
Constrained Types for Object-Oriented Languages

Vijay Saraswat1, Nathaniel Nystrom1, Jens Palsberg2, and Christian Grothoff3

1 IBM T. J. Watson Research Center, P.O. Box 704, Yorktown Heights NY 10598 USA,
{vsaraswa,nystrom}@us.ibm.com

2 UCLA Computer Science Department, Boelter Hall, Los Angeles CA 90095 USA,
palsberg@cs.ucla.edu

3 Department of Computer Science, University of Denver, 2360 S. Gaylord Street,
John Green Hall, Room 214, Denver CO, 80208 USA, christian@grothoff.org

Abstract. X10 is a modern object-oriented language designed for productivity
and performance in concurrent and distributed systems. In this setting, depen-
dent types offer significant opportunities for detecting design errors statically,
documenting design decisions, eliminating costly runtime checks (e.g., for array
bounds, null values), and improving the quality of generated code.
We present the design and implementation of constrained types, a natural, simple,
clean, and expressive extension to object-oriented programming: A type C(:c)
names a class or interface C and a constraint c on the immutable state of C and
in-scope final variables. Constraints may also be associated with class definitions
(representing class invariants) and with method and constructor definitions (rep-
resenting preconditions). Dynamic casting is permitted. The system is parametric
on the underlying constraint system: the compiler supports a simple equality-
based constraint system but, in addition, supports extension with new constraint
systems using compiler plugins.

1 Introduction

X10 is a modern statically typed object-oriented language designed for high produc-
tivity in the high performance computing (HPC) domain [49]. Built essentially on the
imperative sequential JavaTM core, X10 introduces constructs for distribution and fine-
grained concurrency (asynchrony, atomicity, ordering).

X10, like most object-oriented languages is designed around the notion of objects
as instances of classes. However, X10 places equal emphasis on arrays, a central data-
structure in high performance computing. In particular, X10 supports dense, distributed
multi-dimensional arrays of value and reference types, built over index sets known as
regions, and mappings from index sets to places, known as distributions. X10 supports
a rich algebra of operations over regions, distributions and arrays.

A central design goal of X10 is to rule out large classes of error by design. For in-
stance, the possibility of indexing a 2-d array with 3-d points should simply be ruled out
at compile-time. This means that one must permit the programmer to express types such
as region(2), the type of all two-dimensional regions; int[5], the type of all arrays
of int of length 5; int[region(2)], the type of all int arrays over two-dimensional
regions; and Object!, the type of all Object located on the current node. For con-
current computations, one needs the ability to statically check that a method is being
invoked by an activity that is registered with a given clock (i.e., dynamic barrier) [49].

In this paper we describe X10’s support for constrained types. Constrained types
are a form of dependent type [29, 56, 38, 6, 7, 3, 14]—types parametrized by values—
defined on top of predicates over the immutable state of objects. Such types statically
capture many common invariants that naturally arise in code. For instance, typically the
shape of an array (the number of dimensions (the rank) and the size of each dimension)
is determined at run time, but is fixed once the array is constructed. Thus, the shape of
an array is part of its immutable state.

X10 provides a framework for specifying and checking constrained types that achieves
certain desirable properties:

– Ease of use. The syntax of constrained types is a simple and natural extension of
Java’s types. Constrained types can interoperate smoothly with Java libraries.

– Flexibility. The framework permits the development of concrete, specific type sys-
tems tailored to the application area at hand. X10’s compiler permits extension with
different constraint systems via compiler plugins, enabling a kind of pluggable type
system [10]. The framework is parametric in the kinds of expressions used in the
type system, permitting the installed constraint system to interpret the constraints.

– Modularity. The rules for type-checking are specified once in a way that is in-
dependent of the particular vocabulary of operations used in the dependent type
system. The type system supports separate compilation.

– Static checking. The framework permits mostly static type-checking. The user is
able to escape the confines of static type-checking using dynamic casts, as is com-
mon for Java-like languages.

1.1 Constrained types

We permit the definition of a class C to specify a list of typed parameters, or properties,
(T1 x1, ..., Tk xk) similar in syntactic structure to a method formal parameter
list. Each property in this list is treated as a public final instance field. We also permit
the specification of a class invariant, a where clause [15] in the class definition. A class
invariant is a boolean expression on the properties of the class. The compiler ensures
that all instances of the class created at run time satisfy the invariant. Syntactically,
the class invariant is separated from the property list with a “:”. For instance, we may
specify a class List with an int length property as follows:

class List(int length: length >= 0) {...}

Given such a definition for a class C, types can be constructed by constraining the
properties of C. In principle, any boolean expression over the properties specifies a type:
the type of all instances of the class satisfying the boolean expression. Thus, List(:
length == 3) is a permissible type, as are List(:length <= 42) and even List(:
length * f()>= g()). In practice, e is restricted by the particular constraint system
in use.

In general, a constrained type is of the form C(:e), the name of a class or inter-
face4 C, called the base class, followed by a condition e, a boolean expression on the

4 In X10, primitive types such as int and double are object types.

2

1 class List(int(:self >= 0) n) {

2 Object head = null;

3 List(n-1) tail = null;

4

5 List(0)() { property(0); }

6 List(1)(Object head) { this(head, new List());}

7 List(tail.n+1)(Object head, List tail) {

8 property(tail.n+1);

9 this.head = head;

10 this.tail = tail;

11 }

12

13 List(n+arg.n) append(final List arg) {

14 return (n==0) ? arg : new List(head, tail.append(arg));

15 }

16

17 List(n) reverse() { return rev(new List()); }

18 List(n+acc.n) rev(final List acc) {

19 return (n==0) ? acc : tail.rev(new List(head, acc));

20 }

21

22 List(:self.n <= this.n) filter(Predicate f) {

23 if (n==0) return this;

24 List(:self.n <= this.n-1) l = tail.filter(f);

25 return (f.isTrue(head)) ? new List(head,l) : l;

26 }

27 }

Fig. 1. This program implements a mutable list of Objects. The size of a list does not change
through its lifetime, even though at different points in time its head and tail might point to different
structures.

properties of the base class and the final variables in scope at the type. Such a type
represents a refinement of C: the set of all instances of C whose immutable state satisfies
the condition e.

For brevity, we write C as a type as well; it corresponds to the (vacuously) con-
strained type C(:true). We also permit the syntax C(e1,...,ek) for the type C(:x1==e1
& ... & xk==ek) (assuming that the property list for C specifies the k properties x1,
. . . , xk, and each term ei is of the correct type).

Constrained types may occur wherever normal types occur. In particular, they may
be used to specify the types of properties, (possibly mutable) local variables or fields,
arguments to methods, return types of methods; they may also be used in casts, etc.

Using the definitions above, List(n), shown in Figure 1, is the type of all lists of
length n. Intuitively, this definition states that a List has a int property n, which must
be non-negative. In a constraint, the name self refers to the type being constrained.
The class has two fields that hold the head and tail of the list. The properties of the class

3

are set through the invocation of property(...) (analogously to super(...)) in the
constructors.

Our basic approach to introducing constrained types into X10 is to follow the spirit
of generic types, but to use values instead of types.

