
Testing versus Static Analysis of Maximum Stack Size
Mahdi Eslamimehr
mahdi@cs.ucla.edu

UCLA, University of California, Los Angeles

Jens Palsberg
palsberg@ucla.edu

UCLA, University of California, Los Angeles

Abstract—For event-driven software on resource-constrained devices,
estimates of the maximum stack size can be of paramount importance.
For example, a poor estimate led to software failure and closure of a
German railway station in 1995. Static analysis may produce a safe
estimate but how good is it? In this paper we use testing to evaluate the
state-of-the-art static analysis of maximum stack size for event-driven
assembly code. First we note that the state-of-the-art testing approach
achieves a maximum stack size that is only 67 percent of that achieved by
static analysis. Then we present better testing approaches and use them to
demonstrate that the static analysis is near optimal for our benchmarks.
Our first testing approach achieves a maximum stack size that on average
is within 99 percent of that achieved by static analysis, while our second
approach achieves 94 percent and is two orders of magnitude faster. Our
results show that the state-of-the-art static analysis produces excellent
estimates of maximum stack size.

I. INTRODUCTION

Event-driven programming has found pervasive acceptance, from
high-performance servers to embedded systems, as an efficient
method for interacting with a complex world. However, loose cou-
pling of event handlers obscures control flow and makes dependencies
hard to detect, leading to subtle bugs. Event-driven software on
resource-constrained devices has the additional challenge that if
swamped with events, the software may run out of memory. Thus,
estimates of the maximum stack size can be of paramount importance
[14].

For example, a poor estimate led to software failure and closure
of a German railway station in 1995. Specifically, the designers had
estimated that 3,500 bytes of stack space would be sufficient but
actually 4,000 bytes were needed. As a result, the railroad station’s
computer experienced stack overflow and failed [8].

Intuitively, the maximum stack size during a run is the high water
mark or the peak value of the stack pointer. We focus on a much-
studied question about stack space for event-driven software:

Q: what is the maximum stack size across all inputs?

A programmer can use the answer to ensure that sufficient stack
memory is available for a particular application. Additionally, the
programmer can use the smallest or cheapest memory unit that has
sufficient capacity and thereby help control size and cost. This is
welcome for many event-driven applications that run in embedded
systems for which physical size and hardware cost are major con-
cerns.

Like most other interesting questions about programs, the above
question is undecidable. Ideally, we would answer the above question
by running the program on all inputs, possibly indefinitely in case of
nontermination. Each run has a maximum stack size and we can then
take the maximum across all runs to get the answer to the question.
The result is the true maximum stack size.

The above question can be answered approximately by testing
(running the program) and by static analysis (analyzing the program
text). A testing approach underestimates the true answer by finding
the maximum stack size for some runs on some inputs. A static
analysis overestimates the ideal answer by working with conservative

abstractions of program constructs and values. In slogan form, we
have the following relationships for maximum stack size:

tested ≤ true ≤ static

How close are tested and static? In some situations no nontrivial
sound static analysis exists, and we have only the trivial sound static
analysis that says that the stack is unbounded. A typical such scenario
is an embedded system for which some of the event-driven software
is written in assembly code. The assembly code usually contains
instructions that add or subtract from the stack pointer, to enable the
stack to shrink or grow. Can current nontrivial sound static analyses
handle such instructions? The answer is Yes if the instructions add
or subtract constants; while the answer is No if the instructions add
or subtract the contents of a register. If no nontrivial sound static
analysis exists, then a programmer must use the best testing approach,
and perhaps take a chance with an unsound static analysis. Such
techniques are inherently unsafe and a standard engineering solution
is to over-provision: if the testing approach estimates the maximum
stack size to be n, then go with memory of size 2n, for example,
though even 2n may be insufficient.

If a sound static analysis exists, then we can use it to safely allocate
the estimated amount of memory and be sure that no stack overflow
will occur. Ideally we can find an optimal static analysis that always
produces the true maximum stack size. However, static analysis must
terminate, including for nonterminating programs, so usually static
analysis is forced to be conservative and nonoptimal. For maximum
stack size of event-driven software, the state-of-the-art static analysis
was presented in [12], [21] (see also [2], [9], [20]) and has been
implemented in multiple tools. In this paper we address the following
question.

Q: how good is the state-of-the-art static analysis of
maximum stack size?

We use testing to answer the above question. We have done an
experiment with the state-of-the-art testing approach [19] (see also
[9]) on benchmarks that are event-driven assembly code programs.
In those benchmarks, all arithmetic on the stack pointer either adds
or subtracts constants, according to our manual inspection, so the
static analysis is sound, we believe. We found a big gap between the
estimates: the testing approach achieves a maximum stack size that
on average is only 67 percent of that achieved by static analysis. Our
benchmark suite consists of software for sensor nodes and proved
to be a major challenge for the testing approach. For a different
benchmark suite, Regehr [19] found that testing and static analysis
are much closer.

Our experiment raises a classical question that arises for a variety
of problems that can be addressed with both testing and static
analysis. Is the gap mostly due to weak testing or overly conservative
static analysis? The answer is that better testing is possible and that
the static analysis is near optimal for our benchmarks. We make those
points by presenting two new testing approaches that almost match
the static analysis. The first approach is called DTall (Directed Testing
all) and achieves a maximum stack size that on average is within

99 percent of that achieved by static analysis. The second approach
is called VICE (Virgil Integrated Concolic Engine) and achieves a
maximum stack size that on average is within 94 percent of that
achieved by static analysis. VICE is two orders of magnitude faster
than DTall. Our results show that the state-of-the-art static analysis
produces excellent estimates of maximum stack size. Additionally,
our results show that VICE is useful for practical testing: VICE is
faster and gives better branch coverage than the previous state-of-
the-art testing approach.

