
A Typed Interrupt Calculus

Jens Palsberg Di Ma

Department of Computer Science
Purdue University, W. Lafayette, IN 47907

{palsberg,madi}@cs.purdue.edu

Abstract. Most real-time systems require responsive interrupt han-
dling. Programming of interrupt handlers is challenging: in order to en-
sure responsiveness, it is often necessary to have interrupt processing en-
abled in the body of lower priority handlers. It would be a programming
error to allow the interrupt handlers to interrupt each other in a cyclic
fashion; it could lead to an unbounded stack. Until now, static checking
for such errors could only be done using model checking. However, the
needed form of model checking requires a whole-program analysis that
cannot check program fragments. In this paper, we present a calculus that
contains essential constructs for programming interrupt-driven systems.
The calculus has a static type system that guarantees stack boundedness
and enables modular type checking. A number of common programming
idioms have been type checked using our prototype implementation.

1 Introduction

Interrupt-driven systems Interrupts and interrupt handlers are often used in
systems where fast response to an event is essential. Embedded interrupt-driven
systems generally have a fixed number of interrupt sources with a handler defined
for each source. When an interrupt occurs, control is transferred automatically
to the handler for that interrupt source, unless interrupt processing is disabled.
If disabled, the interrupt will wait for interrupt processing to be enabled. To
get fast response times, it is necessary to keep interrupt processing enabled
most of the time, including in the body of lower priority interrupt handlers.
This opens the door for interrupt handlers to be themselves interrupted, making
it difficult to understand whether real-time deadlines can be met. Conversely,
to write reliable code with a given real-time property, it is simplest to disable
interrupts in the body of interrupt handlers. This may delay the handling of
other interrupts and therefore make it difficult for the system to have other
desired real-time properties. The resultant tension between fast response times
and easy-to-understand, reliable code drives developers to write code that is
often difficult to test and debug.

A nasty programming error A particularly nasty programming error is to al-
low the interrupt handlers to interrupt each other indefinitely, leading to an
unbounded stack. For example, consider the following two interrupt handlers.

2 Palsberg and Ma

handler 1 {
// do something
enable-handling-of-interrupt-2
// do something else
iret

}

handler 2 {
// do something
enable-handling-of-interrupt-1
// do something else
iret

}

Suppose an interrupt from source 1 arrives first, and so handler 1 is called.
Before returning, handler 1 enables handling of interrupts from source 2, and
unfortunately an interrupt from source 2 arrives before handler 1 has returned.
Thus handler 2 is called, and it, in turn, enables handling of interrupts from
source 1 before returning, allowing a highly undesirable cycle and an unbounded
stack.

A traditional type system does not check for this kind of error. The error is
not about misusing data; it is about needing unbounded resources. Until now,
static checking for such errors could only be done using model checking. However,
the needed form of model checking is a whole-program analysis that cannot check
program fragments [13, 3]. The goal of this paper is to present a type system that
guarantees stack boundedness and enables modular type checking. To do that,
we need a minimal setting in which to study interrupt-driven systems.

The need for a new calculus For many programming paradigms, there is a small
calculus which allows the study of properties in a language-independent way and
which makes it tractable to prove key properties. For example, for functional
programming there is the λ-calculus [2], for concurrent programming there is
Milner’s calculus of communicating systems [7], for object-oriented programming
there is the Abadi-Cardelli object calculus [1], and for mobile computation there
is the π-calculus [8] and the ambient calculus [4]. These calculi do not offer
any notion of interrupts and interrupt handling. While such concepts might be
introduced on top of one of those calculi, we believe that it is better to design
a new calculus with interrupts at the core. A new calculus should focus on the
essential concepts and leave out everything else.

What are the essential concepts? While some modern, general-purpose CPUs
have sophisticated ways of handling internal and external interrupts, the notion
of an interrupt mask register (imr) is widely used. This is especially true for
CPUs that are used in embedded systems with small memory size, a need for
low power consumption, and other constraints. The following table lists some
characteristics of four CPUs that are often used in embedded systems:

Well-known product Processor # of interrupt master
sources bit

Microcontroller Zilog Z86 6 yes
iPAQ Pocket PC Intel strongARM, XScale 21 no
Palm Motorola Dragonball (68000 Family) 22 yes
Microcontroller Intel MCS-51 Family (8051 etc) 6 yes

A Typed Interrupt Calculus 3

Each of these processors have similar-looking imr’s. For example, consider
the imr for the MCS-51 (which calls it the interrupt enable (IE) register):

EA – ET2 ES ET1 EX1 ET0 EX0

The bits have the following meanings:

– EA: enable/disable all interrupt handling,
– –: reserved (not used), and
– each of the remaining six bits corresponds to a specific interrupt source.

We will refer to the EA bit (and similar bits on other processors) as the mas-
ter bit. The idea is that for a particular interrupt handler to be enabled, both
the master bit and the bit for that interrupt handler have to be enabled. This
semantics is supported by the Z86, Dragonball, MCS-51, and many other pro-
cessors. When an interrupt handler is called, a return address is stored on the
stack, and the processor automatically turns off the master bit. At the time of
return, the processor turns the master bit back on. Not all processors use this
scheme: the strongARM does not have a master bit. In this paper we focus on
modeling processors that do have a master bit.

In the rest of the paper, we will use a representation of the imr which is
independent of particular architectures. We represent the imr as a bit sequence
b0b1 . . . bn, where bi ∈ {0, 1}, b0 is the master bit, and, for i > 0, bi is the bit for
interrupts from source i which is handled by handler i. Notice that the master
bit is the most significant bit, and that the bit for handler 1 is the second-most
significant bit, and so on. This layout is different from some processors, and it
simplifies the notation used later.

Our Results We present a calculus that contains essential constructs for pro-
gramming interrupt-driven systems. A program in the calculus consists of a
main part and some interrupt handlers. A program execution has access to:

– an interrupt mask register that can be updated during computation,
– a stack for storing return addresses, and
– a memory of integer variables; output is done via memory-mapped I/O.