Constructors have “return types” that can specify an invariant satisfied by the object
being constructed. The compiler verifies that the constructor return type and the class
invariant are implied by the property statement and any super calls in the constructor
body. The List class has three constructors: the first constructor returns a empty list;
the second returns a singleton list of length 1; the third returns a list of length m+1,
where m is the length of the second argument.

In the third constructor, as well as the append and reversemethod, the return type
depends on properties of the formal parameters. If an argument appears in a return type
then the parameter must be declared final, ensuring the argument points to the same
object throughout the evaluation of the method or constructor body. A parameters may
also depend on another parameter in the argument list.

The use of constraints makes existential types very natural. Consider the return
type of filter: it specifies that the list returned is of some unknown length. The only
thing known about it is that its size is bounded by n. Thus, constrained types natu-
rally subsume existential dependent types. Indeed, every base type C is an “existential”
constrained type since it does not specify any constraint on its properties. Thus, code
written with constrained types can interact seamlessly with legacy library code—using
just base types wherever appropriate.

1.2 Constraint system plugins

The X10 compiler allows programmers to extend the semantics of the language with
compiler plugins. Plugins may be used to support different constraint systems to be
used in constrained types. Constraint systems provide code for checking consistency
and entailment.

The condition of a constrained type is parsed and type-checked as a normal boolean
expression over properties and the final variables in scope at the type. Installed con-
straint systems translate the expression into an internal form, rejecting expressions that
cannot be represented. A given condition may be a conjunction of constraints from mul-
tiple constraint systems. A Nelson–Oppen procedure [32] is used to check consistency
of the constraints.

The X10 compiler implements a simple equality-based constraint system. Con-
straint solver plugins have been implemented for Presburger constraints using the Omega
library [47] and the CVC3 theorem prover [8]. A separate set-based constraint system
has been built using CVC3. These constraint systems are described in Section 3; the
implementation is discussed in Section 4.

1.3 Claims

The paper presents constrained types in the X10 programming language. We claim that
the design is natural, easy to use, useful. Many example programs have been written
using constrained types and are available at x10.sf.net.

4

As in staged languages [33, 53], the design distinguishes between compile-time and
run-time evaluation. Constrained types are checked (mostly) at compile-time. The com-
piler uses a constraint solver to perform universal reasoning (“for all possible values
of method parameters”) for dependent type-checking. There is no run-time constraint-
solving. However, run-time casts to dependent types are permitted; these casts involve
arithmetic, not algebra—the values of all parameters are known.

The design supports separate compilation: a class needs to be recompiled only when
it is modified or when the method and field signatures or invariants of classes on which
it depends are modified.

We claim that the design is flexible. The language design is parametric on the con-
straint system being used. The compiler supports integration of different constraint
solvers into the language. Dependent clauses are also form the basis of a general user-
definable annotation framework we have implemented separately [36].

Rest of this paper. Section 2 describes the syntax and semantics of constrained types
(a formal semantics appears in the appendix). Section 3 works through a number of
examples using a variety of constraint systems. The compiler implementation, including
support for constraint system plugins, is described Section 4. Section 5 reviews related
work. The paper concludes in Section 6 with a discussion of future work.

2 Constrained types

This section describes constrained types in X10.

2.1 Properties

A property is a public final instance field of the class that cannot be overridden by
subclassing. Like any other field, a property is typed, and its type need not necessarily be
primitive. Thus, properties capture the immutable public state of an object, initialized
when the object is created, that can be classified by constrained types. Syntactically,
properties are specified in a parameter list right after the name of the class in a class
definition. The class body may contain specifications of other fields; these fields are
considered mutable.

Properties may be of arbitrary type. For instance, the class region has an int
property called rank. In turn, the class dist has a region property, called region,
and also an int property rank. The invariant for dist ensures that rank == region
.rank. Similarly, an array has properties dist, region, and rank and appropriate
constraints ensuring that the statically available information about them is consistent.5

In this way, rich constraints on the immutable portion of the object reference graph,
rooted at the current object and utilizing objects at user-defined types, may be specified.

5 All constraint languages used in constrained types permit object references, field selection and
equality. Such constraint systems have been studied extensively under the name of “feature
structures” [2].

5

2.2 Constraints

A constrained type is of the form C(:e), consisting of a base class C and a condition
e, a boolean expression on the properties of the base class and the final variables in
scope at the type. Constraints specify (possibly) partial information about the variables
of interest. The type C(:e) represents the set of all instances of C whose immutable
state satisfies the condition e.

Constraints may use the special variable self to stand for the object whose type is
being defined. Thus, int(:self >= 0) is the set of natural numbers, and point(:x*
x + y*y <= 1.0) represents the interior of a circle (for a class pointwith two float
properties x and y). The type C(:self != null) represents all instances of C. When
there is no ambiguity, a property reference self.x may be abbreviated to x. The type
int(:self==v) represents a “singleton” type, an int is of this type only if it has the
same value as v.

To be clear, self is not the same as this. In the List example of Figure 1, a list a
list with type List(:self.n <= this.n) is returned by the filtermethod: self.n
is the length of the returned List; this.n is the length of the receiver of the call to
filter.

Constraints are specified in terms of an underlying constraint system [50]—a pre-
defined logical vocabulary of functions and predicates with algorithms for consistency
and entailment. The X10 compiler permits different constraint systems to be installed
using compiler plugins [10]. Constraint system plugins define a language of constraints
by symbolically interpreting the boolean expression specifying a type’s condition; plu-
gins may report an error if the condition cannot be interpreted.

In principle, types may be constrained by any boolean expression over the proper-
ties. For practical reasons, restrictions need to be imposed to ensure constraint checking
is decidable.

The condition of a constrained type must be a pure function only of the proper-
ties of the base class. Because properties are final instance fields of the object, this
requirement ensures that whether or not an object belongs to a constrained type does
not depend on the mutable state of the object. That is, the status of the predicate “this
object belongs to this type” does not change over the lifetime of the object. Second, by
insisting that each property be a field of the object, the question of whether an object
is of a given type can be determined merely by examining the state of the object and
evaluating a boolean expression. Of course, an implementation is free to not explicitly
allocate memory in the object for such fields. For instance, it may use some scheme of
tagged pointers to implicitly encode the values of these fields.

Further, by requiring that the programmer distinguish certain final fields of a class
as properties, we ensure that the programmer consciously controls which final fields
should be available for constructing constrained types. A field that is “accidentally”
final may not be used in the construction of a constrained type. It must be declared as
a property.

2.3 Subtyping

Constrained types come equipped with a subtype relation that combines the nominal
subtyping relation of classes and interfaces with the logical entailment relation of the

6

constraint system. Namely, a constraint C(:c) is a subtype of D(:d) if C is a subtype
of D and every value in C that satisfies c also satisfies d.

This definition implies that C(:e1) is a subtype of C(:e2) if e1 implies e2. In
particular, for all conditions e, C(:e) is a subtype of C. C(:e) is empty exactly when
e conjoined with C’s class invariant is inconsistent.

Two constrained types C1(:e1) and C2(:e2) are considered equivalent if C1 and
C2 are the same base type and e1 and e2 are equivalent when considered as logical
expressions. Thus, C(:x*x==4) and C(:x==2 || x==-2) are equivalent types.