The rest of this paper. In Section II we discuss event sequences,
in Section III we introduce seven testing approaches, in Section IV
we give an example of how VICE works, in Section V we present
VICE in detail, and in Section VI we show our experimental results.

II. EVENT SEQUENCES

The classical notion of a program first consumes an input, then
computes, and finally produces an output. In contrast, an event-based
program receives its input via events during the program execution.
The task of the event-based program is to process those events.

For example, our benchmarks run on sensor nodes (Berkeley
Motes) and receive events that are generated by devices that are
connected to the CPU. Among those devices are a timer, an analog-
to-digital converter (ADC), a universal synchronous asynchronous
receiver/transmitter (USART) [5], and a serial peripheral interface
bus (SPI) [4]. The sensor node can use the timer to wake itself up
periodically, use the ADC to convert sensor data to digital form, use
the USART for serial communication with terminals, and use the
SPI to communicate on a synchronous serial data link with external
devices in master or slave mode.

Event-based programs such as sensor-network software are usually
designed to run indefinitely (or until the battery dies). Thus, events
can keep coming. Notice though that a finite test run consumes only
a finite number of events.

Each event consists of a name and a value. The name specifies the
source of the event and also the event handler that will process the
event. The value is input to the program.

From the program’s viewpoint, consecutive events have a wait time
between them. This wait time can be completely arbitrary and depend
on uncoordinated devices beyond the programs control. However, for
a particular run we can record both the events and the wait times.
Or, for the purpose of planning a test run, we can first generate an
event sequence and then use that to test the program.

In this paper, we represent an event sequence as a sequence of
triples:

(event name, event value, wait time)
The idea is to wait the number of milliseconds specified by wait time
and then fire an event called event name and paired with event value.

For example, here is our representation of an event sequence with
four events:

[(main, 673, 100), (m_intr,−86347, 200),
(main,−991, 400), (m_intr, 34, 800)]

The first event (main, 673) will occur after 100 milliseconds, the
second event (m_intr, -86347) will occur after 300 milliseconds,
the third event (main, -991) will occur after 700 milliseconds, and
the fourth event (m_intr, 34) will occur after 1,500 milliseconds.

We will evaluate the state-of-the-art static analysis of maximum
stack size by finding an event sequence that achieves a large maxi-
mum stack size. For creating a suite of candidate event sequences, a
designer must decide on the number of event sequences, the number

of events in each event sequence, the event names, the event values,
and the wait times.

III. SEVEN TESTING APPROACHES

We now present seven testing approaches that all automatically
test event-driven software without a human in the loop. Testing
approaches 1–2 are from previous work [9], [19], while 3–7 are new.

How to determine the number of events in each event sequence.
Our benchmarks work with 2–5 event handlers. For simplicity we
want every event sequence for every benchmark to have the same
number of events. We determined the number of events via the
following preliminary experiment that anyone can repeat for any
benchmark suite. First we noted that the number of events for our
benchmark suite should be at least 5 such that we can hope to exercise
every handler during a single run. Second we observed that more
events may exercise longer program paths. The question is: when does
an increase of the number of events begin to produce diminishing
returns? We use testing approach 1 (see below for details) to run
experiments with different numbers of events in each event sequence.
We doubled the number of events, doubled it again, and so on, until
we saw no major improvement in maximum stack size. We found
that 40 events in each event sequence appear to be a good number
for our benchmarks so all our experiments use event sequences with
40 events.

Now we must generate event sequences that each contains 40 event
names, 40 event values, and 40 wait times.

How to determine samples of wait times. Four of the testing
approaches use samples of the wait times. We chose to fix three dif-
ferent samples and use them across all those four testing approaches.
The number three is somewhat arbitrary; we wanted a number greater
than one to give diversity in the experiments yet small enough that
our experiments could finish in a reasonable time. We determined
the three particular samples via the following preliminary experiment
that anyone can repeat for any benchmark suite. For each benchmark
we ran each event handler in isolation to determine the worst-case
time to execute any handler alone (in any of the benchmarks). That
worst-case time is the longest time any single handler may be able
to block other handlers from running. Once we had that number,
we divided the time interval from 0 to that number into three equally
sized intervals. Finally, from each of those three intervals we sampled
a wait time using a uniform distribution.

We compare seven testing approaches:

approach # event names event values wait times
1 Sample Sample Sample
2 GA GA Sample
3 All Sample All
4 Sample DT All

VICE: 5 SA-Tree DT Sample
6 All DT Sample

DTall: 7 All DT All

We will use the numbering (1–7) of the approaches throughout the
paper. Those seven approaches span a wide variety of techniques that
one might try. Ultimately, testing approach 7 is the best we are able
to do given a reasonable amount of time. Testing approaches 4–6 can
be understood as restrictions of testing approach 7.