The calculus is intended for modeling embedded systems that should run “for-
ever,” and for which termination would be considered a disastrous error. To
model that, the calculus is designed such that no program can terminate; non-
termination is guaranteed.

Each element on the stack is a return address. When we measure the size of
the stack, we simply count the number of elements on the stack.

For our calculus, we present a type system that guarantees stack boundedness
and enables modular type checking. A number of common programming idioms
have been type checked using our prototype implementation.

A type for a handler contains information about the imr on entry and the
imr at the point of return. Given that a handler can be called at different points

4 Palsberg and Ma

in the program where the imr may have different values, the type of a handler
is an intersection type [5, 6] of the form:

n∧
j=1

((îmr)j δj

−→ (îmr
′
)j).

where the jth component of the intersection means:

if the handler is called in a situation where the imr can be conservatively
approximated by (îmr)j , then at the point of return, the imr can con-
servatively be approximated by (îmr

′
)j , and during that call, the stack

will grow by at most δj elements, excluding the return address for the
call itself.

The annotations δj help with checking that the stack is bounded. Our type
system with annotated types is an example of a type-based analysis [10].

Rest of the paper In Section 2 we introduce our interrupt calculus and type
system via six examples. In Section 3 we present the syntax and semantics of
the interrupt calculus, and we prove that no program can terminate. In Section
4 we present our type system and prove stack boundedness, and in Section 5 we
conclude. In the appendix we prove the theorem of type preservation which is a
key lemma in the proof of stack boundedness.

2 Examples

We will introduce our interrupt calculus and type system via six examples of
increasing sophistication. The first five programs have been type checked using
our prototype implementation, while the sixth program illustrates the limitations
of our type system. We will use the concrete syntax that is supported by our
type checker; later, in Sections 3–4, we will use an abstract syntax. Note that an
imr value, say, 11 will in the concrete syntax be written as 11b, to remind the
reader that it is a binary value. Also, the type of a handler

n∧
j=1

((îmr)j δj

−→ (îmr
′
)j).

will be written ((îmr)1 -> (îmr
′
)1 : δ1) ... ((îmr)n -> (îmr

′
)n : δn).

The program in Figure 1 is a version of Example 3-5 from Wayne Wolf’s
textbook [14, p.113]. The program copies data from one device to another de-
vice. The program uses memory-mapped I/O; two variables map to the device
registers:

– indata: the input device writes data in this register and
– outdata: the output device reads data from this register.

A Typed Interrupt Calculus 5

Maximum stack size: 1

imr = imr or 11b

loop {

if (gotchar == 0) {

outdata = achar

gotchar = 1

} else {

skip

}

}

handler 1 [(11b -> 11b : 0)] {

achar = indata

gotchar = 0

iret

}

Fig. 1. A program for copying data from one device to another device.

maximum stack size: 1

imr = imr or 111b

loop {

skip

imr = imr or 111b

}

handler 1 [(111b -> 111b : 0)] {

skip

iret

}

handler 2 [(111b -> 111b : 0)] {

skip

iret

}

Fig. 2. Two selfish handlers

The line maximum stack size: 1 is a part of the program text. It tells the type
checker to check that the stack can never be of a size greater than one. The
number 1 is a count of return addresses on the stack; nothing else than return
addresses can be put on the stack in our calculus. The header of the handler
contains the annotation 11b -> 11b : 0. It is a type that says that if the han-
dler is called in a situation where the imr can be conservatively approximated
by 11, then it will return in a situation where the imr can be conservatively
approximated by 11, and the stack will not grow during the call. The value 11
should be read as follows. The leftmost bit is the master bit, and the next bit is
the bit for handler 1. The value 11 means that handler 1 is enabled.

The program in Figure 2 is much like the program in Figure 1, except that
there are now two handlers. The handlers cannot be interrupted so the maximum
stack size is 1. Notice that since there are two handlers, the imr has three bits.
They are organized as follows. The leftmost bit is, as always, the master bit. The
next bit is the bit for handler 1, and the rightmost bit is the bit for handler 2.

The program in Figure 3 illustrates how to program a notion of prioritized
handlers where handler 1 is of higher priority than handler 2. While handler 1
cannot be interrupted by handler 2, it is possible for handler 2 to be interrupted
by handler 1. Handler 2 achieves that by disabling its own bit in the imr with
the statement imr = imr and 110b, and then enabling the master bit with the
statement imr = imr or 100b. Thus, handler 2 can be interrupted before it

6 Palsberg and Ma

maximum stack size: 2

imr = imr or 111b

loop {

skip

imr = imr or 111b

}

handler 1 [(111b -> 111b : 0)

(110b -> 110b : 0)] {

skip

iret

}

handler 2 [(111b -> 111b : 1)] {

skip

imr = imr and 110b

imr = imr or 100b

iret

}

Fig. 3. Two prioritized handlers

maximum stack size: 2

imr = imr or 111b

loop {

imr = imr or 111b

}

handler 1 [(111b -> 101b : 1)

(110b -> 100b : 0)] {

imr = imr and 101b

imr = imr or 100b

iret

}

handler 2 [(111b -> 110b : 1)

(101b -> 100b : 0)] {

imr = imr and 110b

imr = imr or 100b

iret

}

Fig. 4. Two cooperative handlers

returns. Accordingly, the maximum stack size is 2. The type for handler 1 is an
intersection type that reflects that handler 1 can be called both from the main
part and from handler 2. If it is called from the main part, then the imr is 111,
and if it is called from handler 2, then the imr is 110. The type for handler 2
has annotation 1 because handler 2 can be interrupted by handler 1, which, in
turn, cannot be interrupted.

