
Information and Computation, to appear.

Efficient and Flexible Matching of Recursive
Types

Jens Palsberg Tian Zhao
Purdue University∗

June 11, 2001

Abstract

Equality and subtyping of recursive types have been studied in the
1990s by Amadio and Cardelli; Kozen, Palsberg, and Schwartzbach;
Brandt and Henglein; and others. Potential applications include auto-
matic generation of bridge code for multi-language systems and type-
based retrieval of software modules from libraries. In this paper, we
present an efficient decision procedure for a notion of type equality
that includes unfolding of recursive types, and associativity and com-
mutativity of product types. Advocated by Auerbach, Barton, and
Raghavachari, these properties enable flexible matching of types. For
two types of size at most n, our algorithm takes O(n) iterations each
of which takes O(n) time, for a total of O(n2) time.

1 Introduction

Much previous work on type equality focuses on non-recursive types [10, 14,
23, 27, 28, 29, 31, 34]. In this paper we consider equality of recursive types.

∗Purdue University, Dept of Computer Science, W Lafayette, IN 47907,
{palsberg,tzhao}@cs.purdue.edu.

1

Background. Potential applications of flexible type equality include au-
tomatic generation of bridge code for multi-language systems [6, 8], and
type-based retrieval of software modules from libraries [27, 28, 29, 34].

Software engineers often look into a software library to find reusable com-
ponents for their applications. A large library can be hard to search, how-
ever. It may be organized in alphabetical order or coarsely sorted according
to some structure. Beyond the structural information of the library, the only
thing that we can rely on is the component name to retrieve the code we
need. Component names are difficult to guess. So, it makes sense to search
by the type of the components. A component that fits the specification of a
programmer does not always have the exact same type as the one the user is
using as search key. That is why we need a flexible notion of type equality.

For example, suppose we are looking for a function of type:

(bool× int)→ (bool× int).

We may require the matched function to have exactly the same type, that
is, the argument types are in the same order and so are the return types.
However, this may be too restrictive. Some functions may have similar types
which can be converted into the sought type via simple transformations such
as argument reordering or currying. For instance, functions with the follow-
ing types

(int× bool)→ (bool× int)

or

bool→ (int→ (bool× int))

can be converted to a function of the desired type by reordering the argu-
ments or by uncurrying. Furthermore, a function that returns a pair can be
translated into two functions that return the components of the pair. The
type

((int× bool)→ bool)× ((int× bool)→ int)

may be what we want as well.
Rittri [28] was one of the first to explore the use of finite types as search

keys. Zaremski and Wing [34] used a similar approach for retrieving com-
ponents from an ML-like functional library. Zaremski and Wing emphasized
flexibility and support for user-defined types.

2

Designing and maintaining a multi-language application often calls for
bridge code for components written in various programming languages such
as C, C++ and Java. The conversion of values of isomorphic (equivalent)
types is essential. The foundation of deciding whether a conversion makes
sense at all is a flexible notion of type equality. An alternative might be
to start with just one type, and then translate it into a type in a different
language [17]. Such a translation may be helpful when building a new soft-
ware component that should be connected to an existing one. However, when
faced with connecting two existing software components, type matching and
automatic bridge code generation seems more helpful.

CORBA [24], PolySpin [8] and Mockingbird [7, 5] are systems for glu-
ing together components from different languages. In some multi-language
applications, software modules can be considered to be of two kinds, object
and client. Objects must include public interfaces to allow access from clients
written in different languages.

CORBA-style approaches utilize a separate interface definition language
called IDL. The objects are wrapped with language-independent interfaces
defined in IDL. The wrappers are translated into interfaces in the languages
that clients are using so that clients can invoke methods in these objects via
the interfaces. Exact types are preserved as the method invocations cross the
language boundaries, because both the client and object adhere to the com-
mon interfaces for interaction. Since interfaces defined in IDL must be able
to be translated into many different languages, the type system in IDL has to
be the intersection of the type systems of all the programming languages that
CORBA supports. As a result, declarations in IDL lack expressive power and
may not be convenient for local computation.

The PolySpin and Mockingbird projects offer alternatives to defining in-
terfaces in a common interface language. In both approaches, clients and ob-
jects are written within their own type systems and remote operation across a
language boundary is supported automatically by compiler-generated bridge
code or by modifying object method implementations. Because object inter-
faces are not defined in a common type system, we must be able to convert
an object interface into the compatible form in other languages. PolySpin
employed an isomorphism framework similar to Zaremski and Wing [34].

Compared with PolySpin, Mockingbird allows more flexible translations
of types across languages. PolySpin supports only finite types; Mockingbird
supports recursive types, including records, linked lists, and arrays. The
Mockingbird system is based on conservative heuristics for determining com-

3

patibility of recursive types. The improvement of PolySpin and Mockingbird
over CORBA largely rests on the ability to use native type systems in defining
operations across programming languages.

In object-oriented languages such as C++ and Java, many types are
recursive. Thus, to be useful for such languages, a flexible notion of type
equality should be able to handle recursive types.

The Problem. Equality and subtyping of recursive types have been stud-
ied in the 1990s by Amadio and Cardelli [2]; Kozen, Palsberg, and Schwartzbach
[21]; Brandt and Henglein [9]; Jim and Palsberg [19]; and others. These pa-
pers concentrate on the case where two types are considered equal if their
infinite unfoldings are identical. Type equality can be decided in O(nα(n))
time, and a notion of subtyping defined by Amadio and Cardelli [2] can be
decided in O(n2) time [21].

If we allow a product-type constructor to be associative and commuta-
tive, then two recursive types may be considered equal without their infinite
unfoldings being identical. Alternatively, think of a product type as a mul-
tiset, by which associativity and commutativity are obtained for free. Such
flexibility has been advocated by Auerbach, Barton, and Raghavachari [6].
Until now, there are no efficient algorithmic techniques for deciding type
equality in this case. One approach would be to guess an ordering and a
bracketing of all products, and then use a standard polynomial-time method
for checking that the infinite unfoldings of the resulting types are identical.
For types without infinite products, such an algorithm runs in NP time. One
of the inherent problems with allowing the product-type constructor to be
associative and commutative is that

A× A×B = A×B × A,

while

A× A×B 6= A×B ×B.

Notice the significance of the multiplicity of a type in a product. One could
imagine that an algorithm for deciding type equality would begin by deter-
mining the multiplicities of all components of product types, or even order
the components. However, it seems like this would have to rely on being able
to decide type equality for the component types, and because the types may
be recursive, this seems to lead to a chicken-and-egg problem.

4

Our Result. We have developed an efficient decision procedure for a notion
of type equality that includes unfolding of recursive types, and associativity
and commutativity of product types, as advocated by Auerbach et al. For
two types of size at most n, our algorithm decides equality in O(n2) time.
The main data structure is a set of type pairs, where each pair consists of two
types that potentially are equal. Initially, all pairs of subtrees of the input
types are deemed potentially equal. The algorithm iteratively prunes the set
of type pairs, and eventually it produces a set of pairs of equal types. The
algorithm takes O(n) iterations each of which takes O(n) time, for a total of
O(n2) time.

Implementation. We have implemented a type-matching tool based on
our algorithm. The tool is for matching Java interfaces. It supports a notion
of equality for which interface names and method names do not matter, and
for which the order of the methods in an interface and the order of the
arguments of a method do not matter. When given two Java interfaces,
our tool will determine whether they are equivalent, and if they are, it will
present the user with a textual representation of all possible ways of matching
them. In case there is more one way of matching the interfaces, the user can
input some restrictions, and invoke the matching algorithm again. These
restrictions may come from non-structural information known to the user
such as the semantics of the methods. In this way, the user can interact with
the tool until a unique matching has been found.

Rest of the Paper. In the following section we give an overview of our
techniques by way of an example. In Section 3 we summarize related work,
in Section 5 we present our algorithm in detail. In Section 6 we show an
extension to intersection and union types.

2 Example

The purpose of this section is to give a gentle introduction to the algorithm
and some of the definitions in Section 5. We do that by walking through
a run of our algorithm on a simple example. While the example does not
require all of the sophistication of our algorithm, it may give the reader a
taste of what follows in Section 5.

Suppose we are given the following two sets of Java interfaces.

5

interface I1 { interface I2 {
float m1 (I1 a); I1 m3 (float a);
int m2 (I2 a); I2 m4 (float a);

} }

and

interface J1 { interface J2 {
J1 n1 (float a); int n3 (J1 a);
J2 n2 (float a); float n4 (J2 a);

} }
We would like to find out whether interface I1 is structurally equal to

interface J2. We want a notion of equality for which interface names and
method names do not matter, and for which the order of the methods in an
interface and the order of the arguments of a method do not matter.

Notice that interface I1 is recursively defined. The method m1 takes an
argument of type I1 and returns a floating point number. In the following, we
use names of interfaces and methods to stand for their type structures. The
type of method m1 can be expressed as I1 → float. The symbol→ stands for
the function type constructor. Similarly, the type of m2 is I2 → int. We can
then capture the structure of I1 with conventional µ-notation for recursive
types:

I1 = µα.(α→ float)× (I2 → int)

The symbol α is the type variable bound to the type I1 by the symbol µ. The
interface type I1 is a product type with the symbol × as the type constructor.
Since we think of the methods of interface I1 as unordered, we could also write
the structure of I1 as

I1 = µα.(I2 → int)× (α→ float) ,

I2 = µδ.(float→ I1)× (float→ δ) .