Testing approach 1 is a form of random testing that tries 3,000
event sequences based on randomly chosen samples of event names
and event values, and the three particular samples of wait times
that we found as discussed above. The number 3,000 is somewhat
arbitrary; we wanted a number that was large enough to produce

good results yet small enough that our experiments could finish in a
reasonable time. The experiments justified the use of three wait times
because, somewhat surprisingly, we encountered some cases where a
longer wait time leads to a larger stack size. This phenomenon stems
from situations such as the following. Suppose we have reached a
state S of the computation where a run of the handler for event B
would reach a maximally large stack. Suppose also that in state S,
events A and B have fired and the handlers for A and B are enabled.
The hardware arbits deterministically which handler will run; and let
us assume that the hardware chooses A. So, B will run later; possibly
in a state with a smaller stack than state S so the run of B will fail
to reach a maximally large stack. Can we get the hardware to choose
B instead of A? One potential answer is: increase the wait time
such that A is disabled in state S. Hence, a longer wait time has the
potential to produce a larger stack size. Testing approach 1 is our
base line; the other six approaches do better.

Testing approach 2 is a genetic algorithm (GA) [9], [19] that
uses 20 generations of each 50 event sequences, for each of the
three chosen samples of wait times. We chose 20 generations and
50 event sequences because the total number of runs would be
20×50×3 = 3, 000, which matches the number of runs with testing
approach 1. The first generation has a randomly chosen sample of
event names and event values. Each later generation hopes to improve
on the previous one by swapping and mutating the event names and
event values. Specifically we map a generation to a new generation in
the following way. We first do 50 swaps of subsequences of length 25
among the event sequences. We then mutate one event in each event
sequence; each mutation replaces the event name with a randomly
chosen event name, and it replaces the event value with a randomly
chosen event value. The fitness function is the maximum stack size
observed during a run.

Testing approach 3 is similar to testing approach 1 in that it
samples the event values, but also goes much further in that it tries
all combinations of i) all sequences (of length 40) of event names,
and ii) all integer wait times in a wide interval. The interval of wait
times is handler specific and defined as follows. The lower bound
of the interval is 8 milliseconds; we found that going lower often
caused testing to run out memory. The upper bound of the interval
is the worst-case time to execute the handler for the previous event
in isolation. Note that if the upper bound is high, trying all integer
wait times in the interval may lead to a lengthy testing effort. In such
a case, we recommend the use of a large number of samples drawn
from a uniform distribution across the interval.

Our preliminary experiment, mentioned in Section 1, tried testing
approaches 1 and 2. When we found that the results from those
approaches are suboptimal, we tried the much slower testing approach
3 which gave just a small improvement. We concluded that we need
a better approach to generate event values.

Testing approaches 4–7 all use directed testing (DT) to generate
event values. Directed testing [17], [18] is based on concolic exe-
cution [10], [11], [22], [23], which is a technique related to model
checking [6], theorem proving [13], symbolic execution [15], and
run-time monitoring and testing [7]. The idea of directed testing is to
execute the code with concrete and symbolic values simultaneously,
and to use the result to generate new inputs for another execution.
The term concolic combines the words “concrete” and “symbolic”.
In each round, the symbolic part of an execution collects constraints
from each condition on the control-flow. Those constraints represent
the executed control-flow path and they have the concrete input to
the run as one of the possible solutions. We can now easily construct
constraints for a different potential control-flow path by taking a

prefix of the collected constraints and negating the last constraint
from the prefix. Concolic execution will submit those new constraints
to a constraint solver, and if they are solvable, the concolic execution
will use the solution as concrete input to a new round of execution.
In the first round, the input is chosen randomly. Experience shows
that concolic execution achieves better branch coverage with fewer
test cases than testing with random inputs.

Testing approach 4 samples the event names, does DT to de-
termine event values, and tries all integer wait times in a wide
interval. In essence, testing approach 4 is standard DT applied to
many combinations of event names and wait times. This gives a
significant improvement over testing approach 3, yet falls well short
of the results from static analysis. We conclude that we must do better
to generate challenging event names.

Testing approach 5 is the one we call VICE (Virgil Integrated
Concolic Engine). Compared to testing approach 4, VICE handles
event names more accurately and wait times less accurately. Specifi-
cally, VICE uses a novel technique called SA-Tree to generate event
names, uses DT to determine event values and tries three samples of
wait times. VICE is the fastest of the seven approaches and gives
a good trade-off between testing time and quality of the results.
Additionally, VICE is useful for practical testing: we will show that
VICE gives better branch coverage than testing approaches 1–4.

Testing approach 6 does more than testing approach 5 by trying
all sequences (of length 40) of event names, in addition to use
DT to determine event values and to try three samples of wait
times. However, the exhaustive coverage of the sequences of event
names cannot improve on VICE because SA-Tree generates all event
sequences that matter. We have included testing approach 6 in our
experiments to demonstrate the large impact SA-Tree has on static
analysis time.

Testing approach 7 is the one we call DTall and is both the slowest
and the closest to optimal. DTall uses DT to determine event values
and it tries all combinations of i) all sequences (of length 40) of
event names, and ii) all integer wait times in a wide interval. DTall
comes close to the results from static analysis and demonstrates that
the best known static analysis is near optimal for our benchmarks.

IV. VICE EXAMPLE

Overview. We now explain the initial portion of a run of VICE on
the example program in Figure 1, which is a simplified version of
one of our benchmarks. The program has four if-statements and two
event handlers: main and m_intr. Our description of the example
run is high level and ignores some details. VICE proceeds in phases
that each consists of multiple rounds. We will explain just one phase
with five rounds. During a phase, the event names stay unchanged in
each round; the example uses the sequence of event names: (main,
m_intr, main, m_intr). So, all event sequences in the example
will have length four.