The program in Figure 4 illustrates how both handlers can allow the other
handler to interrupt. Each handler uses the discipline of disabling its own bit in
the imr before setting the master bit to 1. This ensures that the maximum stack
size is two.

The program in Figure 5 illustrates that n handlers can lead to a bounded
stack where the bound is greater than n. In this case we have two handlers and
a maximum stack size of three. A stack size of three is achieved by first calling
handler 1, then calling handler 2, and finally calling handler 1 again.

While our type system can type check many common programming idioms,
as illustrated above, there are useful programs that it cannot type check. For
example, the program in Figure 6, written by Dennis Brylow, is a 60 second

A Typed Interrupt Calculus 7

maximum stack size: 3

imr = imr or 111b

loop {

imr = imr or 111b

}

handler 1 [(111b -> 111b : 2)

(110b -> 100b : 0)] {

imr = imr and 101b

imr = imr or 100b

iret

}

handler 2 [(111b -> 100b : 1)

(101b -> 100b : 1)] {

imr = imr and 110b

imr = imr or 010b

imr = imr or 100b

imr = imr and 101b

iret

}

Fig. 5. Two fancy handlers

maximum stack size: 1

SEC = SEC + 60

imr = imr or 110b

loop {

if(SEC == 0) {

OUT = 1

imr = imr and 101b

imr = imr or 001b

} else {

OUT = 0

}

}

handler 1 [(111b -> 111b : 0)

(110b -> 110b : 0)] {

SEC = SEC + (-1)

iret

}

handler 2 [(111b -> 110b : 0)

(101b -> 110b : 0)] {

SEC = 60

imr = imr and 110b

imr = imr or 010b

iret

}

Fig. 6. A timer

timer. The OUT variable will be 0 for 60 seconds after a request for interrupt 2.
There are two interrupt handlers:

– The first handler is for an external timer that is expected to request an
interrupt once each second.

– The second handler is a trigger. When it arrives, the OUT variable will become
0 for 60 seconds. Then OUT will become 1, and remain so until the next trigger
event.

Our type system cannot handle this pattern where handler 2 disables itself and
then enables handler 1, and where the main program disables handler 1 and
enables handler 2. Thus, while the program in Figure 6 has a maximum stack
size of 2, it does not type check in our type system.

8 Palsberg and Ma

3 The Interrupt Calculus

3.1 Syntax

We will use an abstract syntax that is slightly more compact than the concrete
syntax used in Section 2.

We use x to range over a set of program variables, we use imr to range over
bit strings, and we use c to range over integer constants.

(program) p ::= (m,h)
(main) m ::= loop s | s ; m
(handler) h ::= iret | s ; h
(statements) s ::= x = e | imr = imr ∧ imr | imr = imr ∨ imr |

if0 (x) s1 else s2 | s1 ; s2 | skip
(expression) e ::= c | x | x + c | x1 + x2

The over bar notation h denotes a sequence h1 . . . hn; we will use the notation
h(i) = hi.

We use a to range over m and h. We identify programs that are equivalent
under the smallest congruence generated by the rules:

(s1 ; s2) ; m = s1 ; (s2 ; m)
(s1 ; s2) ; h = s1 ; (s2 ; h)
(s1 ; s2) ; s = s1 ; (s2 ; s).

With these rules, we can rearrange any m or h into one of the seven forms:

loop s iret x = e; a imr = imr ∧ imr; a imr = imr ∨ imr; a
(if0 (x) s1 else s2); a skip; a.

3.2 Semantics

We use R to denote a store, that is, a partial function mapping program variables
to integers.

We use σ to denote a stack generated by the grammar: σ ::= nil | a :: σ. We
define the size of a stack as follows: |nil| = 0 and |a :: σ| = 1 + |σ|.

If imr = b0b1 . . . bn, where bi ∈ {0, 1}, then we will use the notation imr(i) =
bi. The predicate enabled is defined as follows:

enabled(imr, i) = (imr(0) = 1) ∧ (imr(i) = 1), i ∈ 1..n.

We use 0 to denote the imr value where all bits are 0. We use ti to denote the
imr value where all bits are 0’s except that the ith bit is set to 1. We will use ∧
to denote bitwise logical conjunction, ∨ to denote bitwise logical disjunction, ≤
to denote bitwise logical implication, and (·)• to denote bitwise logical negation.
Notice that enabled(t0 ∨ ti, j) is true for i = j and false otherwise. The imr
values, ordered by ≤, form a lattice with bottom element 0.

A Typed Interrupt Calculus 9

A program state is a tuple 〈h,R, imr, σ, a〉. We will refer to a as the current
statement; it models the instruction pointer of a CPU. We use P to range over
program states. If P = 〈h,R, imr, σ, a〉, then we use the notation P.stk = σ. For
p = (m,h), the initial program state for executing p is Pp = 〈h, λx.0, 0, nil,m〉,
where the function λx.0 is defined on the variables that are used in the program
p.

A small-step operational semantics for the language is given by the reflexive,
transitive closure of the relation → on program states:

〈h,R, imr, σ, a〉 → 〈h,R, imr ∧ t•0, a :: σ, h(i)〉
if enabled(imr, i)

(1)

〈h,R, imr, σ, iret〉 → 〈h,R, imr ∨ t0, σ
′, a〉 if σ = a :: σ′ (2)

〈h,R, imr, σ, loop s〉 → 〈h,R, imr, σ, s; loop s〉 (3)
〈h,R, imr, σ, x = e; a〉 → 〈h,R{x 7→ evalR(e)}, imr, σ, a〉 (4)

〈h,R, imr, σ, imr = imr ∧ imr′; a〉 → 〈h,R, imr ∧ imr′, σ, a〉 (5)
〈h,R, imr, σ, imr = imr ∨ imr′; a〉 → 〈h,R, imr ∨ imr′, σ, a〉 (6)

〈h,R, imr, σ, (if0 (x) s1 else s2); a〉 → 〈h,R, imr, σ, s1; a〉 if R(x) = 0 (7)
〈h,R, imr, σ, (if0 (x) s1 else s2); a〉 → 〈h,R, imr, σ, s2; a〉 if R(x) 6= 0 (8)

〈h,R, imr, σ, skip; a〉 → 〈h,R, imr, σ, a〉 (9)

We define the function evalR(e) as follows:

evalR(c) = c

evalR(x) = R(x)
evalR(x + c) = R(x) + c

evalR(x1 + x2) = R(x1) + R(x2).

