
Information Processing Letters 43 (1992) 175–180.

Safety Analysis versus Type Inference
for Partial Types

Jens Palsberg Michael I. Schwartzbach

palsberg@daimi.aau.dk mis@daimi.aau.dk

Computer Science Department, Aarhus University

Ny Munkegade, DK-8000 Aarhus C, Denmark

Abstract

Safety analysis is an algorithm for determining if a term in an untyped
lambda calculus with constants is safe, i.e., if it does not cause an error
during evaluation. We prove that safety analysis accepts strictly more safe
lambda terms than does type inference for Thatte’s partial types.

1 Introduction

We will compare two techniques for analyzing the safety of terms in an untyped
lambda calculus with constants, see figure 1. The safety we are concerned with
is the absence of those run-time errors that arise from the misuse of constants.
In this paper we consider just the two constants 0 and succ. They can be mis-
used either by applying a number to an argument, or by applying succ to an
abstraction. Safety is undecidable so any analysis algorithm must reject some
safe programs.

E ::= x | λx.E | E1E2 | 0 | succ E

Figure 1: The lambda calculus.

One way of achieving a safety guarantee is to perform type inference (TI), because
“well-typed programs cannot go wrong”. Two examples of type systems for which
type inference algorithms exist are those of simple types [4] and Thatte’s partial
types [9, 5, 3]. Note that any term that has a simple type also has a partial type.

1

Another way of achieving a safety guarantee is the analysis method of the present
authors, simply called safety analysis (SA) [6]. In a previous paper [6], we proved
that SA accepts strictly more safe terms that does TI for simple types. This
paper improves our result by proving that SA accepts strictly more safe terms
than does TI for partial types.

In the following section we recall the definitions of type inference for partial types
and of safety analysis. In section 3 we prove our result.

2 The Formal Systems

Both TI and SA can be described as four-step processes, as follows. First, the
lambda term is α-converted so that every λ-bound variable is distinct. This means
that every abstraction λx.E can be denoted by the unique token λx. Second, a
type variable [[E]] is assigned to every subterm E. Third, a finite collection
of constraints over these variables is generated from the syntax. Finally, these
constraints are solved. This presentation of type inference is due to Wand [10].
Polymorphic let could be treated by both analyses by doing syntactic expansion.

Type inference and safety analysis employ constraints over different domains. In
type inference for partial types, type variables range over the following types:

τ ::= Ω | Int | τ1 → τ2

Types are partially ordered as follows:

τ ≤ Ω
τ → σ ≤ τ ′ → σ′ ⇐⇒ τ ′ ≤ τ ∧ σ ≤ σ′

Int ≤ Int

Thus, partial types have a largest type Ω and involve the usual contravariant rule
for arrow types. Typical inclusions are Ω → Ω ≤ Ω, Ω → Ω ≤ (Ω → Ω) → Ω,
and Int ≤ Ω. Intuitively, τ ≤ σ allows a coercion from τ to σ that forgets some
type structure. The type Ω contains only the information “well-typed”.

The constraints are generated inductively in the syntax, see figure 2. A cubic
time algorithm for solving such constraints has been presented by Kozen and the
present authors [3]. It improved the exponential time algorithm of O’Keefe and
Wand [5]. If no solution exists, then the program is not typable. Note that, if
the inequalities are strengthened to equalities, then we get the constraints of type
inference for simple types. Such equalities are solvable in linear time.

As an example of a term that does not have a simple type but does have a partial
type, consider λf.(K(fI)(f0)) where K and I are the usual combinators. This
term has type (Ω → Ω) → Ω since both I and 0 have type Ω.

2

Phrase: Constraint:
λx.E [[λx.E]] ≥ [[x]] → [[E]]
E1E2 [[E1]] ≤ [[E2]] → [[E1E2]]
0 [[0]] ≥ Int

succ E [[succ E]] ≥ Int ∧ [[E]] = Int

Figure 2: Type inference for partial types.

Type inference can analyze terms with respect to an arbitrary type environment.
This is in contrast to safety analysis which is based on closure analysis [7, 1]
(also called control flow analysis by Jones [2] and Shivers [8]). The closures

of a term are simply the subterms corresponding to lambda abstractions. A
closure analysis approximates for every subterm the set of possible closures to
which it may evaluate [2, 7, 1, 8]. Safety analysis is simply a closure analysis
that does appropriate safety checks. Our safety analysis requires that the initial
type environment only binds variables to base types. This is because it requires
knowledge of all closures that may occur during evaluation. Safety analysis thus
has its applicability limited to mainly situations where a complete program is to
be analyzed.