Round one. In the first round, the event sequence is random so
we might begin with this event sequence:

[(main, 673), (m_intr,−86347), (main,−991), (m_intr, 34)]

(We avoid discussion of the wait times in this section, for simplicity.)
The concolic execution will fire the first event and now let us say
that before main calls transmitValue in line 09, the execution
fires the second event and interrupts main. We now have two event
handlers on the stack. Next m_intr calls transmitValue in line
24 and we collect the constraint

y = a

00 program TestProgram {
01 entrypoint main = TestMe.main;
02 entrypoint timer_comp = testMe.m_intr;
03 }
04
05 component TestMe {
06 field sending:bool = false;
07 method main(x:int):void {
08 computeValue();
09 transmitValue(x);
00 }
11 method computeValue():void { ... }
12 method transmitValue(a:int):void {
13 local buffer:int, b:int;
14 b = rand(100);
15 local bufferSize:int = (a+b) * 256;
16 if (atomic_swap(sending,true)) return;
17 if (a > 2000) {
18 buffer = checks(a,b);
19 sending = false;
20 return;
21 }
22 }
23 method m_intr(y:int):void {
24 transmitValue(y);
25 }
26 method checks(s:int, t:int):int {
27 if (s==5000) {
28 t=square(s);
29 if (s<-5) return square(-s);
30 else return 0;
31 }
32 return 1;
33 }
34 method square(root:int):int { ... }
35 method rand(seed:int):int { ... }
36 method atomic_swap(cur:bool,status:bool)
37 :bool { ... }
38 }

Fig. 1. Example program.

that relates the actual parameter (line 24) to the formal parameter
(line 12). We use y to denote a symbolic variable related to the
program variable y, and similarly for a and a. In the body of
transmitValue in line 16, let us assume that the condition
atomic_swap(sending,true) returns false. We collect con-
straints from the conditions of the if-statements provided that they
are arithmetic or logical equations. So we collect no constraints from
the if-statement in line 16, while we do collect the constraint

a > 2000

from the if-statement in line 17 because (a > 2000) failed: a has
the value -86347 so the execution does not take the branch that
requires a > 2000. Now the second event handler terminates and
we return to the first event handler. That event handler eventually
calls transmitValue in line 09 and we collect the constraint

x = a

In the body of transmitValue we collect the same constraints as
before and again the execution does not take the branch that requires
a > 2000 because a has the value 673. Now the first event handler
terminates. Later the execution fires the third and fourth events, and
we can see that no new branches will be executed while handling
those events.

During the first round of concolic execution, the maximum
stack size occurred when we had two event handlers on the
stack and m_intr called transmitValue which, in turn, called
atomic_swap. The execution took the same branch each time in
lines 16 and 17, while it never reached line 27 or 29.

After completion of the first round, we solve the three collected
constraints above, pick a solution at random, and use it to help
generate another event sequence. We use the four event-handler
names from before and pair each of them up with values from the
picked solution to the constraints. For example, we may get the event
sequence:

[(main, 2833), (m_intr, 4756), (main, 77733), (m_intr, 6500)]

Round two. In the second round of concolic execution, let us
assume that the firing of events proceeds like in the first round. The
execution will four times reach line 17 and find each time that the
condition a > 2000 is satisfied. So, the execution will exercise a
new branch and eventually call checks in line 18 and from the call
collect the constraint

a = s ∧ b = t

In the body of checks we will in each of the four cases find that
s is different from 5000 so also in this round the execution does not
reach line 29. Along the way, we collect the constraint

s = 5000

in line 27.
During the second round of concolic execution, the maximum stack

size occurred when the stack contained two event handlers and stack
frames for transmitValue and checks. That maximum stack
size is similar to the maximum stack size encountered in the first
round.

After completion of the second round, we find that the above
constraints have a unique solution (y = x = a = s = 5000) that we
use to help generate another event sequence. And again, we use the
four event-handler names from before and pair each of them up with
values from the solution to the constraints. For example, we may get
the event sequence:

[(main, 5000), (m_intr, 5000), (main, 5000), (m_intr, 5000)]

Round three. In the third round of concolic execution, let us
assume that the firing of events proceeds like in the second round.
The execution will four times reach line 27 and find each time that
the condition s==5000 is satisfied. So, the execution will exercise a
new branch and eventually call square from which we collect the
constraint s = root Then the execution will reach line 29 and find
that the condition s<-5 is unsatisfied. By the way, notice that the
chance of reaching line 28 with event sequences generated randomly
or by genetic algorithms is vanishingly small. We will collect the
constraint s < −5 During the third round of concolic execution,
the maximum stack size occurred when the stack contained two
event handlers and stack frames for the methods transmitValue,
checks, and square, which is the highest so far.

Rounds four and five. After completion of the third round, we find
that the collected constraints are unsolvable (because we have both
s == 5000 and s < −5). We then repeatedly remove the last added
constraint until we find that the remaining constraints are solvable,
and then we proceed as before. We note that the third round has
already achieved as much as one can do for the example program.
VICE continues with a fourth and a fifth round until it notices
that in two consecutive rounds, no improvements were achieved for

the maximum stack size. At that point, the phase of the concolic
execution terminates.