Rule (1) models that if an interrupt is enabled, then it may occur. The rule
says that if enabled(imr, i), then it is a possible transition to push the current
statement on the stack, make h(i) the current statement, and turn off the master
bit in the imr. Notice that we make no assumptions about the interrupts arrivals;
any enabled interrupt can occur at any time, and, conversely, no interrupt has
to occur.

Rule (2) models interrupt return. The rule says that to return from an inter-
rupt, remove the top element of the stack, make the removed top element the
current statement, and turn on the master bit.

Rule (3) is an unfolding rule for loops, and Rules (4)–(9) are standard rules
for statements.

3.3 Nontermination

We say that a program p can terminate if Pp →∗ P ′ and there is no P ′′ such
that P ′ → P ′′.

10 Palsberg and Ma

We say that a program state 〈h,R, imr, σ, a〉 is consistent if and only if (1)
σ = nil and a = m; or (2) σ = hk :: . . . :: h1 :: m :: nil and a = h, for k ≥ 0,
where k = 0 means σ = m :: nil.

Lemma 1. (Consistency Preservation) If P is consistent and P → P ′,
then P ′ is consistent.

Proof. A straightforward cases analysis of P → P ′.

Lemma 2. (Progress) If P is consistent, then there exists P ′ such that P →
P ′.

Proof. There are two cases of P :

– P = 〈h,R, imr, nil,m〉. There are two cases of m:
• if m = loop s, then Rule (3) gives P ′ = 〈h,R, imr, nil, s; loop s〉, and
• if m = s;m′, then Rules (4)–(9) ensure that there exists a state P ′ such

that P → P ′.
– P = 〈h,R, imr, hk :: . . . :: h1 :: m :: nil, h〉, k ≥ 0. There are two cases of h:

• if h = iret, then either k = 0 and s = m :: nil, and Rule (2) gives
P ′ = 〈h,R, imr ∨ t0, nil,m〉, or k > 0 and hence
P ′ = 〈h,R, imr ∨ t0, h

k−1 :: . . . :: h1 :: m :: nil, hk〉, and
• if h = s;h′, then Rules (4)–(9) ensure that there exists a state P ′ such

that P → P ′.

Theorem 1. (Nontermination) No program can terminate.

Proof. Suppose a program p can terminate, that is, suppose Pp →∗ P ′ and there
is no P ′′ such that P ′ → P ′′. Notice first that Pp is consistent by consistency
criterion (1). From Lemma 1 and induction on the number of execution steps
in Pp →∗ P ′, we have that P ′ is consistent. From Lemma 2 we have that there
exists P ′′ such that P ′ → P ′′, a contradiction.

4 Type System

4.1 Types

We will use imr values as types. When we intend an imr value to be used as a
type, we will use the mnemonic device of writing it with a hat, for example, îmr.

We will use the bitwise logical implication ≤ as the subtype relation. For
example, 101 ≤ 111. We will also use ≤ to specify the relationship between an
imr value and its type. When we want to express that an imr value imr has
type îmr, we will write imr ≤ îmr. The meaning is that îmr is a conservative
approximation of imr, that is, if a bit in imr is 1, then the corresponding bit in
îmr is also 1.

We use K to range over the integers, and we use δ to range over the nonneg-
ative integers.

A Typed Interrupt Calculus 11

We use τ to range over intersection types of the form:
n∧

j=1

((îmr)j δj

−→ (îmr
′
)j).

We use τ to range over a sequence τ1 . . . τn; we will use the notation τ(i) = τi.

4.2 Type Rules

We will use the following forms of type judgments:

Type Judgment Meaning

τ ` h : τ Interrupt handler h has type τ

τ , îmr `K σ Stack σ type checks
τ , îmr `K m Main part m type checks
τ , îmr `K h : îmr

′
Handler h type checks

τ , îmr `K s : îmr
′

Statement s type checks
τ `K P Program state P type checks

The judgment τ , îmr `K m means that if the handlers are of type τ , and
the imr has type îmr, then m type checks. The integer K bounds the stack size
to be at most K. We can view K as a “stack budget” in the sense that any time
an element is placed on the stack, the budget goes down by one, and when an
element is removed from the stack, the budget goes up by one. The type system
ensures that the budget does not go below zero.

The judgment τ , îmr `K h : îmr
′
means that if the handlers are of type

τ , and the imr has type îmr, then h type checks, and at the point of returning
from the handler, the imr has type îmr

′
. The integer K means that during the

call, the stack will grow by at most K elements. Notice that “during the call”
may include calls to other interrupt handlers.

The judgment τ , îmr `K s : îmr
′

has a meaning similar to that of
τ , îmr `K h : îmr

′
.

A judgment for a program state is related to the concrete syntax used in
Section 2 in the following way. We can dissect the concrete syntax into four
parts: (1) a maximum stack size K, (2) the types τ for the handlers, (3) a main
part m, and (4) a collection h of handlers. When we talk about a program (m,h)
in the abstract syntax, the two other parts K and τ seem left out. However, they
reappear in the judgment: τ `K P(m,h). Thus, that judgment can be read simply
as: “the program type checks.”