2.4 Final variables

The use of final local variables, formal parameters, and fields in constrained types has
proven to be particularly valuable in practice. The same variable that is being used in
computation can also be used to specify types. There is no need to introduce separate,
universally and existentially quantified “index” variables. During type-checking, final
variables are turned into symbolic variables—some fixed but unknown value—of the

same type. Computation is performed in a constraint-based fashion on such variables.

2.5 Method and constructor preconditions

Methods and constructors may specify preconditions on their parameters as where
clauses. For an invocation of a method (or constructor) to be type-correct, the asso-
ciated where clause must be statically known to be satisfied. Note that the where clause
may contain constraints on the properties of this. Thus the where clause may be used
to specify that a method is conditionally available on some objects of the class and not
others.

The return type of a method may also contain expressions involving the arguments
to the method. Any argument used in this way must be declared final, ensuring it is
not mutated by the method body. For instance:

List(arg.length-1) tail(final List arg : arg.length > 0) {...}

is a valid method declaration. It says that tail must be passed a non-empty list, and it
returns a list whose length is one less than its argument.

2.6 Method overloading and overriding

The definitions of method overloading, overriding, hiding, shadowing and obscuring in
X10 are the same as in Java [22], modulo the following considerations motivated by
dependent types.

Our current implementation erases dependent type information when compiling to
Java. Therefore it must be the case that a class does not have two different method
definitions that conflict with each other when the constrained clauses in their types are
erased.

A class C inherits from its direct superclass and superinterfaces all their methods
that are visible according to the access modifiers and that are not hidden or overridden.

7

A method m1 in a class C overrides a method m2 in a superclass D if m1 and m2 have
signatures with equivalent (unerased) formal parameter types.

Dynamic method lookup does not take dependent type information into account,
only the class hierarchy. This design decision ensures that serious errors such as method
invocation errors are captured at compile-time. Such errors can arise because multiple
incomparable methods with the same name and acceptable argument lists might be
available at the dynamic dependent type of the subject.

2.7 Constructors for dependent classes

Constructors must ensure that the class invariants of the given class and its superclasses
and superinterfaces hold. For instance, the nullary constructor for List ensures that the
property length has the value 0:

public List(0)() { property(0); }

The property statement is used to set all the properties of the new object simulta-
neously. Capturing this assignment in a single statement simplifies checking that the
constructor postcondition and class invariant are established. If a class has properties,
every path through the constructor must contain exactly one property statement.

Java-like languages permit constructors to throw exceptions. This is necessary to
deal with the situation in which the arguments to a constructor for a class C are such that
no object can be constructed that satisfies the invariants for C. Dependent types make it
possible to perform some of these checks at compile-time. The class invariant of a class
explicitly captures conditions on the properties of the class that must be satisfied by any
instance of the class. Constructor preconditions capture conditions on the constructor
arguments. The compiler’s static check for non-emptiness of the type of any variable
captures these invariant violations at compile-time.

2.8 Extending dependent classes

A class may extend a constrained class, e.g., class C(. . .) extends D(:d). This
documents the programmer’s intention that every call to super in a constructor for C
must ensure that the invariant d is established on the state of the class D. The expressions
in the actual parameter list for the super class may involve only the properties of the
class being defined.

2.9 Dependent interfaces

Java does not allow interfaces to specify instance fields. Rather all fields in an interface
are final static fields (constants). However, since properties play a central role in the
specification of refinements of a type, it makes sense to permit interfaces to specify
properties. Similarly, an interface definition may specify an invariant on its properties.
Methods in the body of an interface may have where clauses as well.

All classes implementing an interface must have a property with the same name
and type (either declared in the class or inherited from the superclass) for each property

8

in the interface. If a class implements multiple interfaces and more than one of them
specify a property with the same name, then they must all agree on the type of the
property. The class must have a single property with the given name and type.

The general form of a class declaration is now:

class C(T1 x1, ..., Tk xk)

extends B(:c)

implements I1(:c1), ..., In(:cn) {...}

For such a declaration to type-check, it must be that the class invariant of C implies
inv(Ii) & ci, where inv(Ii) is the invariant associated with interface Ii. Again, a con-
strained class or interface I is taken as shorthand for I(:true). Further, every method
specified in the interface must have a corresponding method in the class with the same
signature whose precondition, if any, is implied by the precondition of the method in
the interface.

2.10 Separation between compile-time and run-time computation

Our design distinguishes between compile-time execution (performed during type-checking)
and run-time execution. At compile-time, the compiler processes the abstract syntax
tree of the program generating queries to the constraint solver. The only computation
engine running is the constraint solver, which operates on its own vocabulary of predi-
cates and functions. Program variables (such as local variables) that occur in types are
dealt with symbolically. They are replaced with logical variables—some fixed, but un-
known value—of the same type. The constraint solver must know how to process pieces
of partial information about these logical variables in order to determine whether some
constraint is entailed. At run time, the same program variable will have a concrete value
and will perform “arithmetic” (calculations) where the compiler performed “algebra”
(symbolic analysis).

Constrained types may occur in a class cast (T) e. Code is generated to check at
run time that the expression e satisfies any constraints in T.

2.11 Equality-based constraints

The X10 compiler includes a simple equality-based constraint system. All constraint
systems installed using plugins must support at least the core equality-based constraints.
Constraints are conjunctions of equalities between constraint terms: properties, final
variables, compile-time constants, and self:

(C Term) t ::= x | this | self | t.f | n
(Constraint) c,d ::= true | t == t | c && c | T x; c We use the syntax T

x; c for the constraint obtained by existentially quantifying the variable x of type T
in c.

9

2.12 Existential quantification

Constrained types subsume existential types. For example, the length of the list returned
by filter in Figure 1 is existentially quantified. Existential quantification may also be
introduced explicitly: the following function computes the greatest common divisor of
two positive integers:6

int(:int(:self >= 0) x; int(:self >= 0) y;

a == x*self && b == y*self && self >= 0)

gcd(final int(:self >= 0) a, final int(:self >= 0) b) {

if (b == 0) return a;

else return gcd(b, a % b);

}

Operations on values of constrained type propagate constraints to the operation re-
sult by introducing existentially quantified variables. Consider the following assign-
ment:

int(:self >= 0) product(int(:self >= 0) a, int(:self >= 0) b) {

return a*b;

}

We would like this function to type-check. During type-checking, the type of a*b is int
(:int x; int y; self == x*y && x >= 0 && y >= 0). The constraint on this
type is strong enough to establish the constraint on the return type. If the new constraint
cannot be represented by any installed constraint system, rather than report an error, the
constraint is simply removed—in this case, the type of a*b becomes int.

2.13 Query evaluation

Because object-oriented languages permit arbitrary mutual recursion between classes:
classes A and B may have fields of type B and A respectively—the type/property graph
may have loops. The nodes in this graph are base types (class and interface names).
There is an edge from node A to node B if A has a property whose base type is B.