In safety analysis, type variables range over sets of closures and the base type
Int. We denote by lambda the finite set of all lambda tokens in the main term,
henceforth called E0. The constraints are generated from the syntax, see figure 3.
As a conceptual aid, the constraints are grouped into basic, safety, and connecting

constraints.

The connecting constraints reflect the relationship between formal and actual
arguments and results. The condition λx ∈ [[E1]] states that the two inclusions
are relevant only if the closure denoted by λx is a possible result of E1.

We let SA denote the global constraint system, i.e., the collection of constraints
for every subterm. If the safety constraints are excluded, then the remaining
constraint system, denoted CA, yields a closure analysis. The SA constraint
system for a simple term is shown in figure 4.

A solution assigns a set to each variable such that all constraints are satisfied.
Solutions are ordered by variable-wise set inclusion. The CA system is always
solvable: since we have no inclusion of the form X ⊆ {. . .}, we can obtain a
maximal solution by assigning lambda ∪ {Int} to every variable. Thus, closure
information can always be obtained for a lambda term.

It is easy to see that if SA has a solution, then it has a unique minimal one. The
proof follows from observing that solutions are closed under intersection, see [6].
SA need not be solvable, thus reflecting that not all lambda terms are safe.

3

Phrase: Basic constraints:
λx.E [[λx.E]] ⊇ {λx}
0 [[0]] ⊇ {Int}
succ E [[succ E]] ⊇ {Int}

Phrase: Safety constraints:
E1E2 [[E1]] ⊆ lambda

succ E [[E]] ⊆ {Int}

Phrase: Connecting constraints:
E1E2 For every λx.E in E0,

if λx ∈ [[E1]] then
[[E2]] ⊆ [[x]] ∧ [[E1E2]] ⊇ [[E]]

Figure 3: Safety analysis.

The safety analysis accepts the term λf.(K(fI)(f0)) from before because the
constraints reflect that 0 will not be applied to anything during evaluation.

There is a cubic time algorithm that, given E0, computes the minimal solution
of SA, or decides that none exists. The algorithm is based on a straightforward
fixed-point computation.

In the paper [6] we showed that safety analysis is sound with respect to both a
strict and a lazy semantics of the lambda calculus. Soundness means that if a
term is accepted, then it is safe. We actually proved the soundness of a strictly
better safety analysis, see [6]. The improved safety analysis will for example
correctly accept λx.00 because it recognizes that 00 is “dead code”.

3 The Result

We now show that safety analysis accepts strictly more safe terms than does type
inference for partial types.

The proof involves several lemmas, see figure 5. The main technical problem to be
solved is that SA and TI are constraint systems over two different domains, sets
of closures versus types. This makes a direct comparison hard. We overcome this
problem by applying solvability preserving maps into constraints over a common
four-point domain.

We first show that the possibly conditional constraints of SA are equivalent to
a set of unconditional constraints (USA). USA is obtained from SA by repeated

4

Constraints:

[[λy.y0]] ⊇ {λy}
[[λx.x]] ⊇ {λx}
[[0]] ⊇ {Int}
[[λy.y0]] ⊆ {λx, λy}
[[y]] ⊆ {λx, λy}

λx ∈ [[λy.y0]] ⇒ [[λx.x]] ⊆ [[x]] ∧ [[(λy.y0)(λx.x)]] ⊇ [[x]]
λy ∈ [[λy.y0]] ⇒ [[λx.x]] ⊆ [[y]] ∧ [[(λy.y0)(λx.x)]] ⊇ [[y0]]

λx ∈ [[y]] ⇒ [[0]] ⊆ [[x]] ∧ [[y0]] ⊇ [[x]]
λy ∈ [[y]] ⇒ [[0]] ⊆ [[y]] ∧ [[y0]] ⊇ [[y0]]

Minimal solution:

[[(λy.y0)(λx.x)]] = [[y0]] = [[0]] = [[x]] = {Int}
[[λx.x]] = [[y]] = {λx}
[[λy.y0]] = {λy}

Figure 4: SA constraints for (λy.y0)(λx.x).

TI
3

⇐⇒ TI
6

=⇒ USA
1

⇐⇒ SA
4 ⇓ ψ φ m 2

4-constraints

Figure 5: Solvability of constraints.

transformations. A set of constraints can be described by a pair (C,U) where C
contains the conditional constraints and U the unconditional ones. We have two
different transformations:

a) If U is solvable and c holds in the minimal solution, then (C ∪{c⇒ K}, U)
becomes (C,U ∪ {K}).

b) If case a) is not applicable, then (C,U) becomes (∅, U).