For two sequences h, τ of the same length, we will use the abbreviation:

τ ` h : τ

to denote the family of judgments

τ ` h(i) : τ(i)

12 Palsberg and Ma

for all i in the common domain of h and τ .
We will use the abbreviation:

safe(τ , îmr, K) =

∀i ∈ 1 . . . n

if enabled(îmr, i)

then, whenever τ(i) = . . .
∧

(îmr
δ−→ îmr

′
)

∧
. . . ,

we have îmr
′
≤ îmr ∧ δ + 1 ≤ K

 .

The idea of safe(τ , îmr, K) is to guarantee that it is safe for an interrupt to
occur. If an interrupt occurs at a time when the imr has type îmr and the
“stack budget” is K, then the handler for that interrupt should return with an
imr that has a type which is a subtype of îmr. This ensures that îmr is still a
type for the imr after the interrupt. Moreover, the stack should grow at most δ
elements during the call, plus a return address for the call itself.

As a mnemonic, we will sometimes use imrr for the return imr value of an
interrupt handler, and we will sometimes use imrb for the imr value when an
interrupt handler is called.

τ ` h : τ imr ≤ îmr τ , îmr `K m

τ `K 〈h,R, imr, nil,m〉
(10)

τ ` h : τ imr ≤ îmr

τ , îmr `K h : îmrr îmrr ≤ îmrb τ , îmrb `K σ

τ `K 〈h,R, imr, σ, h〉
(11)

τ , îmr `K+1 m

τ, îmr `K m :: nil
(12)

τ , îmr `K+1 h : îmrr îmrr ≤ îmrb τ , îmrb `K+1 σ

τ, îmr `K h :: σ
(13)

τ , (îmr)j ∧ t•0 `δj h : (îmr
′
)j j ∈ 1..n

τ ` h :
∧n

j=1((îmr)j δj

−→ (îmr
′
)j)

(14)

τ , îmr `K s : îmr

τ , îmr `K loop s

[
safe(τ , îmr, K)

]
(15)

τ , îmr `K s : îmr
′

τ , îmr
′
`K m

τ, îmr `K s;m
(16)

τ , îmr `K iret : îmr ∨ t0
[
safe(τ , îmr, K)

]
(17)

τ , îmr `K s : îmr
′

τ , îmr
′
`K h : îmr

′′

τ , îmr `K s;h : îmr
′′ (18)

A Typed Interrupt Calculus 13

τ , îmr `K x = e : îmr
[
safe(τ , îmr, K)

]
(19)

τ , îmr `K imr = imr ∧ imr′ : îmr ∧ imr′
[
safe(τ , îmr, K)

]
(20)

τ , îmr `K imr = imr ∨ imr′ : îmr ∨ imr′
[
safe(τ , îmr, K)

]
(21)

τ , îmr `K s1 : îmr
′

τ , îmr `K s2 : îmr
′

τ , îmr `K if0 (x) s1 else s2 : îmr
′

[
safe(τ , îmr, K)

]
(22)

τ , îmr `K s1 : îmr1 τ , îmr1 `K s2 : îmr2

τ , îmr `K s1; s2 : îmr2

(23)

τ , îmr `K skip : îmr
[
safe(τ , îmr, K)

]
(24)

Rules (10)–(11) are for type checking program states. The actual imr value
imr is abstracted to a type îmr which is used to type check the current state-
ment. In Rule (11), the last two hypotheses ensure that interrupts can return to
their callers in a type-safe way. This involves type checking the stack, which is
done by Rules (12)–(13).

Rule (14) says that the type of a handler is an intersection type so the handler
must have all of the component types of the intersection. For each component
type, the annotation δj is used as the bound on how much the stack can grow
during a call to the handler. Notice that an intersection of different components
cannot be reduced into a single component. The rule type checks the handler
with the master bit initially turned off.

Rules (15)–(24) are type rules for statements. They are flow-sensitive to the
imr, and most of them have the side condition safe(τ , îmr, K). The side condition
ensures that if an enabled interrupt occurs, then the handler can both be called
and return in a type-safe way.

4.3 Type Preservation and Stack Boundedness

Theorem 2. (Type Preservation) Suppose P is a consistent program state.
If τ `K P , K ≥ 0, and P → P ′, then τ `K′ P ′ and K ′ ≥ 0, where K ′ =
K + |P.stk| − |P ′.stk|.

Proof. See Appendix A.

Theorem 3. (Multi-Step Type Preservation) Suppose P is a consistent
program state. If τ `K P , K ≥ 0, and P →∗ P ′, then τ `K′ P ′ and K ′ ≥ 0,
where K ′ = K + |P.stk| − |P ′.stk|.

14 Palsberg and Ma

Proof. We need to prove that

∀n ≥ 0, if τ `K P , K ≥ 0, and P →n P ′, then τ `K′ P ′ and K ′ ≥ 0,
where K ′ = K + |P.stk| − |P ′.stk|.

We proceed by induction on n. In the base case of n = 0, we have P = P ′, so
K ′ = K + |P.stk| − |P.stk| = K. From P ′ = P and K ′ = K, we have τ `K′ P ′

and K ′ ≥ 0.
In the induction step, assume that the property is true for n. Suppose τ `K P ,

K ≥ 0, and P →n P ′ → P ′′. From the induction hypothesis, we have τ `K′ P ′

and K ′ ≥ 0, where
K ′ = K + |P.stk| − |P ′.stk| (25)

From Lemma 1 we have that P ′ is consistent. From Theorem 2, we have τ `K′′

P ′′ and K ′′ ≥ 0, where

K ′′ = K ′ + |P ′.stk| − |P ′′.stk| (26)

From Equations (25) and (26), we have

K ′′ = K ′ + |P ′.stk| − |P ′′.stk|
= K + |P.stk| − |P ′.stk|+ |P ′.stk| − |P ′′.stk|
= K + |P.stk| − |P ′′.stk|

as desired.

Corollary 1. (Stack Boundedness) If τ `K Pp, K ≥ 0, and Pp →∗ P ′, then
|P ′.stk| ≤ K.