Let us define the real clause of a constrained type C(:c) to be the set of constraints
that must be satisfied by any instance of C(:c). This includes not only the condition c
but also constraints that hold for all instances of C, as determined by C’s class invariant.
Let rc(C(: c)) denote the real clause of C(:c). For simplicity, we consider only top-
level classes; thus, the only free variable in rc(C(: c)) is self. We draw out self as a
formal parameter and write rc(C(: c),X) for rc(C(: c[X/self])).

Consider a general class definition:

class C(Ck(:c1) x1, ..., Ck(:ck) xk: c) extends D(:d) { ... }

From this, we get:

rc(C,X) ⇐⇒ (c∧d)[X/this] ∧ rc(D,X) ∧
rc(C1(:c1),X.x1) ∧ ·· · ∧ rc(Ck(:ck),X.xk)

6 Checking this program requires a constraint system capable of reasoning about integer multi-
plication and division. We have not yet implemented such a system.

10

That is, given a program P with classes C1, . . . ,Ck, the set of real clauses for C1, . . . ,Ck
are defined in a mutually recursive fashion through the Clark completion of a Horn
clause theory (over an underlying constraint system).

The central algorithmic question now becomes whether given a constrained clause
d, does rc(C(:c),X) entail d? From the above formulation the question is clearly semi-
decidable. It is not clear however whether it is decidable. This is a direction for further
work.

The X10 compiler is conservative and rejects programs with cyclic dependency
graphs. In practice, many data structures have non-cyclic dependency graphs. For such
programs the real clause can be computed quickly and only a bounded number of ques-
tions to the constraint solver are generated during type-checking.

2.14 Parametric consistency

Consider the set of final variables that are referenced in a type T = C(:c). These are
the parameters of the type. A type is said to be parametrically consistent if its where
clause c is solvable for each possible assignment of values to parameters. A parametri-
cally consistent type has the property that its extension will never be empty. Types are
required to be parametrically consistent.

Consider a variation of List from Figure 1:

class List(int(:self >= 0) n) {

Object head;

List(:self.n == this.n-1 & self != null) tail;

...

}

The type of the field tail is not parametrically consistent. There exists a value for its
parameter n, namely 0, for which the real clause self != null & self.n == this.n-1
& self.n >= 0 is not satisfiable.

The compiler will throw a type error when it encounters the initializer for this field
in a constructor since it will not be able to prove that the initial value is of the given
type.

3 Examples

The following section presents example uses of constrained types using several different
constraint systems.

3.1 Equality constraints

The X10 compiler includes a simple equality-based constraint system, described in Sec-
tion 2. Equalities constraints are used throughout X10 programs. For example, to ensure
n-dimensional arrays are indexed only be n-dimensional index points, the array access
operation requires that the array’s rank property be equal to the index’s rank.

11

3.2 Presburger constraints

Presburger constraints are linear integer inequalities. A constraint solver plugin was im-
plemented using a port to Java of the Omega library. [47, 24] A separate implementation
of a Presburger constraint solver was implemented using CVC3 [8].

Presburger constraints are particularly useful in a high-performance computing set-
ting where array operations are pervasive. Xi and Pfenning proposed using dependent
types for eliminating array bounds checks [55]. A Presburger constraint system can be
used to keep track of array dimensions and array indices to ensure bounds violations do
not occur.

3.3 Set constraints: region-based arrays

Rather than using Presburger constraints, X10 takes another approach: following ZPL [11],
arrays in X10 are defined over regions, sets of n-dimensional index points [23]. For in-
stance, the region [0:200,1:100] specifies a collection of two-dimensional points
(i,j) with i ranging from 0 to 200 and j ranging from 1 to 100.

Regions and points were modeled in CVC [8] to create a constraint solver than
ensures array bounds violations do not occur: an array access type-checks if the index
point can be statically determined to be in the region over which the array is defined.

Region constraints are subset constraints written as calls to the contains method
of the region class. Constraints have the following syntax:

(Constraint) c ::= r.contains(r) | . . .
(Region) r ::= t | [b1:d1,. . . ,bk:dk] | r || r | r && r | r - r

| r + p | r - p
(Point) p ::= t | [b1, . . . ,bk]

(Integer) b,d ::= t | n

where t are constraint terms (properties and final variables) and n are integer literals.
Regions used in constraints are either constraint terms t, region constants, unions

(||), intersections (&&), or differences (-), or regions where each point is offset by
another point p using + or -.

For example, the code in Figure 2 performs a successive over-relaxation [46] of an
n× n matrix G. The type-checker establishes that the region property of the point ij
(line 21) is inner && [i:i,d1min:d1max], and that this region is a subset of outer,
the region of the array G accessed within the loop body.

3.4 Ownership constraints

Using a simple extension of X10’s built-in equality constraint system, constrained types
can also be used to encode a form of ownership types [13, 9]. Shows a fragment of a
List class with ownership types.

Each Owned object has an owner property. Objects also have properties that are
used as owner parameters. The List class has an owner property inherited from Owned
and also declares a valOwner property that is instantiated with the owner of the values

12

1 const point(:rank==2) NORTH = point.factory.point(1,0);

2 const point(:rank==2) WEST = point.factory.point(0,1);

3

4 void sor(double omega, final double[:rank==2] G, int iter) {

5 region(:self==G.region && rank==2) outer = G.region;

6 region(:G.region.contains(self) && rank==G.region.rank) inner =

7 outer && (outer-NORTH) && (outer+NORTH)

8 && (outer-WEST) && (outer+WEST);

9

10 region d0 = inner.rank(0);

11 region d1 = inner.rank(1);

12

13 if (d1.size() == 0) return;

14

15 final int d1min = d1.low();

16 final int d1max = d1.high();

17

18 for (int off = 1; off <= iter*2; off++)

19 finish foreach (point[i] : d0)

20 if (i % 2 == off % 2)

21 for (point ij : inner && [i:i,d1min:d1max])

22 G[ij] = omega / 4.

23 * (G[ij-NORTH] + G[ij+NORTH]

24 + G[ij-WEST] + G[ij+WEST])

25 * (1. - omega) * G[ij];

26 }

Fig. 2. Successive over-relaxation with regions

in the list, stored in the head field of each element. The tail of the list is owned by the
list object itself.

X10’s equality-based constraint system is sufficient for tracking object ownership,
however is does not capture all properties of ownership type systems. Ownership type
systems enforce an “owners as dominators” property: the ownership relation forms a
tree within the object graph; a reference is not permitted to point directly to objects
with a different owner. To encode this property, the owner of the values valOwnermust
be contained within the owner of the list itself; that is, valOwner must be owner or
valOwner’s owner must be contained in owner. This is captured by the constraint self
.owns(owner) on valOwner. Calls to the owns method in constraints are interpreted
by the ownership constraint solver as the disjunction of conditions shown in the body
of owns. The object world is the root of the ownership tree; all objects are transitively
owned by world.

For example, the type List(:owner==world & valOwner == this) is invalid,
because its constraint is interpreted as owner == world & valOwner == this &
this.owns(world), which is satisfiable only when this == world (which it is not).