V. VICE DESCRIPTION

VICE uses six data types and six tools, see Figure 2.
Types. Each program that we test is a VirgilProgram, that is, a

program in the Virgil programming language [24], [26], which is an
object-oriented language for resource-constrained devices. Virgil is a
full-fledged language with classes, objects, loops, recursion, etc.

We compile Virgil programs to machineCode, that is, AVR as-
sembly code. The key input to each execution is an eventSequence,
which is a list of triples, where each triple consists of an event
name (an identifier), an event value (an int), and a wait time (an
int that measures milliseconds). Each of the constraint is a Virgil
arithmetic or logical expression. For our benchmarks, we found
no need to use other forms of constraints; arithmetic or logical
constraints are sufficient for our testing approaches to almost match
the static analysis. We leave to future work to investigate whether
other benchmarks require use of other forms of constraints to almost
match the static analysis.

A prefixTree is a prefix-tree of sequences of event names.
Tools. The tool concolic is a concolic execution engine that

executes a Virgil program while firing events from an event sequence,
with the specified wait time between consecutive events. The result
of a run of concolic is a constraint and the branch coverage that
was recorded. We implemented concolic on top of an existing
Virgil interpreter. The concolic execution engine works with concolic
values, that is, a pair of a concrete value and a constraint.

The tool compiler is an open-source Virgil compiler [24] that
generates AVR assembly code.

The tool avrora is an open-source simulator for AVR assembly
code [25] that executes an AVR assembly code program while firing
events from an event sequence, with the specified wait time between
consecutive events. The result of a run of avrora is the maximum
stack size that was recorded. A run of avrora is deterministic, hence
reproducible. Specifically, avrora measures time in terms of machine
cycles and we use the wait times to determine the exact machine cycle
at which to fire an event. Additionally, avrora implements all aspects
of the hardware, including the “breaking of a tie” that happens when
two events have fired and both handlers are enabled. So, any two runs
of avrora on a benchmark and an event sequence always proceed in
exactly the same way.

The tool SA-Tree-Gen applies a static analysis to a Virgil program
[9]. The static analysis determines conservatively, for each program
point, which event handlers are enabled. The result of a run of
SA-Tree-Gen is a prefixTree called the SA-Tree that represents
the static information as a collection of sequences of event names.
According to the static analysis, each sequence of event names can be
the basis for an event sequence for which each event will be handled.
The SA-Tree avoids names of events that have no chance of being
handled because the corresponding event handler is disabled. We can
compare the generated SA-Tree with a full prefix-tree that represents
all possible sequences of event names (up to a given length). For
each of our benchmarks, the SA-Tree is a much pruned version of
the full tree. Testing approach 6 explores the full prefix-tree.

The tool random takes a nameSequence and a wait time as input
and produces an event sequence based on the input nameSequence,
with event values generated according to an exponential distribution,
and with each wait time equal to the input wait time. The tool
generator takes a nameSequence, a wait time, and a constraint,
and generates an event sequence. The generator uses the open-source

constraint solver Choco [1], [16] to solve the constraint. Notice that
we generate event sequences based on source-level information and
use them to test code at the assembly level.

int VICE(VirgilProgram p, int waitT ime) {
prefixTree tree = SA-Tree-Gen(p)
machineCode code = compiler(p)
int maxStack = 0
for each nameSequence ns ∈ tree do {

int noChange = 0
float branchCoverage = 0
eventSequence seq = random(ns, waitT ime)
while (noChange < 2) {

int ms = avrora(code, seq)
(constraint × float) (c, bc) = concolic(p, seq)
seq = generator(ns, waitT ime, c)
if ((ms > maxStack) ∨ (bc > branchCoverage))
then { maxStack = ms; branchCoverage = bc;

noChange = 0 }
else { noChange = noChange + 1 }

}
}
return maxStack

}

Approach. Above is pseudo-code for VICE; Figure 3 illustrates
how VICE works. The input to VICE is a Virgil program and a
wait time. VICE proceeds in phases that each consists of multiple
rounds. Each phase focuses on one nameSequence in the SA-
Tree for the Virgil program. In each phase, VICE iterates until two
consecutive rounds found no improvement to the maximum stack size
or the branch coverage. In each round VICE updates the variable
noChange to count how many recent rounds had no change. The
condition noChange < 2 tells when to terminate a phase. The
variable maxStack contains the maximum stack size found so far,
the variable branchCoverage contains the branch coverage found
so far, and the variable seq holds the current event sequence, which
is based on the chosen nameSequence and the input wait time, and
which initially has event values chosen randomly.

We compile each Virgil benchmark program to AVR assembly
code. In each round, the algorithm executes both avrora on the
assembly code and concolic on the Virgil program to get a new
maximum stack size, a new constraint, and a new measure of the
branch coverage.

The generator uses a constraint solver to find new event values
for an event sequence that otherwise has the same event names and
wait times as all other event sequences in the current phase.

A worse alternative. VICE measures maximum stack size at
the assembly level in every round of concolic execution. We have
experimented with an alternative approach that measures maximum
stack size at the source level, and only after a completed run measures
the maximum stack size at the assembly level for the most challenging
event sequence. The alternative approach is faster because it uses
the assembly-level simulator just once. However, the results are
considerably worse because the source-level stack-size estimates are
imprecise.