The unfolding rule for recursive types says that

µα.τ = τ [α := µα.τ],

which means that the recursive type µα.τ is equivalent to τ where every free
occurrence of α in τ is replaced by µα.τ . Infinite unfolding of a recursive type
will result in a regular tree, that is, a tree with a finite number of distinct
subtrees. For example, we can depict I1, I2 as follows:

6

I1×
�
�→
@

float
�

I1

@
@→
�

I2

@

int

I2×
�

�→
@

I1

�

float

@
@→
�

float
@

I2

In the same way, the structures of the interfaces J1, J2 are:

J1 = µβ.(float→ β)× (float→ J2)

J2 = µη.(J1 → int)× (η → float).

The tree forms of J1, J2 are the following.

J1×
�
�→
@

J1

�

float

@
@→
�

float
@

J2

J2×
�
�→
@

int
�

J1

@
@→
�

J2

@

float

The interface types I1, J2 are equal iff there exists a bijection from the
methods in I1 to the methods in J2 such that each pair of methods in the
bijection relation have the same type. The types of two methods are equal
iff the types of the arguments and the return types are equal.

The equality of the interface types I1 and J2 can be determined by trying
out all possible orderings of the methods in each interface and comparing the
two types in the form of finite automata. In this case, there are few possible
orderings. However, if the number of methods is large and/or some methods
take many arguments, the above approach becomes time consuming because
the number of possible orderings grows exponentially.

Our approach is related to the pebbling concept used by Dowling and
Gallier [16]. We propagate information about inequality from the type pairs
known to be unequal towards the ones we are interested in.

We will use the concepts of bipartite graphs and perfect matching . A
bipartite graph is an undirected graph where the vertices can be divided
into two sets such that no edge connects vertices in the same set. A perfect
matching is a matching, or subset of edges without common vertices, of a
graph which touch all vertices exactly once.

We organize the types of interfaces, methods, and base types (such as
int) into a bipartite graph (V,W,R), where V represents the types in in-
terfaces I1, I2 and W represents the types in interfaces J1, J2. That is, V =

7

{I1, I2,m1,m2,m3,m4, int, f loat}, andW = {J1, J2, n1, n2, n3, n4, int, f loat}.
The set of edges R represents “hoped-for” equality of types.

We initialize R as (V × W), that is, we treat every pair of types as
equivalent types at the start. The idea is that by iteration, we remove edges
between types that are not equal. When no more edges can be removed, the
algorithm stops. The types connected in the final graph are equal.

First, we remove the edges between types that are obviously not equal.
For example, an interface type and a method type are not equal; and a
base type and a method type are not equal. We remove edges that connect
interface types and method types, and edges between method types and base
types.

In the iterations that follow, we remove edges between types that are not
equal based on the information known from previous iterations. For example,
we can determine that the method types m1 and n1 are not equal because
the argument type of m1 is I1 while the argument type of n1 is float, and the
edge between I1 and float is removed in the preceding iteration. Therefore,
we remove the edge between m1 and n1.

The interesting part is to determine whether the types of two interfaces
with n methods each are not equal based on information from previous it-
erations. This subproblem is equivalent to the perfect matching problem of
a bipartite graph (V ′,W ′, R′), where V ′ and W ′ are the sets of methods in
each interface, and there is an edge between two methods iff the types of the
two methods have not been determined unequal in the previous iterations. If
the set of edges R′ is arbitrary, then the complexity of the perfect matching
problem is O(n5/2) (see [18]).

However, the graph (V,W,R) has a coherence property: if a vertex in V
can reach a vertex in W , then there is an edge between these two vertices.
Coherence both enables us to perform each iteration efficiently, and guaran-
tees that the whole algorithm will terminate within |V |+ |W | iterations.

The resulting bipartite graphs after the second, the third, and the fourth
iterations are given in Figure 1. In the third iteration, we examine the edges
between interface types and determine whether we should remove some of
the edges. For the types of interfaces I1 and J1 to be equal, there must
exist a bijection from {m1,m2} to {n1, n2} such that the pair of methods in
the bijection relation are connected in the bipartite graph after the second
iteration. It is clear that the types of interface I1 and J1 are not equal since
there is no edge between m1,m2 and n1, n2 at all. Thus, the edge between
I1 and J1 is removed. Similarly, we remove the edge between I2 and J2.

8

I1

I2

m1

m2

m3

m4

int

float

J1

J2

n1

n2

n3

n4

int

float

XXXXXXXX���
��
���

Z
Z
Z
Z
Z
Z
Z
Z

XXXXXXXX���
���

��

��
��
��
��

�
�
�
�
�
�
�
�

��
�
��
�
��

I1

I2

m1

m2

m3

m4

int

float

J1

J2

n1

n2

n3

n4

int

float

XXXXXXXX���
���

��

Z
Z
Z
Z
Z
Z
Z
Z

XXXXXXXX���
���

��

��
��
�
��
�

�
�
�
�
�
�
�
�

��
�
��
�
��

I1

I2

m1

m2

m3

m4

int

float

J1

J2

n1

n2

n3

n4

int

float

XXXXXXXX���
���

��

Z
Z
Z
Z
Z
Z
Z
Z

XXXXXXXX���
���

��

�
�
�
�
�
�
�
�

Figure 1: From the left to the right are the bipartite graphs after the second,
the third and the fourth iterations.

By the same steps, we are able to remove the edge between m3 and n1, and
the edge between m4 and n2 in the fourth iteration. After that, we cannot
remove any more edges from the graph. Now the algorithm terminates and
we can conclude that interface I1 is equal to interface J2. If we compare
two types that can be represented with two automata each of size at most
n, then the above algorithm will spend O(n) time in each iteration and will
terminate within O(n) iterations, for a total of O(n2) time.

The simple example above does not reveal how the coherence property
of an edge set can help speed up an iteration. This is because interfaces
I1, I2, J1, J2 only have two methods each. In the Section 5 we present an
efficient algorithm for the general case.

3 Related Work

Problems of type isomorphism can be divided into three categories: word
problems, matching problems and unification problems. A word problem is
to decide the equality of two types via a theory of isomorphism. The types
could be finite or infinite and they may contain types variables. A matching
problem is to decide for given a pair (p, s) of types (the pattern and the
subject), whether there exists a substitution σ such that pσ is equal to s.
Similarly, a unification problem is about the existence of σ such that pσ and
sσ are equal. Notice that matching is a generalization of the word problem

9

while a special case of unification. If p and s do not contain type variables,
then the matching and unification problems reduce to word problem.

A ` σ × τ = τ × σ (Com×)

A ` σ × (τ × δ) = (σ × τ)× δ (Assoc×)

A ` (σ × τ)→ δ = σ → (τ → δ) (Curry)

A ` σ → (τ × δ) = (σ → τ)× (σ → δ) (Distrib→ ×)

A ` σ ×T = σ (Ident ×)

A ` σ → T = T (Unit)

A ` T→ σ = σ (Ident →)

A ` σ = σ (Ref)

A ` σ = δ A ` δ = τ

A ` σ = τ
(Trans)

A ` σ = τ

A ` τ = σ
(Sym)

A ` σ1 = τ1 A ` σ2 = τ2

A ` σ1 → σ2 = τ1 → τ2

(Cong→)

A ` σ1 = τ1 A ` σ2 = τ2

A ` σ1 × σ2 = τ1 × τ2

(Cong×)

Figure 2: TCC .

The axiom system TCC in Figure 2 gives a sound and complete axioma-
tization of isomorphism of types in Cartesian Closed categories [31, 10]. If
we exclude Rules (Distrib→ ×), (Ident →), then the remaining axiom
system, denoted TSMC , gives a sound and complete axiomatization of isomor-
phism (called linear isomorphism) of types in Symmetric Monoidal Closed
categories [30]. Rittri [27, 28, 29] used both kinds of isomorphism in his
work on using types as search keys. The following table summarizes some
decidability results for TCC and TSMC .

Axioms Word problem Matching problem Unification problem
TCC n2 log(n) [12] NP-hard, decidable [23] Undecidable [23]

TSMC n log2(n) [3] NP [23] NP-complete [23]

10

One approach to deciding whether two types are isomorphic in TCC is
based on first reducing both types to a normal form. Bruce, Di Cosmo and
Longo defined a notion of normal form and proved its properties. The idea is
to repeatedly apply the following set R of reduction rules until it no longer
applies:

R =



σ → (τ → δ) ⇒ (σ × τ)→ δ
σ → (τ × δ) ⇒ (σ → τ)× (σ → δ)

T× τ ⇒ τ
τ ×T ⇒ τ

T→ τ ⇒ τ
τ → T ⇒ T

Isomorphism of types in normal form is defined by associativity and commu-
tativity of ×. Let nf(τ) be the normal form of type τ . Then,

nf(τ) =

{
T, or a base type, or a function type, or
τ1 × τ2 × . . .× τn

where the τi’s are in normal form. We can use the abbreviation
∏n
i=1 τi for

τ1 × τ2 × . . .× τn to emphasize that the order of the τi’s is not important; a
product in normal form can be viewed a bag (multi-set) of factors. We can
decide equality of two types in normal form with a straightforward recursive
algorithm which applies a bag-equality algorithm whenever it encounters a
pair of product types. Notice that such an algorithm would not work for
recursive types; it would not terminate.

Equality and subtyping of recursive types have been studied in the 1990s
by Amadio and Cardelli [2]; Kozen, Palsberg, and Schwartzbach [21]; Brandt
and Henglein [9]; Jim and Palsberg [19]; and others. These papers concen-
trate on the case where two types are considered equal if and only if their
infinite unfoldings are identical. This can be formalized using bisimulation
[19, 26]. Sound and complete axiomatizations have been presented by Ama-
dio and Cardelli [2], and Brandt and Henglein [9]. Related axiomatizations
have been presented by Milner [22] and Kozen [20]. This notion of type
equality can be decided in O(nα(n)) time, and a notion of subtyping defined
by Amadio and Cardelli [2] can be decided in O(n2) time [21].