13

1 class Owned(Owned owner) {

2 Owned(:owner==o)(final Owned o) { property(o); }

3 boolean owns(Owned o) {

4 return this == world || this == o.owner || this.owns(o.owner);

5 }

6 static final Owned(null) world = new Owned(null);

7 }

8

9 class List(Owned(:owns(owner)) valOwner) extends Owned {

10 Owned(:owner==valOwner) head;

11 List(:owner==this & valOwner==this.valOwner) tail;

12 List(:owner==o & valOwner==v)(Owned o, Owned v: o.owns(v)) {

13 super(o);

14 property(v);

15 }

16 List(:owner==this & valOwner==this.valOwner) tail() {

17 return tail;

18 }

19 }

Fig. 3. Ownership types

An additional check is needed to ensure objects owned by this are encapsulated.
The tail() method for instance, incorrectly leaks the list’s tail field. To eliminate
this case, the ownership constraint system must additionally check that owner param-
eters are bound only to this, world, or an owner property of this. These conditions
ensure that tail() can be called only on this because its return type is otherwise not
valid. For instance, in the following code, the type of ys is not valid because the owner
property is bound to xs:

final Owned o = ...;

final List(:owner==o & valOwner==o) xs;

List(:owner==xs & valOwner==o) ys = xs.tail();

4 Implementation

The X10 compiler provides a framework for writing and checking constrained types.
Constraints in X10 are conjunctions of equalities over immutable side-effect-free ex-
pressions. Compiler plugins may be installed that support other constraint languages
and solvers.

The X10 compiler is implemented as an extension of Java using the Polyglot com-
piler framework [34]. Expressions used in constrained types are type-checked as normal
non-dependent X10 expressions; no constraint solving is performed on these expres-
sions. During type-checking, constraints are generated and solved using the built-in
constraint solver or using solvers provided by plugins. The system allows types to con-

14

strained by conjunctions of constraints in different constraint languages. If constraints
cannot be solved, an error is reported.

4.1 Constraint checking

After type-checking a constraint as a boolean expression e, the abstract syntax tree for
the boolean expression is transformed into a list of conjuncts. e1 & ... & ek. Each
conjunct ei is given to the installed constraint system plugins, which symbolically eval-
uate the expression to create an internal representation of the conjunct. If no constraint
system can handle the conjunct, an error is reported.

To interoperate, the constraint solvers must share a common vocabulary: constraint
terms t range over the properties of the base type, the final variables in scope at the type
(including this), the special variable self representing the a value of the type, and
field selections t.f. All constraint systems are required to support the trivial constraint
true, conjunction, existential quantification and equality on constraint terms.

In this form, the constraint is represented as a conjunction of constraints from dif-
ferent theories. Constraints are checked for satisfiability using a Nelson–Oppen proce-
dure [32]. After constructing a constraint-system specific representation of a conjunct,
each plugin computes the set of term equalities entailed by the conjunct. These equali-
ties are propagated to the other conjuncts, which are again checked for satisfiability and
any new equalities generated are propagated. If a conjunct is found to be unsatisfiable,
an error is reported.

During type-checking, the type checker needs to determine if the type C(:c) is a
subtype of D(:d). This is true if the base type C is a subtype of D and if the constraint c
entails d. To check entailment, each constraint solver is asked if a given conjunct of d is
entailed by c. If any report false, the entailment does not hold and the subtyping check
fails.

4.2 Translation

After constraint-checking, the X10 code is translated to Java in a straightforward man-
ner. Each dependent class is translated into a single class of the same name without de-
pendent types. The explicit properties of the dependent class are translated into public
final (instance) fields of the target class. A property statement in a constructor is

translated to a sequence of assignments to initialize the property fields.
For each property, a getter method is also generated in the target Java class. Proper-

ties declared in interfaces are translated into getter method signatures. Subclasses im-
plementing these interfaces thus provide the required properties by implementing the
generated interfaces.

Usually, constrained types are simply translated to non-constrained types by era-
sure; constraints are checked statically and need no run-time representation. However,
dependent types may be used in casts and instanceof expressions. Because the con-
straint syntax in X10 is a subset of the X10 expression syntax, run-time tests of con-
strained types are translated to Java by evaluating the constraint with self bound to the
expression being tested. For examples, casts are translated as:

15

J(C(:c) eK =
new Object() {
C cast(C self) {

if (JcK) return self;
throw new ClassCastException(); }

}.cast((C) JeK)

Wrapping the evaluation of c in an anonymous class ensures the expression e is evalu-
ated only once.

To support separate compilation, abstract syntax trees for constraints are embedded
into the generated Java code, and from there into the generated class file. The compiler
reconstructs dependent types in referenced class files from their ASTs.

5 Related work

Constraint-based type systems enjoy a long history. Mitchell [31] and Reynolds [48] de-
veloped the use of constraints for type inference and subtyping. Trifonov and Smith [54]
proposed a type system where types are refined by subtyping constraints. Dependent
types are not supported. Pottier [42, 44] presents a constraint-based type system for an
ML-like language with subtyping.

HM(X) [52, 43, 45] is a constraint-based framework for Hindley–Milner style type
systems. The framework is parameterized on the specific constraint system X; instanti-
ating X yields extensions of the HM type system. Constraints in HM(X) are over types,
not values.

Several systems have been proposed that refine types in a base type system through
constraints. Refinement types [21] extend the Hindley–Milner type system with intersec-
tion, union, and constructor types, enabling specification and inference of more precise
type information. Conditional types [1] extend refinement types to encode control-flow
information in the types. Jones introduced qualified types, which permit types to be con-
strained by a finite set of predicates [27]. Sized types [25] annotate types with the sizes
of recursive data structures. Sizes are linear functions of size variables. Size inference
is performed using a constraint solver for Presburger arithmetic [47].

Our work is most closely related to DML, the extension of ML with dependent
types. We discuss this in detail in the next section.

With hybrid type-checking [17, 18], types can be constrained by arbitrary boolean
expressions. While typing is undecidable, dynamic checks are inserted into the program
when necessary if the type-checker cannot determine type safety statically. In X10 dy-
namic type checks, including tests of dependent clauses, are inserted only at explicit
casts.

Singleton types [5, 51] are dependent types containing only one value. In Stone’s
formulation [51], S(e : τ) is the type of all values of type τ that are equal to e. Term
equivalence is constructed so that type-checking is decidable. The singleton S(e : τ) can
be encoded in X10 as τ(:self == e).

Several languages—gbeta [16], Scala [37, 40], J& [35] and others [39, 38]—provide
path-dependent types. For a final access path p, p.type in Scala is the singleton type

16

containing the object p. In J&, p.class is a type containing all objects whose run-
time class is the same as p’s. Scala’s p.type can be encoded in X10 using an equality
constraint C(:self == p), where C is a supertype of p’s static type.

Cayenne [7] is a Haskell-like language with fully dependent types. There is no dis-
tinction between static and dynamic types. Type-checking is undecidable. There is no
notion of datatype refinement as in DML.

Epigram [30, 3] is a dependently typed functional programming language based on a
type theory with inductive families. Epigram does not have a phase distinction between
values and types.

ESC/Java [19] allow programmers to write object invariants and pre- and post-
conditions that are enforced statically by the compiler using an automated theorem
prover. Static checking is undecidable and, in the presence of loops, is unsound (but
still useful) unless the programmer supplies loop invariants. ESC/Java can enforce in-
variants on mutable state.