This process clearly terminates, since each transformation removes at least one
conditional constraint. Note that case b) applies if either U is unsolvable or no
condition in C is satisfied in the minimal solution of U .

Lemma 1: SA is solvable iff USA is solvable.
Proof: We show that each transformation preserves solvability.

a) We know that U is solvable, and that c holds in the minimal solution, hence
in all solutions. Assume that (C ∪ {c ⇒ K}, U) has solution L. Then L

5

is also a solution of U . Thus, c must hold in L, and so must K. But then
(C,U ∪ {K}) also has solution L. Conversely, assume that (C,U ∪ {K}) is
solvable. Then so is (C ∪ {c ⇒ K}, U), since K holds whether c does or
not.

b) If (C,U) is solvable, then clearly so is (∅, U). Assume now that (∅, U) is
solvable, and that no condition in C holds in the minimal solution of U .
Then clearly (C,U) can inherit this solution.

It follows that solvability is preserved for any sequence of transformations. 2

We now introduce a particularly simple kind of constraints, which we call 4-

constraints. Here variables range over the set {⊥, λ, Int,Ω} which is partially
ordered by v in the following way:

J

J
J

J
J
J

λ

Ω

⊥

Int

We define a function φ which maps USA constraints into 4-constraints. Individual
constraints are mapped as follows:

USA φ(USA)

X ⊆ Y X v Y

X ⊆ lambda X v λ

X ⊇ {λx} X w λ

X ⊇ {Int} X w Int

X ⊆ {Int} X v Int

It turns out that φ preserves solvability.

Lemma 2: USA is solvable iff φ(USA) is solvable.
Proof: Assume that L is a solution of USA. We construct a solution of φ(USA)
as follows:

Assign to X



















⊥ if L(X) = ∅
Int if L(X) = {Int}
λ if L(X) is a non-empty subset of lambda

Ω if L(X) = Y ∪ {Int}, where Y is a non-empty subset of lambda

6

Conversely, assume that L is a solution of φ(USA). We obtain a (non-minimal)
solution of USA as follows:

Assign to X



















∅ if L(X) = ⊥
{Int} if L(X) = Int

lambda if L(X) = λ

lambda ∪ {Int} if L(X) = Ω

This concludes the proof. 2

Next, we define the closure TI as the smallest set of constraints that contains
TI and is closed under antisymmetry, reflexivity, and transitivity of ≤, and the
following property: if α → β ≤ α′ → β ′, then α ≥ α′ and β ≤ β ′. Hardly
surprising, this closure preserves solvability.

Lemma 3: TI is solvable iff TI is solvable.
Proof: The implication from right to left is immediate. Assume that TI is
solvable. The ordering ≤ is clearly antisymmetric, reflexive, and transitive. The
additional property will also be true for any solution. Hence, TI inherits all
solutions of TI. 2

We define a function ψ which maps TI into 4-constraints. Individual constraints
are mapped as follows:

TI ψ(TI)

X ≤ Y X v Y

X ≤ α → β X v λ

X ≥ α → β X w λ

X = Int X v Int

X ≥ Int X w Int

We show that ψ preserves solvability in one direction.

Lemma 4: If TI is solvable, then so is ψ(TI).
Proof: Assume that L is a solution of TI. We can construct a solution of ψ(TI)
by assigning Int to X if L(X) = Int, assigning λ to X if L(X) = α → β, and
assigning Ω to X if L(X) = Ω. 2

We now show the crucial connection between type inference and safety analysis.

Lemma 5: The USA constraints are contained in the TI constraints, in the sense
that φ(USA) ⊆ ψ(TI).
Proof: We proceed by induction in the number of transformations performed on
SA.

7

In the base case, we consider the SA configuration (C,U), where U contains all
the basic and safety constraints. For any 0, SA yields the constraint [[0]] ⊇ {Int}
which by φ is mapped to [[0]] w {Int}. TI yields the constraint [[0]] ≥ {Int}
which by ψ is mapped to [[0]] w {Int} as well. A similar argument applies to the
constraints yielded for succ E, λx.E, and E1E2. Thus, we have established the
induction base.