The axiomatization by Brandt and Henglein [9], here denoted by TR (R
for Recursive), is shown in Figure 3. Auerbach, Barton, and Raghavachari
[6], in a quest for a foundation of the Mockingbird system, raised the question

11

A ` µα.τ = τ [µα.τ/α] (Unfold/Fold)

A, σ = τ, A′ ` σ = τ (Hyp)

A ` σ = σ (Ref)

A ` σ = δ A ` δ = τ

A ` σ = τ
(Trans)

A ` σ = τ

A ` τ = σ
(Sym)

A, σ1 → σ2 = τ1 → τ2 ` σ1 = τ1 A, σ1 → σ2 = τ1 → τ2 ` σ2 = τ2

A ` σ1 → σ2 = τ1 → τ2

(Arrow/Fix)

A, σ1 × σ2 = τ1 × τ2 ` σ1 = τ1 A, σ1 × σ2 = τ1 × τ2 ` σ2 = τ2

A ` σ1 × σ2 = τ1 × τ2

(Cross/Fix)

Figure 3: TR.

of whether TCC ∪ TR is consistent and decidable. They later discovered that
this combined system is inconsistent, see also [1]. Thus, the isomorphism
problem of recursive types cannot simply be defined by TCC ∪TR. Moreover,
it seems like reduction by R may not terminate, for some recursive types.

In the following section we consider a notion of type equality where two
types can be equal even if their infinite unfoldings are different. Intuitively,
our notion of type equality is

TR ∪ { (Com×), (Assoc×) }.

A related system has been studied by Thatte [33]. We will present several
equivalent definitions of type equality, including one based on the axiomatiza-
tion of Brandt and Henglein [9], and one based on the bisimulation approach
of Jim and Palsberg [19].

12

4 Basic Definitions

In Section 5, we will use the notions of terms and term automata defined in
[21]. For the convenience of the reader, this section provides an excerpt of
the relevant material from [21]. Our algorithm relies on that the types to be
matched are represented as term automata.

4.1 Terms

Here we give a general definition of (possibly infinite) terms over an arbitrary
finite ranked alphabet Σ. Such terms are essentially labeled trees, which we
represent as partial functions labeling strings over ω (the natural numbers)
with elements of Σ.

Let Σn denote the set of elements of Σ of arity n. Let ω denote the set
of natural numbers and let ω∗ denote the set of finite-length strings over ω.

A term over Σ is a partial function

t : ω∗ → Σ

with domain D(t) satisfying the following properties:

• D(t) is nonempty and prefix-closed;

• if t(α) ∈ Σn, then {i | αi ∈ D(t)} = {0, 1, . . . , n− 1}.

Let t be a term and α ∈ ω∗. Define the partial function t↓α : ω∗ → Σ by

t↓α(β) = t(αβ) .

If t↓α has nonempty domain, then it is a term, and is called the subterm of
t at position α.

A term t is said to be regular if it has only finitely many distinct subterms;
i.e., if {t↓α | α ∈ ω∗} is a finite set.

4.2 Term Automata

Every regular term over a finite ranked alphabet Σ has a finite representation
in terms of a special type of automaton called a term automaton.

13

Definition 4.1. Let Σ be a finite ranked alphabet. A term automaton over
Σ is a tuple

M = (Q, Σ, q0, δ, `)

where:

• Q is a finite set of states,

• q0 ∈ Q is the start state,

• δ : Q× ω → Q is a partial function called the transition function, and

• ` : Q→ Σ is a (total) labeling function,

such that for any state q ∈ Q, if `(q) ∈ Σn then

{i | δ(q, i) is defined} = {0, 1, . . . , n− 1} .

We decorate Q, δ, etc. with the superscript M where necessary.

Let M be a term automaton as in Definition 4.1. The partial function δ
extends naturally to a partial function

δ̂ : Q× ω∗ → Q

inductively as follows:

δ̂(q, ε) = q

δ̂(q, αi) = δ(δ̂(q, α), i) .

For any q ∈ Q, the domain of the partial function λα.δ̂(q, α) is nonempty (it
always contains ε) and prefix-closed. Moreover, because of the condition on
the existence of i-successors in Definition 4.1, the partial function

λα.`(δ̂(q, α))

is a term.

Definition 4.2. Let M be a term automaton. The term represented by M
is the term

tM = λα.`(δ̂(q0, α)) .

A term t is said to be representable if t = tM for some M.

14

Intuitively, tM(α) is determined by starting in the start state q0 and
scanning the input α, following transitions of M as far as possible. If it is
not possible to scan all of α because some i-transition along the way does
not exist, then tM(α) is undefined. If on the other hand M scans the entire
input α and ends up in state q, then tM(α) = `(q).

Lemma 4.3. Let t be a term. The following are equivalent:

(i) t is regular;

(ii) t is representable;

(iii) t is described by a finite set of equations involving the µ operator.

15

5 Type Equality

In this section, we define a notion of type equality where the product-type
constructor is associative and commutative, and we present an efficient de-
cision procedure.

In Section 5.1 we define our notion of type, and in Sections 5.2 and 5.3
we give some preliminaries about bipartite graphs and fixed points needed
later. In Section 5.4 we present our notion of type equality, in Section 5.5
we show a convenient characterization of type equality, and in Section 5.6 we
present an efficient decision procedure.

5.1 Recursive Types

A type is a regular term over the ranked alphabet

Σ = Γ ∪ {→} ∪ {
n∏
, n ≥ 2},

where Γ is a set of base types, → is binary, and
∏n is of arity n. With the

notation of Appendix 4, the root symbol of a type t is written t(ε).
We impose the restriction that given a type σ and a path α, if σ(α) =

∏n,
then σ(αi) ∈ Γ

⋃ {→}, for all i ∈ {1..n}. The set of types is denoted T .
Given a type σ, if σ(ε) =→, σ(0) = σ1, and σ(1) = σ2, then we write the
type as σ1 → σ2. If σ(ε) =

∏n and σ(i) = σi+1 ∀i ∈ {0, 1, . . . , n − 1}, then
we write the type σ as

∏n
i=1 σi.

Intuitively, our restriction means that products cannot be immediately
nested, that is, one cannot form a product one of whose immediate compo-
nents is again a product. We impose this restriction for two reasons:

1. it effectively rules out infinite products such as µα.(int× α), and

2. it ensures that types are in a “normal form” with respect to associa-
tivity, that is, the issue of associativity is reduced to a matter of the
order of the components in a

∏n
i=1 σi type.

Currently, we are unable to extend our algorithm to handle infinite products.
Types without infinite products can easily be “flattened” to conform to our
restriction.

For Java interfaces, our restriction has no impact. We model interfaces
using one kind of product-type constructor, we model argument-type lists

16

using another kind of product-type constructor, and we model method types
using the function-type constructor. The syntax of Java interfaces ensures
that a straightforward translation of a Java interface to our representation
of types will automatically satisfy our restriction.

5.2 Bipartite Graphs

A bipartite graph (V,W,R) is given by two sets V,W of vertices, and a set
R ⊆ V ×W of undirected edges.

For our application, we will only be interested in bipartite graphs where
the edge sets are coherent. A relation R is coherent iff

if (a, c), (b, c), (b, d) ∈ R, then (a, d) ∈ R.

It can be illustrated by the following picture,

a

b

c

d��
���

���
p p p p p p p p p p p p p p p p p p p p

where the edges (a, c), (b, c), and (b, d) imply the existence of the edge (a, d).

Lemma 5.1. Suppose G = (V,W,R) is a bipartite graph where R is coherent.
If a ∈ V can reach d ∈ W , then (a, d) ∈ R.

Proof. Suppose a ∈ V can reach d ∈ W in k steps. Since all the edges are
between V and W , each step will move from one set to the other. Therefore,
k must be an odd number and let k = 2 ∗ n+ 1, n ≥ 0.

We proceed by induction on n.

(n = 0) We have that a can reach d in one step, so (a, d) ∈ R.

Suppose the Lemma holds for n = m > 0

(n = m + 1) We have that a can reach d in 2 ∗ m + 3 steps. Let c and b
be the (2 ∗m+ 1)th and (2 ∗m+ 2)th nodes a reaches along the path
to d, then (b, c), (b, d) ∈ R. By the induction hypothesis, (a, c) ∈ R.
Consequently, (a, d) ∈ R by the coherence property of R.

Definition 5.2. Suppose
∏n
i=1 σi,

∏n
i=1 τi are two types and R is a relation

on types. The matching function match(
∏n
i=1 σi,

∏n
i=1 τi, R) is true iff there

exists a bijection t : {1..n} → {1..n} such that ∀i, (σi, τt(i)) ∈ R.

17

Lemma 5.1 enables a simple algorithm for match(
∏n
i=1 σi,

∏n
i=1 τi, R) where

R is coherent and finite. Let V,W be two finite sets such that σi ∈ V ,
for all i ∈ {1..n}, τi ∈ W , for all i ∈ {1..n}, and R ⊆ V × W . Let
N = |V |+ |W |. The bipartite graph (V,W,R) has at most N connected com-
ponents, C1, C2, . . ., and we label them with numbers starting at 1. Thus, all
the numbers are in the set {1..N}.

Define a function I : (V ∪ W) → {1..N}, where I(σ) = i iff σ ∈ Ci.
Two types σ and τ are in the same connected component iff σ can reach τ
in (V,W,R). Thus, by Lemma 5.1, we have (σ, τ) ∈ R iff I(σ) = I(τ).

Let [.] denotes a multi-set of elements.

Lemma 5.3. match(
∏n
i=1 σi,

∏n
i=1 τi, R) is true iff [I(σ1), I(σ2), .., I(σn)] =

[I(τ1), I(τ2), .., I(τn)].