VI. EXPERIMENTAL RESULTS

We compare a static analysis and the seven testing approaches
listed in Section III. We wrote all the implementations in Java and
ran them on Sun Java2 SDK 1.5 on on a 2.8 GHz iMac. Most
of the runs used less than 60 MB. We implemented the genetic

Types: VirgilProgram = see http://compilers.cs.ucla.edu/virgil
machineCode = AVR assembly code

eventSequence = (identifier × int× int)list
constraint = a Virgil arithmetic or logical expression

nameSequence = (identifier)list
prefixTree = a prefix-tree of elements of nameSequence

Tools: concolic : (VirgilProgram× eventSequence)→ (constraint× float)
compiler : VirgilProgram→ machineCode

avrora : machineCode× eventSequence→ int
SA-Tree-Gen : VirgilProgram→ prefixTree

random : nameSequence× int→ eventSequence
generator : nameSequence× int× constraint→ eventSequence

Fig. 2. VICE.

	

virgil	

Compiler	

SA-‐Tree-‐Gen	 random	

Concolic	

generator	

avrora	 Machine	 Code	

eventSequence	

constraint	

nameSequence	

eventSequence	

Max	 Stack	 Size	

Fig. 3. Illustration of how VICE works.

algorithm on top of the Java Genetic Algorithm Library (JGAL)
from http://jgal.sourceforge.net. For testing approaches 1, 2, 5, 6,
our samples of the wait times are 153 ms, 327 ms, and 594 ms. For
each testing approach we find the maximum stack size of a program
in the same way: we first compile the program and then use Avrora
to run the assembly code and return the maximum stack size.

A. Benchmarks

The following table shows some statistics about our seven bench-
marks, including the number of lines of Virgil code and also the
number of lines of code after translation to C, which is a step on the
way in the translation to AVR assembly code. The table also shows
the number of event handlers.

Benchmark LOC LOC no. of
(Virgil) (C) handlers

TestCon1 329 461 4
TestCon2 347 528 3
StackTest1 293 513 2
StackTest2 251 483 2
TestUSART 1,226 1,737 5
TestSPI 859 1,109 3
TestADC 605 1,055 4

We use four microbenchmarks and three benchmarks that test
device drivers for Berkeley Motes. We designed the microbenchmarks
testCon1 and testCon2 to test VICE’s power to explore different
execution paths. These programs have many complex numerical
expressions and nested conditional statements and loops. TestCon1

has four event handlers, all without parameters, more than 300 LOC
and its nesting depth of control structures is 11. TestCon2 has 3 event
handlers each of which has 8 formal parameters, almost 350 LOC,
and 37 complex numerical expressions.

The microbenchmark StackTest1 is a more complete version of
the example program in Figure 1 and includes nested function
calls, unreachable code, and atomic structures. StackTest2 consists
of nested functions of depth 23.

The TestUSART benchmark tests the USART driver; the TestSPI
benchmark tests the SPI driver; and the TestADC benchmark tests
the ADC driver.

Previous work [12] has shown that even for programs with a
bounded stack, the maximum stack size can grow exponentially in the
number of event handlers. The number of handlers in our benchmarks,
namely 2–5, is typical of event-driven AVR applications that we have
found.

In summary, our benchmarks are nontrivial and turn out to be a
major challenge for the previous-best testing approaches.

B. Measurements

Figure 4 shows a plot of the mean percentages in Figures 5 and
6; note that the x-axis uses a log-scale.

Figure 5 shows the maximum stack sizes found by the seven testing
approaches (numbered 1–7) and by a static analysis of maximum
stack size (labeled SA) that comes with the Avrora distribution. Note
that the static analysis guarantees an upper bound on the stack size for
every benchmark. This implies that even if each device that generates
events should malfunction and generate an event every millisecond,

1

M
ax
im

u
m
 s
ta
ck
 s
iz
e
:

p
e
rc
e
n
ta
ge

 o
f
st
at
ic
 a
n
al
ys
is

0

10

20

30

40

50

60

70

80

90

100

0.25 1

Execution tim

4

me: percentage

16

e of (All, DT,Al

64

l)

(Sample,S

(GA, GA,S

(All, Samp

(Sample,D

(SA‐Tree,

(All,DT,Sa

(All, DT,A

Sample,Sample

Sample)

ple,All)

DT,All)

DT,Sample)[V

ample)

ll)[DTall]

e)

ICE]

Fig. 4. Comparison of seven testing approaches.

Benchmark 1 2 3 4 5 6 7 SA
TestCon1 318 441 417 455 505 506 511 516
TestCon2 366 612 798 703 846 866 882 894

StackTest1 421 353 318 619 703 749 958 979
StackTest2 353 324 390 420 564 564 564 566
TestUSART 459 481 472 525 664 664 664 665

TestSPI 490 350 481 490 518 522 529 533
TestADC 247 306 283 302 306 306 308 310

% of SA 62 67 71 81 94 95 99 100

Fig. 5. Maximum stack sizes in bytes. The last line gives a geometric mean.

Benchmark 1 2 3 4 5 6 7 SA
TestCon1 7.2 8.83 281 38 1.53 16 439 0.10
TestCon2 10.1 3.11 173 29 2.48 45 381 0.12

StackTest1 12.9 2.55 179 23 0.56 26 307 0.05
StackTest2 2.9 2.29 165 72 4.13 56 266 0.05
TestUSART 7.4 3.05 204 43 1.18 16 452 0.32

TestSPI 4.0 3.11 197 26 0.79 9 393 0.15
TestADC 3.0 1.37 289 33 0.45 6 444 0.13

% of (7) 1.6 0.4 55 9 0.3 5 100 0.03

Fig. 6. Execution time in minutes. The last line gives a geometric mean.

we can be sure that the stack is bounded by the value given by the
static analysis.