Pluggable and optional type systems were proposed by Bracha [10] and provide an-
other means of specifying refinement types. Type annotations, implemented in compiler
plugins, serve only to reject programs statically that might otherwise have dynamic type
errors. CQual [20] extends C with user-defined type qualifiers. These qualifiers may be
flow-sensitive and may be inferred. CQual supports only a fixed set of typing rules for
all qualifiers. In contrast, the semantic type qualifiers of Chin, Markstrum, and Mill-
stein [12] allow programmers to define typing rules for qualifiers in a meta language
that allows type-checking rules to be specified declaratively. JavaCOP [4] is a plug-
gable type system framework for Java. Annotations are defined in a meta language that
allows type-checking rules to be specified declaratively. JSR 308 [28] is a proposal for
adding user-defined type qualifiers to Java.

Our work is most closely related to DML, [56], an extension of ML with dependent
types. DML is also built parametrically on a constraint solver. Types are refinement
types; they do not affect the operational semantics and erasing the constraints yields a
legal ML program.

At a conceptual level the intuitions behind the development of DML and constrained
types are similar. Both are intended for practical programming by mainstream program-
mers, both introduce a strict separation between compile-time and run-time processing,
are parametric on a constraint solver, and deal with mutually recursive data-structures,
mutable state, and higher-order functions (encoded as objects in the case of constrained
types). Both support existential types.

The most obvious distinction between the two lies in the target domain: DML is
designed for functional programming, specifically ML, whereas constrained types are
designed for imperative, concurrent OO languages. Hence technically our development
of constrained types takes the route of an extension to FJ. But there are several other
crucial differences as well.

First, DML achieves its separation by not permitting program variables to be used in
types. Instead, a parallel set of (universally or existentially quantified) “index” variables
are introduced. For instance the typing of the append operation on lists is provided by:

fun(’a)

append(nil, ys) = ys

| append(cons(x, xs), ys) = cons(x, append(xs,ys))

17

where append <| {m:nat}{n:nat}

’a list(m) * ’a list(n) -> ’a list(m+n)

in contrast with the direct embedded expression with constrained types:

class List(int(:self >= 0) n) {

Object item;

List(n-1) tail;

List(n+a.n) append(final List a) {

return n==0 ? a : new List(item, tail.app(a)); }

...

}

Second, DML permits only variables of basic index sorts known to the constraint
solver (e.g., bool, int, nat) to occur in types. In contrast, constrained types permit pro-
gram variables at any type to occur in constrained types. As with DML, only operations
specified by the constraint system are permitted in types. However, these operations
always include field selection and equality on object references. (As we have seen per-
mitting arbitrary type/property graphs may lead to undecidability.) Note that DML style
constraints are easily encoded in constrained types.

Third, DML does not permit any runtime checking of constraints (dynamic casts).

6 Conclusion and future work

We have presented the design and implementation of constrained types in X10. The
design considerably enriches the space of statically checkable types expressible in the
language. This is particularly important for data-structures such as lists and arrays. Sev-
eral examples of constrained types were presented. Constrained types have been imple-
mented in X10 and used for place types, clocked types, and array types.

The implementation supports extension with constraint solver plugins. In future
work, we plan to investigate optimizations (such as array bounds check elimination)
enabled by constrained types. We also plan to explore type inference for constrained
types and to pursue more expressive constraint systems and extensions of constrained
types for handling mutable state, control flow, and effects.

References

1. Alexander Aiken, Edward L. Wimmers, and T. K. Lakshman. Soft typing with conditional
types. In Proceedings of the 21st Annual ACM SIGPLAN–SIGACT Symposium on Principles
of Programming Languages (POPL), pages 163–173, January 1994.

2. Hassan Ait-Kaci. A lattice theoretic approach to computation based on a calculus of partially
ordered type structures (property inheritance, semantic nets, graph unification). PhD thesis,
University of Pennsylvania, 1984.

3. Thorsten Altenkirch, Conor McBride, and James McKinna. Why dependent types matter.
http://www.e-pig.org/downloads/ydtm.pdf, April 2005.

4. Chris Andreae, James Noble, Shane Markstrum, and Todd Millstein. A framework for im-
plementing pluggable type systems. In Proceedings of the 2006 ACM Conference on Object
Oriented Programming Systems, Languages, and Applications (OOPSLA), October 2006.

18

5. David Aspinall. Subtyping with singleton types. In CSL ’94: Selected Papers from the
8th International Workshop on Computer Science Logic, volume 933 of LNCS, pages 1–15,
London, UK, 1995. Springer-Verlag.

6. David Aspinall and Martin Hofmann. Dependent Types, chapter 2. In Pierce [41], 2004.
7. Lennart Augustsson. Cayenne: a language with dependent types. In Proceedings of the

ACM SIGPLAN International Conference on Functional Programming (ICFP ’98), pages
239–250, 1998.

8. Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the cooperating va-
lidity checker. In Rajeev Alur and Doron A. Peled, editors, Proceedings of the 16th Interna-
tional Conference on Computer Aided Verification (CAV ’04), volume 3114 of Lecture Notes
in Computer Science, pages 515–518. Springer-Verlag, July 2004. Boston, Massachusetts.

9. C. Boyapati, B. Liskov, and L. Shrira. Ownership types for object encapsulation. In POPL
’03. Proceedings of the 30th ACM SIGPLAN-SIGACT on Principles of programming lan-
guages, New York, NY, USA, 2003. ACM Press.

10. Gilad Bracha. Pluggable type systems. In OOPSLA’04 Workshop on Revival of Dynamic
Languages, October 2004.

11. Bradford L. Chamberlain, Sung-Eun Choi, Steven J. Deitz, and Lawrence Snyder. The high-
level parallel language ZPL improves productivity and performance. In Proceedings of the
IEEE International Workshop on Productivity and Performance in High-End Computing,
2004.

12. Brian Chin, Shane Markstrum, and Todd Millstein. Semantic type qualifiers. In Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 85–95, 2005.

13. D. Clarke, J. Noble, and J. Potter. Simple ownership types for object containment. In
ECOOP, 2001.

14. Thierry Coquand and Gerard Huet. The Calculus of Constructions. Information and Com-
putation, 76, 1988.

15. Mark Day, Robert Gruber, Barbara Liskov, and Andrew C. Myers. Subtypes vs. where
clauses: Constraining parametric polymorphism. In Proceedings of the 1995 ACM Confer-
ence on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA),
pages 156–168, Austin, TX, October 1995.

16. Erik Ernst. gbeta: A Language with Virtual Attributes, Block Structure, and Propagating,
Dynamic Inheritance. PhD thesis, Department of Computer Science, University of Aarhus,
Århus, Denmark, 1999.

17. Cormac Flanagan. Hybrid type checking. In Proceedings of the 33rd Annual Symposium on
Principles of Programming Languages (POPL’06), pages 245–256, 2006.

18. Cormac Flanagan, Stephen N. Freund, and Aaron Tomb. Hybrid types, invariants, and refine-
ments for imperative objects. In International Workshop on Foundations of Object-Oriented
Programming (FOOL), 2006.

19. Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg Nelson, James B. Saxe, and
Raymie Stata. Extended static checking for Java. In Proceedings of ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI), June 2002.