Proof. If [I(σ1), I(σ2), .., I(σn)] = [I(τ1), I(τ2), .., I(τn)], then there exists bi-
jection t : {1..n} → {1..n}, such that ∀i, I(σi) = I(τt(i)). By the definition
of I, vertex σi can reach vertex τt(i); thus, by Lemma 5.1, (σi, τt(i)) ∈ R, ∀i.
Therefore, match(

∏n
i=1 σi,

∏n
i=1 τi, R) is true.

Suppose match(
∏n
i=1 σi,

∏n
i=1 τi, R) is true. Then, there exists bijection

t such that (σi, τt(i)) ∈ R, ∀i. Thus, I(σi) = I(τt(i)) since σi and τt(i) are
connected. Since [I(τ1), I(τ2), .., I(τn)] = [I(τt(1)), I(τt(2)), .., I(τt(n))], we have
[I(σ1), I(σ2), .., I(σn)] = [I(τ1), I(τ2), .., I(τn)].

5.3 Monotone Functions and Fixed Points

We now recall the notion of a greatest fixed point of a monotone function, and
we prove three basic results about greatest fixed points that will be needed
in Section 5.5.

Let P denote the unary operator which maps a set to its power-set. Con-
sider the lattice (P(S),⊆) and a function

F : P(S)→ P(S).

We say that F is monotone iff if s1 ⊆ s2, then F (s1) ⊆ F (s2). If F is
monotone, then Tarski’s fixed point theorem [32] gives that F has a greatest
fixed point νF given by:

νF =
⋃
{ X | X ⊆ F (X) }.

18

Suppose F is monotone, and K ⊆ S. In Section 5.5, we will be particularly
interested in a case where K is finite and S is infinite. Define

H ∈ P(K)→ P(K)

H(X) = F (X) ∩K.

Lemma 5.4. νH ⊆ νF ∩K.

Proof.

νH =
⋃
{ X | X ⊆ H(X) }

=
⋃
{ X | X ⊆ F (X) ∩K }

= (
⋃
{ X | X ⊆ F (X) ∩K }) ∩K

⊆ (
⋃
{ X | X ⊆ F (X) }) ∩K

= νF ∩K.

The converse of Lemma 5.4 may be false. For example, consider

S = {1, 2}
K = {1}

F ({1, 2}) = {1, 2}
F ({1}) = F ({2}) = F (∅) = ∅.

We have that F is monotone, νF = {1, 2}, and νH = ∅. We conclude that
νF ∩K = {1, 2} ∩ {1} = {1} 6⊆ ∅ = νH.

We now give a sufficient condition under which the converse of Lemma 5.4
is true.

Lemma 5.5. Suppose that if X ⊆ F (X), then F (X)∩K ⊆ F (X ∩K). We
have νF ∩K ⊆ νH.

Proof. From X ⊆ F (X) we have

X ∩K ⊆ F (X) ∩K ⊆ F (X ∩K).

19

Now we can calculate as follows:

νF ∩K =
⋃
{ X | X ⊆ F (X) } ∩K

=
⋃
{ Y | ∃X : (Y = X ∩K) ∧ (X ⊆ F (X)) }

⊆
⋃
{ Y | ∃X : (Y = X ∩K) ∧ (X ∩K ⊆ F (X ∩K)) }

=
⋃
{ Y | ∃X : (Y = X ∩K) ∧ (Y ⊆ F (Y)) }

=
⋃
{ Y | (Y ⊆ K) ∧ (Y ⊆ F (Y)) }

=
⋃
{ Y | Y ⊆ F (Y) ∩K }

=
⋃
{ Y | Y ⊆ H(Y) }

= νH.

If S is finite, then a well-known characterization of νF is given by:

νF =
∞⋂
i=0

F i(S).

Lemma 5.6. If H is a monotone function from (P(V × W),⊆) to itself,
where V,W are finite and N = |V |+ |W |, and if for all non-negative integers
i, H i(V ×W) is coherent, then νH = HN(V ×W).

Proof. Let S = (V ×W). Since H is monotone, H i+1(S) ⊆ H i(S) ∀i ≥ 0.
If H i+1(S) = H i(S), then H i(S) is a fixed point of H and Hj(S) = H i(S),

∀ j > i. Otherwise, if H i+1(S) ⊂ H i(S), then H i+1(S) ⊂ . . . ⊂ H1(S) ⊂ S.
Suppose H i+1(S) ⊂ H i(S) and (v, w) ∈ (H i(S) ∩ ¬H i+1(S)). We con-

struct the bipartite graph Gi = (V,W,H i(S)). Each connected component
of Gi corresponds to one or more connected component in Gi+1, because any
set of vertices that are connected in Gi+1 are connected in Gi as well.

Since (v, w) ∈ H i(S), v, w are in the same connected component of Gi.
From (v, w) ∈ ¬H i+1(S) and Lemma 5.1, v cannot reach w in Gi+1. There-
fore, v and w are in separate connected components of Gi+1. Consequently,
Gi+1 has at least one more connected component than Gi.

Consider {H i(S)}ki=0 such that Hk(S) ⊂ ... ⊂ H1(S) ⊂ S. Then the
bipartite graph Gk has at least k connected components. However, Gk can
have at most N connected components, which is the case when there is no
edge in the graph and each vertex forms a connected component. Thus,
k ≤ N and HN(S) = HN+1(S).

We conclude that νH =
⋂∞
i=0 H

i(S) =
⋂N
i=0 H

i(S) = HN(S).

20

A, σ = τ, A′ ` σ = τ (Hyp)

A ` γ = γ (Ref)

A, σ1 → σ2 = τ1 → τ2 ` σ1 = τ1 A, σ1 → σ2 = τ1 → τ2 ` σ2 = τ2

A ` σ1 → σ2 = τ1 → τ2

(→/Fix)

A,
∏n
i=1 σi =

∏n
i=1 τi ` σi = τt(i), i ∈ {1..n}

A ` ∏n
i=1 σi =

∏n
i=1 τi

(
∏

/Fix)

where t : {1..n} → {1..n} is a bijection

Figure 4: TRAC .

5.4 Type Equality

We now give three equivalent definitions of type equality. They will be de-
noted EQ, E, νF .

The first definition is based on the rule set TRAC (R for Recursive, A for
Associative, and C for Commutative) in Figure 4. The rule (

∏
/Fix) entails

that the product-type constructor is associative and commutative. Define

EQ = { (σ, τ) | ∅ ` σ = τ }.

The second definition of type equality is based on the idea of bisimilarity. A
relation R on types is called a bisimulation if it satisfies the following three
conditions:

(C) If (σ, τ) ∈ R, then σ(ε) = τ(ε).

(P1) If (σ1 → σ2, τ1 → τ2) ∈ R, then (σ1, τ1) ∈ R and (σ2, τ2) ∈ R.

(P2) If (
∏n
i=1 σi,

∏n
i=1 τi) ∈ R, then match(

∏n
i=1 σi,

∏n
i=1 τi, R) is true.

A relation R is said to be consistent if it satisfies property C, and it is
said to be closed if it satisfies P1, P2. Bisimulations are closed under union,
therefore, there exists a largest bisimulation

E =
⋃
{ R | R is a bisimulation }.

The third definition of type equality is based on the notion of greatest fixed
points. Define

F ∈ P(T × T)→ P(T × T)

21

F = λR.{ (σ, τ) | σ, τ are base types and σ(ε) = τ(ε) }
∪ { (σ1 → σ2, τ1 → τ2) | (σ1, τ1), (σ2, τ2) ∈ R }
∪ { (Πn

i=1σi,Π
n
i=1τi) | match(Πn

i=1σi,Π
n
i=1τi, R) }

Notice that F is monotone so it has a greatest fixed point νF .

Lemma 5.7. R is a bisimulation iff R ⊆ F (R).

Proof. Suppose first that R is a bisimulation. For every type pair (σ, τ) ∈ R,
if σ, τ are base types, then σ(ε) = τ(ε), so (σ, τ) ∈ F (R). If σ = σ1 → σ2,
τ = τ1 → τ2, then (σ1, τ1), (σ2, τ2) ∈ R, so (σ, τ) ∈ F (R). Similarly for
σ =

∏n
i=1 σi, τ =

∏n
i=1 τi.

Conversely, suppose that R ⊆ F (R). It is straightforward to prove that
R is a bisimulation; we omit the details.

Theorem 5.8. EQ = E = νF .

Proof. For a proof of EQ = E, see Appendix A. From Lemma 5.7 we have

E =
⋃
{ R | R is a bisimulation }

=
⋃
{ R | R ⊆ F (R) } = νF.

We may apply the principle of co-induction to prove that two types are
related in E. That is, to show (σ, τ) ∈ E, it is sufficient to find a bisimulation
R such that (σ, τ) ∈ R.

Theorem 5.9. E is a congruence relation.

Proof. By co-induction, see appendix B.

22

5.5 A Characterization of Type Equality

In this section we prove that type equality can be decided by an itera-
tive method (Theorem 5.15). To prove this result, we need five lemmas
which establish that coherence is preserved by one step of iteration (Lem-
mas 5.10, 5.11, 5.12), and that it is sufficient to concentrate on the types
that are subtrees of the input types (Lemmas 5.13, 5.14).

Lemma 5.10. If R ⊆ (T × T) is coherent, then F (R) is coherent.

Proof. First, notice that if (σ, τ) ∈ F (R), then σ(ε) = τ(ε) by the definition
of F .

Suppose (a, c), (b, c), (b, d) ∈ F (R), we want to show that (a, d) ∈ F (R).
There are three cases.

1. a..d are base types. We have a(ε) = c(ε) = b(ε) = d(ε), so (a, d) ∈
F (R).

