant analyses that we
study.
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