20. Jeffrey S. Foster, Tachio Terauchi, and Alex Aiken. Flow-sensitive type qualifiers. In Pro-
ceedings of the 29th ACM SIGPLAN–SIGACT Symposium on Principles of Programming
Languages (POPL), pages 1–12. ACM Press, June 2002.

21. Tim Freeman and Frank Pfenning. Refinement types for ML. In Proceedings of the
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
pages 268–277, June 1991.

22. J. Gosling, W. Joy, G. Steele, and G. Bracha. The Java Language Specification, Third Edition.
Addison Wesley, 2006.

19

23. Christian Grothoff, Jens Palsberg, and Vijay Saraswat. Safe arrays via regions and dependent
types. Technical Report RC23911, IBM T.J. Watson Research Center, 2006.

24. Scale Compiler Group. Scale: A scalable compiler for analytical experiments, 2007.
http://www-ali.cs.umass.edu/Scale/.

25. John Hughes, Lars Pareto, and Amr Sabry. Proving the correctness of reactive systems using
sized types. In Proceedings of the 23rd ACM SIGPLAN–SIGACT Symposium on Principles
of Programming Languages (POPL), pages 410–423, 1996.

26. A. Igarashi, B. Pierce, and P. Wadler. Featherweight Java: A minimal core calculus for Java
and GJ. In ACM Symposium on Object-Oriented Programming: Systems, Languages and
Applications, 1999.

27. Mark P. Jones. Qualified Types: Theory and Practice. Cambridge University Press, 1994.
28. JSR 308: Annotations on Java types. http://jcp.org/en/jsr/detail?id=308.
29. Per Martin-Löf. A Theory of Types. 1971.
30. Conor McBride and James McKinna. The view from the left. Journal of Functional Pro-

gramming, 14(1):69–111, 2004.
31. John C. Mitchell. Coercion and type inference. In Proceedings of the 11th Annual ACM

Symposium on Principles of Programming Languages (POPL’84), pages 174–185, 1984.
32. G. Nelson and D. Oppen. Simplification by cooperating decision procedures. ACM Trans-

actions on Programming Languages and Systems, 1(2), October 1979.
33. Flemming Nielson and Hanne Riis Nielson. Two-level functional languages. Cambridge

University Press, 1992.
34. Nathaniel Nystrom, Michael R. Clarkson, and Andrew C. Myers. Polyglot: An extensible

compiler framework for Java. In Görel Hedin, editor, Compiler Construction, 12th Interna-
tional Conference, CC 2003, number 2622 in LNCS, pages 138–152. Springer-Verlag, April
2003.

35. Nathaniel Nystrom, Xin Qi, and Andrew C. Myers. J&: Nested intersection for scalable
software extension. In Proceedings of the 2006 ACM Conference on Object Oriented Pro-
gramming Systems, Languages, and Applications (OOPSLA), pages 21–36, Portland, OR,
October 2006.

36. Nathaniel Nystrom and Vijay Saraswat. An annotation and compiler plugin system for X10.
Technical Report RC24198, IBM T.J. Watson Research Center, 2007.

37. Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,
Stéphane Micheloud, Nikolay Mihaylov, Michel Schinz, Erik Stenman, and Matthias
Zenger. An overview of the Scala programming language. Technical report, École Poly-
technique Fédérale de Lausanne, June 2004. http://scala.epfl.ch/docu/files/

ScalaOverview.pdf.
38. Martin Odersky, Vincent Cremet, Christine Röckl, and Matthias Zenger. A nominal theory

of objects with dependent types. In Proceedings of 17th European Conference on Object-
Oriented Programming (ECOOP 2003), volume 2743 of LNCS, pages 201–224. Springer-
Verlag, July 2003.

39. Martin Odersky and Christoph Zenger. Nested types. In 8th Workshop on Foundations of
Object-Oriented Languages (FOOL), 2001.

40. Martin Odersky and Matthias Zenger. Scalable component abstractions. In OOPSLA05,
pages 41–57, San Diego, CA, USA, October 2005.

41. Benjamin C. Pierce, editor. Advanced Topics in Types and Programming Languages. MIT
Press, 2004.

42. François Pottier. Simplifying subtyping constraints. In Proceedings of the ACM SIGPLAN
International Conference on Functional Programming (ICFP ’96), pages 122–133, 1996.

43. François Pottier. A semi-syntactic soundness proof for HM(X). Technical Report RR 4150,
INRIA, March 2001.

20

44. François Pottier. Simplifying subtyping constraints, a theory. Information and Computation,
170(2):153–183, November 2001.

45. François Pottier and Didier Rémy. The Essence of ML Type Inference, chapter 10. In Pierce
[41], 2004.

46. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling. Numerical Recipes in
FORTRAN: The Art of Scientific Computing, pages 866–869. Cambridge University Press,
1992. Successive overrelaxation (SOR).

47. William Pugh. The omega test: A fast and practical integer programming algorithm for de-
pendence analysis. In Supercomputing ’91: Proceedings of the 1991 ACM/IEEE Conference
on Supercomputing, pages 4–13, 1991.

48. John C. Reynolds. Three approaches to type structure. In Proceedings of TAPSOFT/CAAP
1985, volume 185 of LNCS, pages 97–138. Springer-Verlag, 1985.

49. V. Saraswat et al. Report on the programming language X10. Technical report, IBM T.J.
Watson Research Center, 2006.

50. Vijay Saraswat. The category of constraint systems is Cartesian closed. In LICS ’92, pages
341–345, 1992.

51. Christopher A. Stone. Singleton Types and Singleton Kinds. PhD thesis, Carnegie–Mellon
University, August 2000. Also availalble as CMU technical report CMU-CS-00-153.

52. Martin Sulzmann, Martin Odersky, and Martin Wehr. Type inference with constrained types.
In Fourth International Workshop on Foundations of Object-Oriented Programming (FOOL
4), 1997.

53. Walid Taha and Tim Sheard. Multi-stage programming with explicit annotations. In
ACM/SIGPLAN Workshop on Partial Evaluation and Semantics-Based Program Manipu-
lation, pages 203–217, 1997.

54. Valery Trifonov and Scott Smith. Subtyping constrained types. In Third International Static
Analysis Symposium (SAS), number 1145 in LNCS, pages 349–365, 1996.

55. Hongwei Xi and Frank Pfenning. Eliminating array bound checking through dependent
types. In Proceedings of ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 249–257, Montreal, Canada, June 1998.

56. Hongwei Xi and Frank Pfenning. Dependent types in practical programming. In Proceedings
of the 26th Annual ACM Symposium on Principles of Programming Languages (POPL’99),
pages 214–227, San Antonio, TX, January 1999.

A Formal semantics

In this section we formalize a small fragment of X10 to illustrate the basic concepts
behind constrained type-checking. In fact, a very tiny language is chosen—a small ex-
tension of Featherweight java (FJ) [26] with constrained types. The language is func-
tional in that assignment is not admitted. However, it is not difficult to introduce the
notion of mutable fields, and assignment to such fields. Since constrained types may
only refer to immutable state, the validity of these types is not compromised by the
introduction of state. Further, we do not formalize overloading of methods. Rather, as
with FJ, we simply require that the input program be such that the class name C and
method name m uniquely select the associated method on the class. We do model prop-
erties, constrained clauses, class invariants, where clauses in methods and constructors,
and dependent type casts.