2. a..d are→ types. Suppose a = a1 → a2, b = b1 → b2, c = c1 → c2, and
d = d1 → d2. We have (ai, ci), (bi, ci) and (bi, di) ∈ R, i = 1, 2. Since R
is coherent, (ai, di) ∈ R, i = 1, 2, which means (a, d) ∈ F (R).

3. a..d are product types. Suppose a =
∏n
i=1 ai, b =

∏n
i=1 bi, c =

∏n
i=1 ci,

and d =
∏n
i=1 di. We have (a, c) ∈ R and match(

∏n
i=1 ai,

∏n
i=1 ci, R) is

true. The same applies to (b, c) and (b, d). Therefore, ∃ bijections s, t, u
from {1..n} to {1..n} such that (ai, cs(i)), (bi, ct(i)), (bi, du(i)) ∈ R, ∀i.
Let bijection v = u ◦ t−1 ◦ s, we have (ai, dv(i)) ∈ R ∀i, since R is
coherent. Thus, match(

∏n
i=1 ai,

∏n
i=1 di, R) is true. and (a, d) ∈ F (R).

For σ ∈ T , define

Vσ = { τ | τ is a subterm of σ }.

Given σ, τ , define

H ∈ P(Vσ × Vτ)→ P(Vσ × Vτ)
H = λR.(F (R) ∩ (Vσ × Vτ)).

Lemma 5.11. If R ⊆ (Vσ × Vτ) is coherent, then H(R) is coherent.

23

Proof. By the definition of H, we have H(R) = F (R) ∩ (Vσ × Vτ).
Since R ⊆ (Vσ×Vτ) ⊂ (T ×T), by Lemma 5.10, F (R) is coherent. Thus,

if (a, c), (b, c), (b, d) ∈ F (R) ∩ (Vσ × Vτ), then (a, d) ∈ F (R) and (a, d) ∈
(Vσ × Vτ) because a ∈ Vσ and d ∈ Vτ . Therefore, (a, d) ∈ F (R) ∩ (Vσ × Vτ),
and H(R) is coherent.

Lemma 5.12. For all n, Hn(Vσ × Vτ) is coherent.

Proof. We proceed by induction on n.
For n = 0, we have H0(Vσ × Vτ) = (Vσ × Vτ). If (a, c), (b, c), (b, d) ∈

(Vσ × Vτ), then (a, d) ∈ (Vσ × Vτ) since a ∈ Vσ and d ∈ Vτ .
Suppose Hn(Vσ × Vτ) is coherent. Since Hn(Vσ × Vτ) ⊆ (Vσ × Vτ), we

know that H(Hn(Vσ × Vτ)) is coherent, by Lemma 5.11.

Lemma 5.13. F (R) ∩ (Vσ × Vτ) ⊆ F (R ∩ (Vσ × Vτ)).

Proof. Let K = (Vσ × Vτ).

F (R) ∩ K

= { (σ′, τ ′) ∈ K | σ′, τ ′ are base types and σ′(ε) = τ ′(ε) }
∪ { (σ1 → σ2, τ1 → τ2) ∈ K | (σ1, τ1), (σ2, τ2) ∈ R }
∪ { (Πn

i=1σi,Π
n
i=1τi) ∈ K | match(Πn

i=1σi, Πn
i=1τi, R) }

= { (σ′, τ ′) ∈ K | σ′, τ ′ are base types and σ′(ε) = τ ′(ε) }
∪ { (σ1 → σ2, τ1 → τ2) ∈ K | (σ1, τ1), (σ2, τ2) ∈ R ∩K) }
∪ { (Πn

i=1σi,Π
n
i=1τi) ∈ K | match(Πn

i=1σi, Πn
i=1τi, R ∩K) }

⊆ { (σ′, τ ′) | σ′, τ ′ are base types and σ′(ε) = τ ′(ε) }
∪ { (σ1 → σ2, τ1 → τ2) | (σ1, τ1), (σ2, τ2) ∈ R ∩K) }
∪ { (Πn

i=1σi,Π
n
i=1τi) | match(Πn

i=1σi, Πn
i=1τi, R ∩K) }

= F (R ∩K);

Lemma 5.14. νH = νF ∩ (Vσ × Vτ).

Proof. By Lemma 5.4, we have νH ⊆ νF ∩ (Vσ × Vτ). By Lemma 5.13,
F (R) ∩ (Vσ × Vτ) ⊆ F (R ∩ (Vσ × Vτ)). Therefore, by Lemma 5.5, we also
have νH ⊇ νF ∩ (Vσ × Vτ).

24

Theorem 5.15. (σ, τ) ∈ E iff (σ, τ) ∈ HN(Vσ × Vτ), where N = |Vσ|+ |Vτ |.

Proof. From (σ, τ) ∈ (Vσ × Vτ) we have that (σ, τ) ∈ E iff (σ, τ) ∈ E ∩ (Vσ ×
Vτ). Moreover, from Theorem 5.8 and Lemma 5.14 we have

E ∩ (Vσ × Vτ) = νF ∩ (Vσ × Vτ) = νH.

Finally, Lemma 5.12 shows that H i(Vσ × Vτ) is coherent for all i, so by
Lemma 5.6, νH = HN(Vσ × Vτ).

5.6 Algorithm and Complexity

We can use Theorem 5.15 to give an algorithm for deciding type equality.
Given a type pair (σ, τ), we can decide (σ, τ) ∈ E by deciding (σ, τ) ∈
HN(Vσ × Vτ), where N = |Vσ| + |Vτ |. To do this, we need to apply H at
most N times. In each round, according to Lemma 5.12, H will be applied
to a coherent relation R, where H(R) is also coherent. Thus, we only need
to represent coherent relations. We will now present such a representation
scheme, and we will show that given a representation of R, we can efficiently
compute a representation of H(R).

Given a coherent relation R, we represent R by a function

I : (Vσ ∪ Vτ)→ {1..N},

where (σ′, τ ′) ∈ R iff I(σ′) = I(τ ′). The existence of such a representation
was established in Section 5.2. The abstraction function abs maps a function
I to the relation represented by I:

abs(I) = { (σ′, τ ′) ∈ (Vσ × Vτ) | I(σ′) = I(τ ′) }.

Since I represents R, we want to define H(I) as a representation of H(R).
The function H has the following properties:

H(I)(σ′) = H(I)(τ ′)

⇔ σ′(ε) = τ ′(ε)

H(I)(σ1 → σ2) = H(I)(τ1 → τ2)

⇔ I(σ1) = I(τ1) ∧ I(σ2) = I(τ2)

H(I)(Πn
i=1σi) = H(I)(Πn

i=1τ)

⇔ [I(σ1), . . . , I(σn)] = [I(τ1), . . . , I(τn)],

25

where σ′, τ ′ are base types.
Any such function H satisfies the following lemma 5.16, which states that

we can compute a representation of the result of applying H to the relation
represented by I, by computing H(I).

Lemma 5.16. H(abs(I)) = abs(H(I)).

Proof. Suppose (σ′, τ ′) ∈ H(abs(I)). We have σ′(ε) = τ ′(ε) by definition of
H and F .

There are three cases.

1. σ′, τ ′ are base types. Since H(I)(σ′) = H(I)(τ ′) ⇔ σ′(ε) = τ ′(ε), we
have (σ′, τ ′) ∈ abs(H(I)).

2. σ′, τ ′ are → types. Suppose σ′ = σ1 → σ2 and τ ′ = τ1 → τ2. We have
(σ1, τ1), (σ2, τ2) ∈ abs(I). By the definition of abs(I), I(σ1) = I(τ1)
and I(σ2) = I(τ2). Hence, H(I)(σ1 → σ2) = H(I)(τ1 → τ2) and
(σ′, τ ′) ∈ abs(H(I)).

3. σ′, τ ′ are product types. Suppose σ′ =
∏n
i=1 σi and τ ′ =

∏n
i=1 τi. We

have match(σ′, τ ′, abs(I)) true. By Lemma 5.3 and the definition of
abs(I), we have [I(σ1), . . . , I(σn)] = [I(τ1), . . . , I(τn)] and consequently,
H(I)(Πn

i=1σi) = H(I)(Πn
i=1τ), and (σ′, τ ′) ∈ abs(H(I)).

Conversely, if (σ′, τ ′) ∈ abs(H(I)), we have H(I)(σ′) = H(I)(τ ′). It is
straightforward to show that (σ′, τ ′) ∈ H(abs(I)) by a case analysis as above.
We omit the details.

Here is a particular definition of an H which satisfies the three properties.
Given I, we define H(I) in three steps:

1. Define v on (Vσ ∪ Vτ) to be the smallest preorder which includes the
following definitions. First,

A v σ1 → σ2 v
n∏
i=1

τi

for all base types A, all function types σ1 → σ2, and all product types∏n
i=1 τi. Next, we choose some arbitrary linear ordering of the base

types. Finally, we use I to further sort the function types, and to
further sort the product types. The idea of the further sorting is to

26

define a lexicographical order based on I. Given a string of k numbers
m1 . . .mk, the notation sort(m1 . . .mk) denotes a string of the same k
numbers but now in increasing order.

σ1 → σ2 v τ1 → τ2 iff I(σ1)I(σ2) is lexicographically less than
I(τ1)I(τ2)

∏n
i=1 σi v

∏n
i=1 τi iff sort(I(σ1) . . . I(σn)) is lexicographically less than

sort(I(τ1) . . . I(τn)).

2. Notice that v can be viewed as a directed graph. Number the strongly
connected components of v in ascending order.

3. Define H(I)(η) to be the number of the strongly connected component
to which η belongs.

It is straightforward to show that the resulting H(I) satisfies the three prop-
erties listed earlier.