Proof. Notice first that Pp is consistent. From τ `K Pp, K ≥ 0, Pp →∗ P ′, and
Theorem 3, we have τ `K′ P ′ and K ′ ≥ 0, where K ′ = K + |Pp.stk| − |P ′.stk|.
From K ′ = K + |Pp.stk| − |P ′.stk| and |Pp.stk| = 0, we have K ′ = K − |P ′.stk|,
so, since K ′ ≥ 0, we have |P ′.stk| ≤ K, as desired.

5 Conclusion

Our calculus is a good foundation for studying interrupt-driven systems. In tune
with the need of embedded systems, no program can terminate. Our type system
guarantees stack boundedness, and a number of idioms have been type checked
using our prototype implementation.

Our calculus can be viewed as the core of our ZIL language [9, 12]. ZIL is
an intermediate language that strongly resembles Z86 assembly language except
that it uses variables instead of registers. We use ZIL as an intermediate language
in compilers.

Future work includes implementing the type checker for a full-scale language,
such as ZIL, and experimenting with type checking production code. Another
challenge is to design a more powerful type system which can type check the

A Typed Interrupt Calculus 15

timer program in Figure 6. It may be possible to integrate the interrupt calculus
with a calculus such as the π-calculus. This could give the advantage that existing
methods, techniques, and tools can be used.

To enable our type system to be used easily for legacy systems, we need
a way to infer the types of all interrupt handlers. Such type inference may be
related to model checking. An idea might be to first execute a variant of a model
checking algorithm for pushdown automata [13, 3], and then use the computed
information to construct types (for a possibly related result, see [11]). At present,
it is open whether type inference for our type system is decidable.

Acknowledgment: Our work is supported by the National Science Foun-
dation ITR award 0112628. We thank Dennis Brylow, Mayur Naik, James Rose,
Vidyut Samanta, and Matthew Wallace for many helpful discussions.

A Proof of Theorem 2

Lemma 3. (Safe-Guarantee, Statements) If τ , îmr `K s : îmr
′
, then

safe(τ , îmr, K).

Proof. By induction on the derivation of τ , îmr `K s : îmr
′
; we omit the

details.

Lemma 4. (Safe-Guarantee, Handlers) If τ , îmr `K h : îmr
′
, then

safe(τ , îmr, K).

Proof. By induction on the derivation of τ , îmr `K h : îmr
′
, using Lemma 3;

we omit the details.

Lemma 5. (Safe-Guarantee, Main) If τ , îmr `K m, then safe(τ , îmr, K).

Proof. By induction on the derivation of τ , îmr `K m, using Lemma 3; we
omit the details.

Lemma 6. (Safe-Weakening) If K1 ≤ K2 and safe(τ , îmr, K1),
then safe(τ , îmr, K2).

Proof. From K1 ≤ K2 and

safe(τ , îmr, K1) =

∀i ∈ 1 . . . n

if enabled(îmr, i)

then, whenever τ(i) = . . .
∧

(îmr
δ−→ îmr

′
)

∧
. . . ,

we have îmr
′
≤ îmr ∧ δ + 1 ≤ K1

we have

∀i ∈ 1 . . . n

if enabled(îmr, i)

then, whenever τ(i) = . . .
∧

(îmr
δ−→ îmr

′
)

∧
. . . ,

we have îmr
′
≤ îmr ∧ δ + 1 ≤ K2

16 Palsberg and Ma

that is, safe(τ , îmr, K2).

Lemma 7. (K-Weakening, Statements) If K1 ≤ K2 and τ , îmr `K1 s :
îmr

′
, then τ , îmr `K2 s : îmr

′
.

Proof. We proceed by induction on the derivation of τ , îmr `K1 s : îmr
′
.

There are six subcases depending on which one of Rules (19)–(24) was the last
one used in the derivation of τ , îmr `K1 s : îmr

′
.

– Rule (19). We have

τ , îmr `K1 x = e : îmr
[
safe(τ , îmr, K1)

]
.

From K1 ≤ K2, safe(τ , îmr, K1), and Lemma 6, we have safe(τ , îmr, K2).
Hence, τ , îmr `K2 x = e : îmr.

– Rule (20). The proof is similar to that for Rule (19).
– Rule (21). The proof is similar to that for Rule (19).
– Rule (22). We have

τ , îmr `K1 s1 : îmr
′

τ , îmr `K1 s2 : îmr
′

τ , îmr `K1 if0 (x) s1 else s2 : îmr
′

[
safe(τ , îmr, K1)

]
.

From the induction hypothesis, we have τ , îmr `K2 s1 : îmr
′

and
τ , îmr `K2 s2 : îmr

′
. From K1 ≤ K2, safe(τ , îmr, K1), and Lemma 6, we

have safe(τ , îmr, K2). Hence, τ , îmr `K2 if0 (x) s1 else s2 : îmr
′
.

– Rule (23). We have

τ , îmr `K1 s1 : îmr1 τ , îmr1 `K1 s2 : îmr2

τ , îmr `K1 s1; s2 : îmr2

.

From the induction hypothesis, we have τ , îmr `K2 s1 : îmr1 and
τ , îmr1 `K2 s2 : îmr2. Hence, τ , îmr `K2 s1; s2 : îmr2.

– Rule (24). The proof is similar to that for Rule (19).

Lemma 8. (K-Weakening, Handlers) If K1 ≤ K2 and τ , îmr `K1 h :
îmr

′
, then τ , îmr `K2 h : îmr

′
.

Proof. We proceed by induction on the derivation of τ , îmr `K1 h : îmr
′
.

There are two subcases depending on which one of Rules (17)–(18) was the last
one used in the derivation of τ , îmr `K1 h : îmr

′
.

– Rule (17). We have

τ , îmr `K1 iret : îmr ∨ t0
[
safe(τ , îmr, K1)

]
.