Figure 6 shows the timings of the testing runs and the timings of
running the static analysis. All time measurements are in minutes and
are averages of 10 runs after some warm-up runs to fill the caches.

Figure 7 shows the branch coverage that each testing approach
achieved.

In Figure 5 the last line gives a geometric mean for each testing
approach. The mean is taken over the fractions of the maximum stack
size found by the testing approach and the maximum stack size found
by static analysis. For example, for testing approach 1, we take the
geometric mean of these fractions:

318

516

366

894

421

979

353

566

459

665

490

533

247

310

Benchmark 1 2 3 4 5 6 7
TestCon1 23 56 61 72 92 93 94
TestCon2 21 60 78 78 89 89 90

StackTest1 26 40 73 80 64 71 73
StackTest2 20 43 69 81 99 99 99
TestUSART 23 58 66 85 96 96 96

TestSPI 32 56 71 75 67 73 75
TestADC 22 62 69 78 98 98 98

% of (7) 24 53 69 78 85 88 89

Fig. 7. Branch coverage in percent. The last line gives a geometric mean.

Similarly, in Figure 6 the last line gives a geometric mean for each
testing approach; the denominator is the execution time of testing
approach 7 (which is DTall). In Figure 7 the last line gives a
geometric mean for each testing approach.

C. Assessment

Testing approaches 1–3. Testing approach 1 uses a total of 3,000
random event sequences and the result is a stack-size-fraction mean
of 62%. Testing approach 2 uses a genetic algorithm to improve the
choice of event names, and that improves the stack-size-fraction mean
to 67%. Testing approach 3 goes further by trying all combinations
of event names and all integer wait times within a wide interval; the
stack-size-fraction mean goes up to 71%. Note that testing approach
2 is almost two orders of magnitude faster than testing approach
3. Note also that in some cases testing approach 3 gives worse
results than testing approach 2 because of poorer samples of the
event values. Notice finally that the genetic algorithm in most cases
is faster than random testing. The reason is that the procedure for
generating random event sequences is quite slow, while one of the
main ways the genetic algorithm produces new event sequences is to
swap subsequences from existing event sequences.

Testing approaches 4–7. Testing approach 4 samples the event
names and tries all integer wait times within a wide interval; the
result is a stack-size-fraction mean of 81%. Thus, testing approach
4 dominates testing approaches 1–3 so we conclude that the use of
directed testing to determine event values is essential to get good
results. Testing approach 5 is the VICE approach, which, in sharp

contrast to testing approach 4, samples the wait times but uses our
SA-Tree technique to generate event names. VICE is 30x faster than
testing approach 4 and yet it produces a better stack-size-fraction
mean, namely 94%. Note also that VICE is within 10x of the running
time of the static analysis. Testing approach 6 tries all combinations
of event names and samples the wait times. The result is marginally
better than VICE, namely 95%, but more than an order of magnitude
slower. Finally, testing approach 7 is the DTall approach which tries
all combinations of event names and all integer wait times within a
wide interval. DTall achieves a result of 99%, though at the expense
of the longest execution time of all the approaches. We conclude that
testing can almost match the static analysis, which shows that the
static analysis is about as good as it can be. We also conclude that
VICE gives an excellent trade-off between precision and execution
times; it is faster than all the other testing approaches and it is
outperformed only by two much slower approaches.

Number of event sequences. VICE achieves its results with
significantly fewer event sequences than random testing and the
genetic algorithm. For four benchmarks, the difference is 2x, while
for three benchmarks, the difference is 10x.

Branch coverage. Figure 7 shows that VICE and DTall produce
excellent branch coverage numbers. Notice that the previous best
testing-approach (approach 2) achieved a much lower branch cover-
age (53 percent) than VICE (85 percent) and DTall (89 percent). The
wide spread of coverage numbers support that the benchmarks are
nontrivial: we can find event sequences that lead most branches to
go either way and yet only the best testing approaches achieve that.

VII. CONCLUSION

Our results show that the state-of-the-art static analysis produces
excellent estimates of maximum stack size. Our testing approach
DTall can almost match the results of the static analysis. Additionally,
our approach VICE comes close and is two orders of magnitude
faster than DTall, though also 10 times slower than the static analysis.
The keys to produce challenging event sequences are to use directed
testing to get event values and to use our SA-Tree technique to get
event names. The SA-Tree technique is an example of how static
analysis can help testing be more efficient.

Our technique is useful for other languages than Virgil. The avail-
ability of a source-level interpreter greatly facilitates the collection
of constraints.

Our results show that VICE is useful for practical testing: VICE
is faster and gives better branch coverage than the previous state-
of-the-art testing approach. VICE quickly generates a small number
of challenging event sequences that drive the execution into “dark
corners” of the software. Such event sequences may reveal faults or
help confirm that the software works correctly even for corner cases.

Acknowledgments. We thank Xiaoli Gong for help to instrument
Avrora. We also thank Hong Hong for help to integrate the constraint
solver into our system. We thank Matt Brown, Todd Millstein, and
Hesam Samimi for helpful comments on a draft of the paper. National
Science Foundation grant number 0820245 supported us in part.