For the induction step we assume that φ(U) ⊆ ψ(TI). If we use the b)-transformation
and move from (C,U) to (∅, U), then the result is immediate. Assume therefore
that we apply the a)-transformation. Then U is solvable, and some condition
λx ∈ [[E1]] has been established for the application E1E2 in the minimal solution.
This opens up for two new connecting constraints: [[E2]] ⊆ [[x]] and [[E1E2]] ⊇ [[E]].
We must show that similar inequalities hold in TI. The only way to enable the
condition in the minimal solution of U is to have a chain of U -constraints:

{λx} ⊆ [[λx.E]] ⊆ X1 ⊆ X2 ⊆ · · · ⊆ X
n
⊆ [[E1]]

Since both φ and ψ act like the identity on constraints that are inequalities
between variables, we know by the induction hypothesis that in TI we have

[[λx.E]] ≤ X1 ≤ X2 ≤ · · · ≤ X
n
≤ [[E1]]

From the TI constraints [[λx.E]] ≥ [[x]] → [[E]] and [[E1]] ≤ [[E2]] → [[E1E2]] and
the closure properties of TI it follows that [[E2]] ≤ [[x]] and [[E1E2]] ≥ [[E]], which
was our proof obligation. Thus, we have established the induction step.

As USA is obtained by a finite number of transformations, the result follows. 2

This allows us to complete the final link in the chain.

Lemma 6: If TI is solvable, then so is USA.
Proof: Assume that TI is solvable. From lemma 4 it follows that so is ψ(TI).
Since from lemma 5 φ(USA) is a subset, it must also be solvable. From lemma 2
it follows that USA is solvable. 2

We conclude that SA is at least as powerful as TI.

Theorem: If TI is solvable, then so is SA.
Proof: We need only to bring the lemmas together, as indicated in figure 5. 2

Some safe terms are accepted by SA but rejected by TI. As an example, consider
the term (λx.xx)(λx.xx). It is accepted by SA because it contains no constants,
so no safety constraints will be involved. The term is not accepted by TI, however,
as shown by O’Keefe and Wand [5].

The proof of our theorem sheds some light on why and how SA accepts more safe
terms than TI. Consider a solution of TI that is transformed into a solution of SA

8

according to the strategy implied in figure 5. All closure sets will be the maximal
set lambda. Thus, the more fine-grained distinction between individual closures
is lost.

Our result is still valid if we allow recursive types. Here the TI constraints are
exactly the same, but the types are changed from finite to regular trees. This
allows solutions to constraints such as X ≤ Int → X. Only lemma 4 is influenced,
but the proof carries through with virtually no modifications. Type inference with
recursive types will accept all terms without constants, as does SA. It remains to
be seen if the containment in SA is still strict. Note though that the containment
in the improved safety analysis [6] is trivially strict.

The development in this paper can straightforwardly be extended to an arbitrary
signature of constants. The idea is to treat base types like we have treated Int, and
to treat structured types, such as List, like we have treated lambda abstractions.

References

[1] Anders Bondorf. Automatic autoprojection of higher order recursive equations. Science

of Computer Programming, 17(1–3):3–34, December 1991.

[2] Neil D. Jones. Flow analysis of lambda expressions. In Proc. Eighth Colloquium on

Automata, Languages, and Programming, pages 114–128. Springer-Verlag (LNCS 115),
1981.

[3] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient inference of partial
types. Journal of Computer and System Sciences, 49(2):306–324, 1994. Also in Proc.
FOCS’92, 33rd IEEE Symposium on Foundations of Computer Science, pages 363–371,
Pittsburgh, Pennsylvania, October 1992.

[4] Robin Milner. A theory of type polymorphism in programming. Journal of Computer and

System Sciences, 17:348–375, 1978.

[5] Patrick M. O’Keefe and Mitchell Wand. Type inference for partial types is decidable. In
Proc. ESOP’92, European Symposium on Programming, pages 408–417. Springer-Verlag
(LNCS 582), 1992.

[6] Jens Palsberg and Michael I. Schwartzbach. Safety analysis versus type inference. Infor-

mation and Computation, 118(1):128–141, 1995.

[7] Peter Sestoft. Replacing function parameters by global variables. In Proc. Conference on

Functional Programming Languages and Computer Architecture, pages 39–53, 1989.

[8] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis, CMU, May
1991. CMU–CS–91–145.

[9] Satish Thatte. Type inference with partial types. In Proc. International Colloquium on

Automata, Languages, and Programming 1988, pages 615–629. Springer-Verlag (LNCS

317), 1988.

[10] Mitchell Wand. A simple algorithm and proof for type inference. Fundamentae Informat-

icae, X:115–122, 1987.

9