Let us now restate the definition of H(I) in a more algorithmic style. The
main task is to sort the elements of Vσ ∪ Vτ by v. This is done in two steps:

1. generate a string of numbers for each element of Vσ ∪ Vτ :

• for each base type, generate a one-character string;

• for each function type σ1 → σ2, generate I(σ1)I(σ2); and

• for each product type
∏n
i=1 σi, generate sort(I(σ1) . . . I(σn)), and

2. sort the generated strings by lexicographical order.

We will now consider the complexity of computing H(I).
Let σ be represented by the term automaton

Mσ = (Vσ, Σ, q0, δ, `).

Notice that we can construct a directed graph (Vσ, Eσ), where (q, q′) ∈ Eσ iff
δ(q, i) = q′, for some i ∈ {0, 1, .., n− 1} and `(q) ∈ Σn. Similarly, for type τ ,
we can construct a directed graph (Vτ , Eτ). Let M = |Eσ|+ |Eτ |.

We now show that we can compute H(I) in O(M) time.

27

The size of I and H(I) is N . For each product type
∏nk
i=1 σi ∈ (Vσ ∪

Vτ), we compute sort[I(σ1), I(σ2), .., I(σnk)] in O(nk) time using Counting

Sort [13].
In graph (Vσ, Eσ), the vertex

∏nk
i=1 σi has nk outgoing edges. Suppose

there are K such vertices in the graph, then ΣK
k=1nk ≤ |Eσ|. Similarly, for

the product types
∏mk
i=1 τi in graph (Vτ , Eτ), we have ΣK′

k=1mk ≤ |Eτ |, where
K ′ is the total number of product types in Vτ . Since M = |Eσ| + |Eτ |, the
total amount of time for computing sort(.) for all product types is O(M).

To order all the→ types and products types, we need to lexicographically
order strings of numbers. Using Radix Sort [13], the ordering of all strings
can be computed in time linear in the total size of the strings. The size of the
string corresponding to type

∏nk
i=1 σi ∈ Vσ is nk, which is equal to the number

of outgoing edges of
∏nk
i=1 σi in (Vσ, Eσ). The size of the string corresponding

to σ1 → σ2 ∈ Vσ is 2, which is equal to the number of outgoing edges of
σ1 → σ2 in (Vσ, Eσ). Therefore, the total size of strings corresponding to →
types and product types in Vσ is equal to |Eσ|. Similarly, the total size of
strings corresponding to → types and product types in Vτ is equal to |Eτ |.
Thus, the lexicographical ordering of all strings costs O(M) time.

In conclusion, our decision procedure for membership in E is given by
O(N) iterations each of which takes O(M) time. Thus, we have shown the
following result.

Theorem 5.17. Type equality as defined by E can be decided in O(N ×M)
time.

28

6 Equality of Intersection and Union Types

Palsberg and Pavlopoulou [25] defined a type system with intersection and
union types, together with a notion of type equality. An intersection type is
written ∧ni=1σi, and a union type is written ∨ni=1σi. Their notion of equality
of intersection types is the same as our notion of equality of product types.
Their notion of equality of union types has the distinguishing features that
σ∨σ = σ, and that there is a special base type ⊥ such that σ∨⊥ = ⊥∨σ =
σ.

The goal of this section is to demonstrate that our framework is suffi-
ciently robust to handle union types with only minor changes to the algo-
rithm and correctness proof. We will present the definitions and theorems in
the same order as in Section 5. We do not show the proofs; they are similar
to the ones in Section 5.

Palsberg and Pavlopoulou [25] define a set of types, where, intuitively,
each type is of one of the forms:

n∨
i=1

ni∧
k=1

(σik → σ′ik)

(
n∨
i=1

ni∧
k=1

(σik → σ′ik)) ∨ Int.

In the case where the unions are empty, the first form can be simplified to
⊥, and the second form can be simplified to Int.

A type is a regular term over the ranked alphabet

Σ = {Int,⊥,→} ∪ {∧n, n ≥ 2} ∪ {∨n, n ≥ 2},

where Int,⊥ are nullary, → is binary, and ∨n,∧n are n-ary operators.
Palsberg and Pavlopoulou [25] impose the restrictions that given a type σ

and a path α, if σ(α) = ∨n, then σ(αi) ∈ {Int,⊥,→} ∪ {∧n, n ≥ 2}, for all
i ∈ {1..n}, and if σ(α) = ∧n, then σ(αi) =→, for all i ∈ {1..n}. Intuitively,
the restrictions mean that neither union types nor intersection types can
be immediately nested, that is, one cannot form a union type one of whose
immediate components is again a union type, and similarly for intersection
types. Moreover, a union type cannot be an immediate component of an
intersection type. The set of types is denoted T̂ .

Given a type σ, if σ(ε) =→, σ(1) = σ1, and σ(2) = σ2, then we write
the type as σ1 → σ2. If σ(ε) = ∧n and σ(i) = σi ∀i ∈ {1, 2, . . . , n}, then we

29

write the type σ as ∧ni=1σi. If σ(ε) = ∨n and σ(i) = σi ∀i ∈ {1, 2, . . . , n},
then we write the type σ as ∨ni=1σi. If σ(ε) = ⊥, then we write the type as
⊥. If σ(ε) = Int, then we write the type as Int.

Definition 6.1. The function match(∧ni=1σi,∧nj=1τj, R) is true iff there exists
a bijection t : {1..n} → {1..n} such that for all i ∈ {1..n} : (σi, τt(i)) ∈ R.

Palsberg and Pavlopoulou [25] define type equality as follows. A relation
R is called a bisimulation if it satisfies the following six conditions:

1. If (∨ni=1σi,∨mj=1τj) ∈ R, then

• for all i ∈ {1..n}, where σi(ε) 6= ⊥: there exists j ∈ {1..m} :
(σi, τj) ∈ R, and

• for all j ∈ {1..m}, where τj(ε) 6= ⊥, there exists i ∈ {1..n} :
(σi, τj) ∈ R.

2. If τ(ε) ∈ {Int,⊥,→} ∪ {∧m,m ≥ 2}, and (∨ni=1σi, τ) ∈ R, then,

• for all i ∈ {1..n}, where σi(ε) 6= ⊥: (σi, τ) ∈ R, and

• if τ(ε) 6= ⊥, then there exists i ∈ {1..n} : (σi, τ) ∈ R.

3. If τ(ε) ∈ {Int,⊥,→} ∪ {∧m,m ≥ 2}, and (τ,∨ni=1σi) ∈ R, then,

• for all i ∈ {1..n}, where σi(ε) 6= ⊥: (τ, σi) ∈ R, and

• if τ(ε) 6= ⊥, then there exists i ∈ {1..n} : (τ, σi) ∈ R.

4. If (∧ni=1σi,∧nj=1τj) ∈ R, then match(∧ni=1σi,∧nj=1τj, R).

5. If (σ1 → σ2, τ1 → τ2) ∈ R, then (σ1, τ1) ∈ R and (σ2, τ2) ∈ R.

6. If (σ, τ) ∈ R, then either

σ(ε) = τ(ε) ∈ {Int,⊥,→} ∪ {∧n, n ≥ 2}, or

σ(ε) ∈ {∨n, n ≥ 2}, or

τ(ε) ∈ {∨n, n ≥ 2}.

30

Bisimulations are closed under union, therefore, there exists a largest
bisimulation

E =
⋃
{ R | R is a bisimulation}.

The set E is Palsberg and Pavlopoulou’s notion of type equality. It is straight-
forward to show, by co-induction, that

σ ∨ ⊥ = ⊥ ∨ σ = σ ∨ σ = σ.

We now reformulate the above definition of bisimulation to make it better fit
the framework of Section 5.

Definition 6.2. Define σ 'R τ iff

• σ(ε) = τ(ε) ∈ {Int,⊥,→} ∪ {∧m,m ≥ 2},

• if σ = σ1 → σ2 and τ = τ1 → τ2, then (σ1, τ1) ∈ R and (σ2, τ2) ∈ R,
and

• if σ = ∧ni=1σi and τ = ∧ni=1τi, then match(∧ni=1σi,∧nj=1τj, R).

The function ̂match(σ, τ, R) is true iff

1. if σ = ∨ni=1σi and τ = ∨mj=1τj, then

• for all i ∈ {1..n}, where σi(ε) 6= ⊥: there exists j ∈ {1..m} :
σi 'R τj, and

• for all j ∈ {1..m}, where τj(ε) 6= ⊥, there exists i ∈ {1..n} : σi 'R
τj.

2. if σ = ∨ni=1σi, and τ(ε) ∈ {Int,⊥,→} ∪ {∧m,m ≥ 2}, then,

• for all i ∈ {1..n}, where σi(ε) 6= ⊥: σi 'R τ , and

• if τ(ε) 6= ⊥, then there exists i ∈ {1..n} : σi 'R τ .

3. if τ = ∨ni=1τi, and σ(ε) ∈ {Int,⊥,→} ∪ {∧m,m ≥ 2}, then,

• for all i ∈ {1..n}, where τi(ε) 6= ⊥: σ 'R τi, and

• if σ(ε) 6= ⊥, then there exists i ∈ {1..n} : σ 'R τi.

31

Lemma 6.3. If R is a bisimulation and σ(ε), τ(ε) 6= ∨n, where n ≥ 2, then
(σ, τ) ∈ R iff σ 'R τ .

The following is an equivalent definition of bisimulation. A relation R is
called a bisimulation if it satisfies the following four conditions:

1. If (σ, τ) ∈ R, then ̂match(σ, τ, R).

2. If (∧ni=1σi,∧nj=1τj) ∈ R, then match(∧ni=1σi,∧mj=1τj, R).

3. If (σ1 → σ2, τ1 → τ2) ∈ R, then (σ1, τ1) ∈ R and (σ2, τ2) ∈ R.

4. If (σ, τ) ∈ R, then either

σ(ε) = τ(ε) ∈ {Int,⊥,→} ∪ {∧n, n ≥ 2}, or

σ(ε) ∈ {∨n, n ≥ 2}, or

τ(ε) ∈ {∨n, n ≥ 2}.