REFERENCES

[1] CHOCO. http://www.emn.fr/z-info/choco-solver/choco-documentation.
html, September 2010.

[2] R. Alur and P. Madhusudan. Visibility pushdown languages. In
Proceedings of the thirty-sixth Annual ACM Symposium on Theory of
Computing, 2004.

[3] Atmel. Adc deriver manufacturer datasheet. http://www.atmel.com/dyn/
resources/prod documents/doc8078.pdf, September 2010.

[4] Atmel. Spi deriver manufacturer datasheet. http://www.atmel.com/dyn/
resources/prod documents/doc2582.pdf, September 2010.

[5] Atmel. Usart serial deriver manufacturer datasheet. http://www.atmel.
com/dyn/resources/prod documents/doc32006.pdf, September 2010.

[6] D. Beyer, A. J. Chlipala, T. A. Henzinger, R. Jhala, and R.Majumdar.
Generating test from counterexamples. In Proceedings of ICSE, pages
326–335, 2004.

[7] C. Boyapati, S. Khurshid, and D. Marinov. Korat: Automated testing
based on Java predicates. In Proc. Of International Symposium on
Software Testing and Analysis, pages 123–133, 2002.

[8] Klaus Brunnstein. About the “Altona railway software glitch”. The Risks
Digest, 16(93), 1995.

[9] Dennis Brylow, Niels Damgaard, and Jens Palsberg. Static checking of
interrupt-driven software. In Proceedings of ICSE’01, 23rd International
Conference on Software Engineering, pages 47–56, Toronto, May 2001.

[10] J. Burnim and K. Sen. Heuristics for scalable dynamic test generation. In
Proc. 23rd IEEE/ACM International Conference on Automated Software
Engineering, pages 443–446, 2008.

[11] Cristian Cadar, Paul Twohey, Vijay Ganesh, and Dawson Engler. Exe:
A system for automatically generating inputs of death using symbolic
execution. In Proceedings of 13th ACM Conference on Computer and
Communications Security, 2006.

[12] Krishnendu Chatterjee, Di Ma, Rupak Majumdar, Tian Zhao, Thomas A.
Henzinger, and Jens Palsberg. Stack size analysis of interrupt driven
software. Information and Computation, 194(2):144–174, 2004. Special
issue dedicated to Paris Kanellakis. Preliminary version in Proceedings
of SAS’03, International Static Analysis Symposium, Springer-Verlag
(LNCS 2694), pages 109–126, San Diego, June 2003.

[13] RE Fikes and NJ Nilsson. Strips: A new approach to the application of
theorem proving to problem solving. Artificial Intelligence, 2(3–4):189–
208, Winter 1971.

[14] J. Gilson. A New Approach to Engineering Tolerances. The Machinery
Publishing C. Ltd, 1951.

[15] S. Khurshid, C. S. Pasareanu, and W. Visser. Generalized symbolic
execution for model checking and testing. In Proc. of TACAS, pages
553–568, 2003.

[16] Francois Laburthe. Choco: implementing a CP kernel. In Proceedings
of CP00 Post Conference Workshop on Techniques for Implementing
Constraint programming Systems (TRICS), September 2000.

[17] Rupak Majumdar and Ru-Gang Xu. Directed test generation using
symbolic grammars. In Proceedings of the twenty-second IEEE/ACM
International Conference on Automated Software Engineering, 2007.

[18] Koushik Sen Patrice Godefroid, Nils Klarlund. Dart: directed automated
random testing. In Proceedings of PLDI’05, ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 213–223,
2005.

[19] John Regehr. Random testing of interrupt-driven software. In ACM
International Conference On Embedded Software, pages 290–298, 2005.

[20] John Regehr and Alastair Reid. HOIST: a system for automatically
deriving static analyzers for embedded systems. ACM SIGARCH
Computer Architecture News, 2004.

[21] John Regehr, Alastair Reid, and Kirk Webb. Eliminating stack over-
flow by abstract interpretation. In Proceedings of EMSOFT’03, Third
International Conference on Embedded Software, pages 306–322, 2003.

[22] K. Sen and G. Agha. Cute and jcute: Concolic unit testing and explicit
path model-checking tools. In Proc. 18th International Conference on
Computer Aided Verification, pages 419–423, 2006.

[23] Koushik Sen. Concolic testing. In Proceedings of the twenty-second
IEEE/ACM International Conference on Automated Software Engineer-
ing, pages 571–572, 2007.

[24] Ben L. Titzer. Virgil: Objects on the head of a pin. In Proceedings of
OOPSLA’06, ACM SIGPLAN Conference on Object-Oriented Program-
ming Systems, Languages and Applications, 2006.

[25] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. Avrora: Scalable sensor
network simulation with precise timing. In Proceedings of IPSN’05,
Fourth International Conference on Information Processing in Sensor
Networks, pages 477–482, Los Angeles, April 2005.

[26] Ben L. Titzer and Jens Palsberg. Vertical object layout and compression
for fixed heaps. In Proceedings of CASES’07, International Conference
on Compilers, Architecture, and Synthesis for Embedded Systems, pages
170–178, Salzburg, Austria, September 2007. A revised version of
the paper appeared in Semantics and Algebraic Specification, Essays
Dedicated to Peter D. Mosses on the Occasion of His 60th Birthday,
Springer, LNCS 5700, 2009.