From K1 ≤ K2, safe(τ , îmr, K1), and Lemma 6, we have safe(τ , îmr, K2).
Therefore, we have

τ , îmr `K2 iret : îmr ∨ t0.

A Typed Interrupt Calculus 17

– Rule (18). We have

τ , îmr `K1 s : îmr
′

τ , îmr
′
`K1 h : îmr

′′

τ , îmr `K1 s;h : îmr
′′ .

From Lemma 7, we have

τ , îmr `K2 s : îmr
′
.

From the induction hypothesis, we have

τ , îmr
′
`K2 h : îmr

′′
.

From τ , îmr `K2 s : îmr
′

and τ , îmr
′

`K2 h : îmr
′′
, we can use

Rule (18) to derive τ , îmr `K2 s;h : îmr
′′
.

We can now prove Theorem 2, which we restate here:

Suppose P is a consistent program state. If τ `K P , K ≥ 0, and P → P ′,
then τ `K′ P ′ and K ′ ≥ 0, where K ′ = K + |P.stk| − |P ′.stk|.

Proof. There are nine cases depending on which one of Rules (1)–(9) was used
to derive P → P ′.

– Rule (1). We have 〈τ ,R, imr, σ, a〉 → 〈h,R, imr ∧ t•0, a :: σ, h(i)〉 and
enabled(imr, i). Since P is consistent, there are two subcases.
Subcase 1: We have P = 〈h,R, imr, nil,m〉 and
P ′ = 〈h,R, imr ∧ t•0,m :: nil, h(i)〉. From τ `K P and Rule (10), we have the
derivation:

τ ` h : τ imr ≤ îmr τ , îmr `K m

τ `K 〈h,R, imr, nil,m〉
.

From τ , îmr `K m, and Lemma 5, we have that:

safe(τ , îmr, K) =

∀i ∈ 1 . . . n

if enabled(îmr, i)

then, whenever τ(i) = . . .
∧

(îmr
δ−→ îmr

′
)

∧
. . . ,

we have îmr
′
≤ îmr ∧ δ + 1 ≤ K

is true. From safe(τ , îmr, K) and enabled(îmr, i), it follows that:

τ(i) = . . .
∧

(îmr
δ−→ îmr

′
)
∧

. . . îmr
′
≤ îmr δ + 1 ≤ K.

From τ ` h : τ and Rule (14), we have τ , îmr ∧ t•0 `δ hi : îmr
′
. From

δ ≤ K − 1, τ , îmr ∧ t•0 `δ hi : îmr
′
, and Lemma 8, we have

τ , îmr ∧ t•0 `K−1 hi : îmr
′
.

18 Palsberg and Ma

From τ , îmr `K m and Rule (12), we have τ , îmr `K−1 m :: nil. From
τ ` h : τ , imr ∧ t•0 ≤ îmr ∧ t•0, τ , îmr ∧ t•0 `K−1 hi : îmr

′
, îmr

′
≤ îmr,

τ , îmr `K−1 m :: nil, and K ′ = K + |P.stk| − |P ′.stk| = K − 1 ≥ δ ≥ 0, we
can use Rule (11) to derive τ `K′ P ′.
Subcase 2: We have P = 〈h,R, imr, σ, h〉, P ′ = 〈h,R, imr ∧ t•0, h :: σ, h(i)〉.
From τ `K P and Rule (11), we have the derivation:

τ ` h : τ imr ≤ îmr

τ , îmr `K h : îmrr îmrr ≤ îmrb τ , îmrb `K σ

τ `K 〈h,R, imr, σ, h〉
.

From τ , îmr `K h : îmrr, and Lemma 4, we have that

safe(τ , îmr, K) =

∀i ∈ 1 . . . n

if enabled(îmr, i)

then, whenever τ(i) = . . .
∧

(îmr
δ−→ îmr

′
)

∧
. . . ,

we have îmr
′
≤ îmr ∧ δ + 1 ≤ K

is true. From safe(τ , îmr, K) and enabled(îmr, i), it follows that

τ(i) = . . .
∧

(îmr
δ−→ îmr

′
)
∧

. . . îmr
′
≤ îmr δ + 1 ≤ K.

From τ ` h : τ and Rule (14), we have τ , îmr ∧ t•0 `δ hi : îmr
′
. From

δ ≤ K − 1, τ , îmr ∧ t•0 `δ hi : îmr
′
, and Lemma 8, we have

τ , îmr ∧ t•0 `K−1 hi : îmr
′
.

From τ , îmr `K h : îmrr, îmrr ≤ îmrb, τ , îmrb `K σ, and Rule (13),
we have

τ , îmr `K−1 h :: σ.

From τ ` h : τ , imr∧ t•0 ≤ îmr∧ t•0, τ , îmr∧ t•0 `K−1 hi : îmr
′
, îmr

′
≤

îmr, τ , îmr `K−1 h :: σ, and K ′ = K + |P.stk| − |P ′.stk| = K − 1 ≥ δ ≥ 0,
we can use Rule (11) to derive τ `K′ P ′.

– Rule (2). We have 〈h,R, imr, σ, iret〉 → 〈h,R, imr ∨ t0, σ
′, a〉, and σ = a :: σ′.

Since P is consistent, there are two subcases.
Subcase 1: We have P = 〈h,R, imr,m :: nil, iret〉 and
P ′ = 〈h,R, imr ∨ t0, nil,m〉. From τ `K P , Rule (11), and Rule (12), we
have the derivation:

τ ` h : τ imr ≤ îmr

τ , îmr `K iret : îmr ∨ t0 îmr ∨ t0 ≤ îmrb
τ , îmrb `K+1 m

τ, îmrb `K m :: nil

τ `K 〈h,R, imr,m :: nil, iret〉
.