Define

F̂ ∈ P(T̂ × T̂)→ P(T̂ × T̂)

F̂ = λR.{ (σ, τ) | σ, τ are base types and σ(ε) = τ(ε) }
∪ { (σ1 → σ2, τ1 → τ2) | (σ1, τ1), (σ2, τ2) ∈ R }
∪ { (∧ni=1σi,∧ni=1τi) | match(∧ni=1σi,∧ni=1τi, R) }
∪ { (σ, τ) | ̂match(σ, τ, R) }

Notice that F̂ is monotone so it has a greatest fixed point νF̂ .

Theorem 6.4. E = νF̂ .

Theorem 6.5. E is a congruence relation.

Given σ, τ , define

Ĥ ∈ P(Vσ × Vτ)→ P(Vσ × Vτ)
Ĥ = λR.(F̂ (R) ∩ (Vσ × Vτ)).

Theorem 6.6. (σ, τ) ∈ E iff (σ, τ) ∈ ĤN(Vσ × Vτ), where N = |Vσ|+ |Vτ |.

32

Given a coherent relation R, we represent R by a function

I : (Vσ ∪ Vτ)→ {1..N},

where (σ′, τ ′) ∈ R iff I(σ′) = I(τ ′).
The abstraction function absmaps a function I to the relation represented

by I:

abs(I) = { (σ′, τ ′) ∈ (Vσ × Vτ) | I(σ′) = I(τ ′) }.

If I represents R, then we want to define Ĥ(I) as a representation of Ĥ(R).
The function Ĥ should have the following properties:

Ĥ(I)(σ′) = Ĥ(I)(τ ′)

⇔ σ′(ε) = τ ′(ε)

Ĥ(I)(σ1 → σ2) = Ĥ(I)(τ1 → τ2)

⇔ I(σ1) = I(τ1) ∧ I(σ2) = I(τ2)

Ĥ(I)(∧ni=1σi) = Ĥ(I)(∧ni=1τi)

⇔ [I(σ1), . . . , I(σn)] = [I(τ1), . . . , I(τn)]

Ĥ(I)(∨mi=1σi) = Ĥ(I)(∨ni=1τi)

⇔ {Ĥ(I)(σ1), . . . , Ĥ(I)(σm)} \ {Ĥ(I)(⊥)} =

{Ĥ(I)(τ1), . . . , Ĥ(I)(τn)} \ {Ĥ(I)(⊥)}.
Ĥ(I)(∨mi=1σi) = Ĥ(I)(τ)

⇔ {Ĥ(I)(σ1), . . . , Ĥ(I)(σm)} \ {Ĥ(I)(⊥)} =

{Ĥ(I)(τ)} \ {Ĥ(I)(⊥)}.

where σ′, τ ′ are base types, and τ(ε) ∈ {Int,⊥,→} ∪ {∧m,m ≥ 2}.
Any such function Ĥ satisfies the following lemma.

Lemma 6.7. Ĥ(abs(I)) = abs(Ĥ(I)).

We can define the function Ĥ much the same way as H except for the
union types. Once Ĥ is defined for base types, → types, and intersection
types, we can define Ĥ for union types the following way. We first compute
the set S(∨mi=1σi) = {Ĥ(I)(σ1), . . . , Ĥ(I)(σm)} \ {Ĥ(I)(⊥)} for every union
type ∨mi=1σi. If S(∨mi=1σi) = ∅, then we let Ĥ(I)(∨mi=1σi) = Ĥ(I)(⊥). If
S(∨mi=1σi) = {k}, then we let Ĥ(I)(∨mi=1σi) = k. We then order the rest of
the union types lexicographically by the sets S(.) and assign unused integers
to the union types according to their ranking.

33

Given a type pair (σ, τ), let N = |Vσ| + |Vτ |, and M = |Eσ| + |Eτ |. It
is now straightforward to show, using the techniques that were applied in
Section 5, that our decision procedure for membership in E is given by O(N)
iterations each of which takes O(M) time. Thus, we have shown the following
result.

Theorem 6.8. Type equality as defined by E can be decided in O(N ×M)
time.

7 Concluding Remarks

A natural next step is to investigate how to automatically generate bridge
code for a multi-language system. We would also like to find out whether
our notion of type equality is sound and complete for some class of models of
recursive types. On the implementation side, we want to make connections
to work on multiset discrimination [11] and chaotic fixed-point iteration [15].

When dealing with building bridge code between interfaces, there are
interesting equivalences involving currying and uncurrying at the interface
level [4, 6]. Recall that currying is usually expressed with the rule

σ1 → (σ2 → σ3) = (σ1 × σ2)→ σ3.

Consider the type

σ = µα.(Int→ α).

When uncurrying is allowed, σ is equivalent to a number of types containing
product types of different sizes, such as:

σ = µα.((Int× Int)→ α)

= µα.((
4∏
i=1

τi)→ α)

where, for all i ∈ 1..4, τi = Int. Notice that σ does not contain any product
types, while the second type contains a binary product type, and the third
type contains a 4-ary product type. It remains an open problem to decide
this notion of type equality.

34

Acknowledgments. We thank Mikhail Atallah for many insights. We
also thank Mikael Rittri for pointing out [3] to us. Special thanks to Wanjun
Wang for implementing our algorithm. A preliminary version of this paper
appeared in Proceedings of LICS’00, Fifteenth Annual IEEE Symposium
on Logic in Computer Science. The reviewers for LICS and Information
and Computation provided a wealth of helpful comments on a draft of the
paper. Our work is supported by a National Science Foundation Faculty
Early Career Development Award, CCR–9734265, and by IBM.

35

A Proof of the first half of Theorem 5.8

Theorem A.1. EQ = E.

Proof. First we prove EQ ⊆ E (soundness). Suppose ∆ is a derivation tree
for ∅ ` σ = τ . Let R be the set of type pairs that are found in ∆ on the right-
hand side of `, except for applications of the rule (Hyp). It is straightforward
to see that all other type pairs in ∆ are elements of R. Notice that (σ, τ) ∈ R.
It is straightforward to show that R ⊆ F (R). From that and Lemma 5.7 we
have that R is a bisimulation, so, by co-induction, (σ, τ) ∈ E.

Next we prove E ⊆ EQ (completeness). Suppose (σ, τ) ∈ E. Choose a
bisimulation R′ such that (σ, τ) ∈ R′. Define R = R′ ∩ (Vσ × Vτ). Notice
that R is a finite set, and (σ, τ) ∈ R. Let us show that R is a bisimulation.
First, from R′ being a bisimulation and Lemma 5.7, R′ ⊆ F (R′). It follows
that R′ ∩ (Vσ×Vτ) ⊆ F (R′)∩ (Vσ×Vτ). From Lemma 5.13 we have F (R′)∩
(Vσ × Vτ) ⊆ F (R′ ∩ (Vσ × Vτ)), so R′ ∩ (Vσ × Vτ) ⊆ F (R′ ∩ (Vσ × Vτ)), that
is, R ⊆ F (R). Thus, by Lemma 5.7, R is a bisimulation.

From R, we can now construct a derivation tree for ∅ ` σ = τ . The
function S, see below, is a recursive function that takes as inputs (1) an
environment A, and (2) a type pair (σ, τ). The call S(A, (σ, τ)) returns a
suggestion for a derivation tree for A ` σ = τ .

S (A, (σ, τ)) =

• If σ, τ are base types, then return A ` σ = τ

• If (σ, τ) ∈ A, then return A ` σ = τ

• If σ = σ1 → σ2, τ = τ1 → τ2, then return

S((A, σ = τ), (σi, τi)) ∀i ∈ {1, 2}
A ` σ = τ

• If σ = Πn
i=1σi, τ = Πn

i=1τi, then return

S((A, σ = τ), (σi, τt(i))) ∀i ∈ {1..n}
A ` σ = τ

where (σi, τt(i)) ∈ R and

t is a bijection from {1..n} to {1..n}.

Consider the call S(∅, (σ, τ)). It is straightforward to see that in every re-
cursive call to S, all type pairs in the arguments are elements of R. Since
R is a bisimulation, this ensures that the rules in EQ→

∏ apply. Moreover,
every time S is called, the size of A will increase by one, since otherwise we

36

could use the second case in the definition of S to avoid further recursive
calls. This limits the depth of the recursion to the number of elements of R.
Since R is finite, we conclude that S(∅, (σ, τ)) has a finite depth of recursion
and that the size of the resulting derivation tree for ∅ ` σ = τ is finite.

B Proof of Theorem 5.9

Theorem B.1. E is a congruence relation.

Proof. We will show that E is reflexive, symmetric, transitive, and a congru-
ence in the → and

∏
constructors.

(Reflexivity) Suppose γ is a base type. Construct the relation

R = { (σ, σ) | σ is a base type }.

We have (γ, γ) ∈ R, and R is closed and consistent. Hence, R is a
bisimulation, and, by co-induction, (γ, γ) ∈ E.

(Symmetry) Suppose (σ, τ) ∈ E. Choose a bisimulation R such that
(σ, τ) ∈ R, and construct from R the relation:

R′ = { (σ, σ′) | (σ′, σ) ∈ R }.

From (σ, τ) ∈ R, we have (τ, σ) ∈ R′. R′ is bisimulation because the
conditions for being a bisimulation are symmetric with respect to the
two components of a type pair. So, by co-induction, (τ, σ) ∈ E.