A Typed Interrupt Calculus 19

From τ ` h : τ , imr ∨ t0 ≤ îmr ∨ t0 ≤ îmrb, τ , îmrb `K+1 m, and
K ′ = K+|P.stk|−|P ′.stk| = K+1, we can use Rule (10) to derive τ `K′ P ′.
Subcase 2: We have P = 〈h,R, imr, hk :: σ′, iret〉 and
P ′ = 〈h,R, imr ∨ t0, σ

′, hk〉. From τ `K P , Rule (11), and Rule (13), we
have the derivation:

τ ` h : τ imr ≤ îmr

τ , îmr `K iret : îmr ∨ t0 îmr ∨ t0 ≤ îmrb τ , îmrb `K hk :: σ′

τ `K 〈h,R, imr, hk :: σ′, iret〉
.

where τ , îmrb `K hk :: σ′ is derived as follows:

τ , îmrb `K+1 hk : îmr
k

r îmr
k

r ≤ îmr
k

b τ , îmr
k

b `K+1 σ

τ, îmrb `K hk :: σ
.

From τ ` h : τ , imr ∨ t0 ≤ îmr ∨ t0 ≤ îmrb, τ , îmrb `K+1 hk : îmr
k

r ,

îmr
k

r ≤ îmr
k

b , τ , îmr
k

b `K+1 σ, and K ′ = K + |P.stk| − |P ′.stk| = K + 1
we can use Rule (11) to derive τ `K′ P ′.

– Rule (3). We have 〈h,R, imr, nil, loop s〉 → 〈h,R, imr, nil, s; loop s〉. From
τ `K P , Rule (10), and Rule (15), we have the derivation:

τ ` h : τ imr ≤ îmr
τ , îmr `K s : îmr

τ , îmr `K loop s

τ `K 〈h,R, imr, nil, loop s〉
.

From τ , îmr `K s : îmr, τ , îmr `K loop s, and Rule (16) we have
τ , îmr `K s; loop s. From τ ` h : τ , imr ≤ îmr, τ , îmr `K s; loop s,
and K ′ = K+|P.stk|−|P ′.stk| = K, we can use Rule (10) to derive τ `K′ P ′.

– Rule (4). We have 〈h,R, imr, σ, x = e; a〉 → 〈h,R{x 7→ evalR(e)}, imr, σ, a〉.
Since P is consistent, there are two subcases.
Subcase 1: P = 〈h,R, imr, nil, x = e;m〉 and
P ′ = 〈h,R{x 7→ evalR(e)}, imr, nil,m〉.
From τ `K P , Rule (10), and Rule (16), we have the derivation:

τ ` h : τ imr ≤ îmr
τ , îmr `K x = e : îmr τ , îmr `K m

τ, îmr `K x = e;m
τ `K 〈h,R, imr, nil, x = e;m〉

.

From τ ` h : τ , imr ≤ îmr, τ , îmr `K m, and K ′ = K + |P.stk| −
|P ′.stk| = K, we can use Rule (10) to derive τ `K′ P ′.
Subcase 2: P = 〈h,R, imr, σ, x = e;h〉 and
P ′ = 〈h,R{x 7→ evalR(e)}, imr, σ, h〉. From τ `K P , Rule (11), and

20 Palsberg and Ma

Rule (18), we have the derivation:

τ ` h : τ imr ≤ îmr

τ , îmr `K x = e : îmr

τ , îmr `K h : îmrr

τ , îmr `K x = e;h : îmrr

îmrr ≤ îmrb τ , îmrb `K σ

τ `K 〈h,R, imr, σ, x = e;h〉
.

From τ ` h : τ , imr ≤ îmr, τ , îmr `K h : îmrr, îmrr ≤ îmrb,
τ , îmrb `K σ, and K ′ = K + |P.stk| − |P ′.stk| = K, we can use Rule (11)
to derive τ `K′ P ′.

– Rules (5)–(9). The proofs are similar to that for Rule (4); we omit the details.

References

1. Mart́ın Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-

Holland, Amsterdam, 1981.
3. Dennis Brylow, Niels Damgaard, and Jens Palsberg. Static checking of interrupt-

driven software. In Proceedings of ICSE’01, 23rd International Conference on
Software Engineering, pages 47–56, Toronto, May 2001.

4. Luca Cardelli and Andrew D. Gordon. Mobile ambients. In M. Nivat, editor,
Proceedings of Foundations of Software Science and Computation Structures, pages
140–155. Springer-Verlag (LNCS 1378), 1998.

5. M. Coppo, M. Dezani-Ciancaglini, and B. Venneri. Principal type schemes and
lambda-calculus semantics. In J. Seldin and J. Hindley, editors, To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 535–560.
Academic Press, 1980.

6. J. Roger Hindley. Types with intersection: An introduction. Formal Aspects of
Computing, 4:470–486, 1991.

7. R. Milner. A Calculus of Communicating Systems. Springer-Verlag (LNCS 92),
1980.

8. Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
part I/II. Information and Compuation, 100(1):1–77, September 1992.

9. Mayur Naik and Jens Palsberg. Compiling with code-size constraints. In
LCTES’02, Languages, Compilers, and Tools for Embedded Systems joint with
SCOPES’02, Software and Compilers for Embedded Systems, June 2002.

10. Jens Palsberg. Type-based analysis and applications. In Proceedings of PASTE’01,
ACM Workshop on Program Analysis for Software Tools, pages 20–27, June 2001.

11. Jens Palsberg and Christina Pavlopoulou. From polyvariant flow information to
intersection and union types. Journal of Functional Programming, 11(3):263–317,
May 2001.

12. Jens Palsberg and Matthew Wallace. Reverse engineering of real-time assembly
code. Manuscript, 2002.

13. Andreas Podelski. Model checking as constraint solving. In Proceedings of SAS’00,
International Static Analysis Symposium, pages 22–37. Springer-Verlag (LNCS
1824), 2000.

14. Wayne Wolf. Computers as Components, Principles of Embedded Computing Sys-
tem Design. Morgan Kaufman Publishers, 2000.