(Transitivity) Suppose (σ, δ), (δ, τ) ∈ E. Choose bisimulations R1, R2 such
that (σ, δ) ∈ R1, (δ, τ) ∈ R2, and construct from R the relation

R = { (σ1, σ3) | (σ1, σ2) ∈ R1, (σ2, σ3) ∈ R2 }.

From (σ, δ) ∈ R1, (δ, τ) ∈ R2, we have (σ, τ) ∈ R.

For any (σ1, σ2) ∈ R1, (σ2, σ3) ∈ R2, we have σ1(ε) = σ2(ε), σ2(ε) =
σ3(ε), so σ1(ε) = σ3(ε), and therefore R is consistent.

If σ = σ1 → σ2, δ = δ1 → δ2, and τ = τ1 → τ2, then, for every
i ∈ {1, 2}, we have (σi, δi) ∈ R1, (δi, τi) ∈ R2, so (σi, τi) ∈ R, and
therefore R is closed under condition P1.

37

If σ =
∏n
i=1 σi, δ =

∏n
i=1 δi, and τ =

∏n
i=1 τi, then there exist bijections,

u, v such that, for every i ∈ {1..n}, we have (σu(i), δi) ∈ R1, (δv(i), τi) ∈
R2, so (σt(i), τi) ∈ R, where, t = u ◦ v, and therefore R is closed under
condition P2.

We conclude that R is a bisimulation, and, by co-induction, (σ, τ) ∈ E.

(Congruence in →) Suppose (σ1, τ1), (σ2, τ2) ∈ E, and σ = σ1 → σ2, τ =
τ1 → τ2, Choose bisimulations R1, R2 such that (σ1, τ1) ∈ R1, (σ2, τ2) ∈
R2, and construct from R1, R2 the relation

R = {(σ, τ)} ∪R1 ∪R2.

We have (σ, τ) ∈ R by construction.

Since bisimulation is closed under union, R1 ∪ R2 is a bisimulation.
Moreover, σ(ε) = τ(ε) =→, and (σ1, τ1), (σ2, τ2) ∈ R, so R is a bisimu-
lation, and, by co-induction, (σ, τ) ∈ E.

(Congruence in
∏

) Suppose, for every i ∈ {1..n}, that (σi, τti) ∈ E, where
t is a bijection from {1..n} to {1..n}, and σ =

∏n
i=1 σi, τ =

∏n
i=1 τi. For

each i ∈ {1..n}, choose a bisimulation Ri such that (σi, τt(i)) ∈ Ri, and
construct the relation

R = {(σ, τ)} ∪ (
n⋃
i=1

Ri).

We have (σ, τ) ∈ R by construction.

Since bisimulation is closed under union,
⋃n
i=1 Ri is a bisimulation.

Moreover, σ(ε) =
∏n = τ(ε), and for every i ∈ {1..n}, we have

(σi, τti) ∈ R, so R is a bisimulation, and, by co-induction, (σ, τ) ∈ E.

38

References

[1] Mart́ın Abadi and Marcelo P. Fiore. Syntactic considerations on recur-
sive types. In Proceedings of LICS’96, 11th Annual IEEE Symposium
on Logic in Computer Science, pages 242–252, 1996.

[2] Roberto M. Amadio and Luca Cardelli. Subtyping recursive types. ACM
Transactions on Programming Languages and Systems, 15(4):575–631,
1993. Also in Proceedings of POPL’91.

[3] A. Andreev and S. Soloviev. A deciding algorithm for linear isomorphism
of types with complexity O(n log2(n)). Lecture Notes in Computer Sci-
ence, 1290:197ff, 1997.

[4] Maria-Virginia Aponte and Roberto Di Cosmo. Type isomorphisms
for module signatures. In Proceedings of PLILP ’96, pages 334–346.
Springer-Verlag (LNCS 1140), 1996.

[5] Joshua Auerbach, Charles Barton, Mark Chu-Carroll, and Mukund
Raghavachari. Mockingbird: Flexible stub compilation from pairs of
declarations. In Proceedings of the 19th International Conference on
Distributed Computing Systems, pages 393–402, June 1999.

[6] Joshua Auerbach, Charles Barton, and Mukund Raghavachari. Type
isomorphisms with recursive types. Research report RC 21247, IBM
Research Division, T. J. Watson Research Center, Yorktown Heights,
NY, August 1998.

[7] Joshua Auerbach and Mark C. Chu-Carroll. The mockingbird sys-
tem: A compiler-based approach to maximally interoperable distributed
programming. Research report RC 20718, IBM Research Division,
T. J. Watson Research Center, Yorktown Heights, NY, February 1997.

[8] Daniel J. Barrett, Alan Kaplan, and Jack C. Wileden. Automated sup-
port for seamless interoperability in polylingual software systems. In
ACM SIGSOFT’96, Fourth Symposium on the Foundations of Software
Engineering, San Francisco, California, October 1996.

[9] Michael Brandt and Fritz Henglein. Coinductive axiomatization of re-
cursive type equality and subtyping. In Proceedings of TLCA’97, 3rd

39

International Conference on Typed Lambda Calculus and Applications,
1997.

[10] Kim B. Bruce, Roberto Di Cosmo, and Giuseppe Longo. Provable iso-
morphisms of types. Mathematical Structures in Computer Science,
2(2):231–247, 1992.

[11] Jiazhen Cai and Robert Paige. Using multiset discrimination to solve
language processing problems without hashing. Theoretical Computer
Science, 145(1–2)(1–2):189–228, 1995.

[12] Jeffrey Considine. Deciding isomorphisms of simple types in polynomial
time. Manuscript, 2000.

[13] Thomas H Cormen, Charles E Leiserson, and Ronald L Rivest. Intro-
duction to Algorithms. MIT Press and McGraw-Hill Book Company,
Cambridge, Mass., 1990.

[14] Roberto Di Cosmo. Isomorphisms of Types: from λ-calculus to infor-
mation retrieval and language design. Birkhäuser, 1995.

[15] Patrick Cousot. Semantic foundations of program analysis. In S.S.
Muchnick and N.D. Jones, editors, Program Flow Analysis: Theory and
Applications, chapter 10, pages 303–342. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1981.

[16] William F. Dowling and Jean H. Gallier. Linear-time algorithms for
testing the satisfiability of propositional horn formulae. Journal of Logic
Progamming, 1(3):267–84, October 1984.

[17] David E. Gay. Interface definition language conversions: Recursive
types. ACM SIGPLAN Notices, 29(8):101–110, August 1994.

[18] John E. Hopcroft and Richard M. Karp. An n5/2 algorithm for maximum
matchings in bipartite graphs. SIAM Journal on Computing, 2(4):225–
231, 1973.

[19] Trevor Jim and Jens Palsberg. Type inference in systems of recursive
types with subtyping. Manuscript, 1997.

40

[20] Dexter Kozen. A completeness theorem for Kleene algebras and the
algebra of regular events. Information and Computation, 110(2):366–
390, 1 May 1994.

[21] Dexter Kozen, Jens Palsberg, and Michael I. Schwartzbach. Efficient
recursive subtyping. Mathematical Structures in Computer Science,
5(1):113–125, 1995. Preliminary version in Proceedings of POPL’93,
Twentieth Annual SIGPLAN–SIGACT Symposium on Principles of
Programming Languages, pages 419–428, Charleston, South Carolina,
January 1993.

[22] Robin Milner. A complete inference system for a class of regular behav-
iors. Journal of Computer and System Sciences, 28(3):439–466, June
1984.

[23] Paliath Narendran, Frank Pfenning, and Richard Statman. On the uni-
fication problem for Cartesian closed categories. In Proceedings, Eighth
Annual IEEE Symposium on Logic in Computer Science, pages 57–63.
IEEE Computer Society Press, 1993.

[24] OMG. The common object request broker: Architecture and specifi-
cation. Technical report, Object Management Group, 1999. Version
2.3.1.

[25] Jens Palsberg and Christina Pavlopoulou. From polyvariant flow infor-
mation to intersection and union types. Journal of Functional Program-
ming, to appear. Preliminary version in Proceedings of POPL’98, 25th
Annual SIGPLAN–SIGACT Symposium on Principles of Programming
Languages, pages 197–208, San Diego, California, January 1998.

[26] D.M.R. Park. Concurrency and automata on infinite sequences. In Pro-
ceedings of the 5th GI Conference, pages 15–32. Springer-Verlag (LNCS
104), 1981.

[27] Mikael Rittri. Retrieving library identifiers via equational matching of
types. In M. E. Stickel, editor, Proceedings of the 10th International
Conference on Automated Deduction, volume 449 of LNAI, pages 603–
617, Kaiserslautern, FRG, July 1990. Springer Verlag.

[28] Mikael Rittri. Using types as search keys in function libraries. Journal
of Functional Programming, 1(1):71–89, 1991.

41

[29] Mikael Rittri. Retrieving library functions by unifying types modulo
linear isomorphism. RAIRO Theoretical Informatics and Applications,
27(6):523–540, 1993.

[30] Sergei Soloviev. A complete axiom system for isomorphism of types in
closed categories. pages 380–392. Springer-Verlag (LNAI 698), 1993.

[31] Sergei V. Soloviev. The category of finite sets and cartesian closed cat-
egories. Journal of Soviet Mathematics, 22:1387–1400, 1983.

[32] Alfred Tarski. A lattice-theoretical fixed point theorem and its applica-
tions. Pacific Journal of Mathematics, pages 285–309, 1955.

[33] Satish Thatte. Automated synthesis of interface adapters for reusable
classes. In Proceedings of POPL’96, 23nd Annual SIGPLAN–SIGACT
Symposium on Principles of Programming Languages, pages 174–185,
1996.

[34] A. M. Zaremski and J. M. Wing. Signature matching: a tool for using
software libraries. ACM Transactions on Software Engineering Method-
ology, 4(2):146–170, April 1995.

42