21

(C Term) t ::= x | self | t.f | new C(t) | g(t)
(Constraint) c,d ::= true | p(t) | t= t | c,c | Tx; c

(Class) L ::= class C(T f : c) extends T {M}
(Method) M ::= T m(T x : c){return e;}

(Expression) e ::= x | e.f | e.m(e) | new C(e) | (T) e
(Type) S,T,U,Z ::= C(: d)

Fig. 4. CFJ Syntax

A.1 Constraint system

Constraints are assumed to be drawn from a fixed constraint system, C , with infer-
ence relation `C [50]. All constraint systems are required to support the trivial con-
straint true, conjunction, existential quantification and equality on constraint terms.
Constraint terms include final variables (including this), the special variable self
(which may occur only in constraints c and not in expressions e), and field selections
t.f.

The syntax for the language is specified in Figure 4. In the syntax, “,” binds tighter
than “;”. We use the syntax T x; c for the constraint obtained by existentially quantify-
ing the variable x of type T in c. p ranges over the collection of predicates supplied by
the underlying constraint system, and g over the collection of functions.

A class declaration class C(T f : c) extends D(: d) {M} is declares a class C with
the fields f (of type T), a declared class invariant c, a superclass invariant d and a
collection of methods M. The constraints c and d are true for all instances of the class C
(this is verified in the rule for type-checking constructors, T-NEW). In these constraints,
thismay be used to reference the current object; self does not have any meaning and
must not be used.

A method declaration T0 m(T x : c){. . .} specifies the type of the arguments and the
result, as usual. The method arguments x may occur in the argument types T and the
return type T0. The constraint c specifies additional constraints on the arguments x and
this that must hold for a method invocation to be legal. Note that self does not make
sense in c (no type is being defined), and must not occur in c.

A type is taken to be of the form C(:c) where C is the name of a class or interface
and c is a constraint; we say that C is the base of the type C(:c). We use the following
shorthand for types: For a type T equal to C(:c), we will write S x; T for C(:S x;
c), and d,T for C(:d,c).

We denote the application of the substitution θ = [t/x] to a constraint c by c[t/x].
Application of substitutions is extended to types by: C(: c)θ = C(: cθ).

We summarize here properties of constraint systems described in [50] that are needed
for the proofs: constraint systems may be thought of as presented via an intuitionistic
Gentzen proof system supporting identity; affine and exchange on the left; existential
quantification and conjunction on the left and right; and closure under substitution of
terms. All constraint systems are required to satisfy: new C(t).fi = ti provided that
fields(C) = T f (for some sequence of types T).

22

A.2 Static semantics

Typing judgments, shown in Figure 5 are of the form Γ ` T e where Γ is a multiset of
type assertions T x and constraints c.7 When Γ is empty, it is omitted.

A type assertion C(:c) x constrains the variable x to contain references to only
those objects o that are instances of (subclasses of) C and for which the constraint c is
true provided that occurrences of self in c are replaced by o. Thus in the constraint c
of a constrained type C(:c), self may be used to reference the object whose type is
being specified. Note that self is distinct from this—this is permitted to occur in
the clause of a type T only if T occurs in an instance field declaration or instance method
declaration of a class; as usual, this is considered bound to the instance of the class to
which the field or method declaration applies.

The definition of mtype(C,m) (the signature of a method named m in class C), mbody(C,m),
(the body associated with method m in type C) and fields(C) (the sequence of fields and
their types inherited or defined at C) is essentially as specified in FJ [26] with the differ-
ence that the method of a signature is taken to be of the form S x : c→ T. The variables x
are permitted to occur in the types S,T, and are considered bound, and subject to alpha-
renaming. The definitions of mtype, mbody, fields are extended to apply to constrained
types by ignoring the constraint. For a substitution θ we define mtype(T,m,θ) as the
signature obtained by applying θ to mtype(T,m), renaming bound variables as neces-
sary. Similarly, for a substitution θ we define fields(T,θ) to be Sθ f , if the sequence of
inherited and defined fields of the class underlying the type T is S f . We let fields(T,x)
stand for fields(T, [x/self])).

We define σ(Γ) to be the set of constraints obtained from Γ by replacing each type
assertion C(: d) x in Γ with d[x/self], inv(C,x) and retaining any constraint in Γ.

T-VAR extends the identity rule (Γ,x : C ` x : C) of FJ to take into account the
constraint entailment relation.

T-CAST encapsulates the three inference rules of FJ : T-UCAST, T-DCAST and
T-SCAST for upwards cast, downwards cast, and “stupid” cast respectively.

In T-FIELD, we postulate the existence of a receiver object o of the given static type
(T0). fields(T0,o) is the set of typed fields for T0 with all occurrences of this replaced
by o. We record in the resulting constraint that o.fi = self.8 This permits transfer of
information that may have been recorded in T0 about the field fi.

Similarly, in T-INVK we postulate the existence of a receiver object o of the given
static type. For any type T , object o of type T and method name m, let mtype(T,m,o)
be a copy of the signature of the method with this replaced by o. We establish (under
the assumption that the formals (z) have the static type of the actuals)9 that actual types
are subtypes of the formal types, and the method constraint is satisfied. This permits us

7 We use the non-standard notation T x rather than the more familiar x : T since : is used in the
syntax of a type.

8 A new name o is necessary to name this object since e cannot be used. Arbitrary term ex-
pressions e are not permitted in constraints; the functions used in e may not be known to the
constraint system, and e may have side-effects.

9 This is stronger than assuming Z.

23

σ(Γ,C(: c) x) `C d[x/self]
Γ,C(: c) x ` C(: d) x

(T-VAR)
Γ ` U e

Γ ` T (T)e
(T-CAST)

Γ ` T0 e fields(T0,z0) = U f (z0 fresh)
Γ ` (T0 z0;z0.fi = self;Ui) e.fi

(T-FIELD)

Γ ` T0:n e0:n mtype(T0,m,z0) = Z1:n z1:n : c→ U
Γ,T0:n z0:n ` T1:n v Z1:n σ(Γ,T0:n z0:n) `C c (z0:n fresh)

Γ ` (T0:n z0:n;U) e0.m(e1:n)
(T-INVK)

Γ ` T e θ = [f/this.f] fields(C,θ) = Z f
Γ,T f ` Tv Z σ(Γ,T f) `C inv(C,θ)

Γ ` C(: T f;self.f = f) new C(e)
(T-NEW)

T x,C this,c ` U e,Uv T
T m(Tx : c){return e;} OK in C

M OK in C

class C(T f : c) extends D(: d) {M} OK

Cv C class C(. . .) extends D(. . .){. . .}
Cv D

Cv D Dv E
Cv E

Cv D σ(Γ,C(: c) x) `C d[x/self] (x fresh)
Γ ` C(: c)v D(: d)

fields(C) = C f

(new C(e)).fi→ ei
(R-FIELD)

`C v T [newC(d)/self]
(T)(new C(d))→ newC(d)

(R-CAST)

e→ e′

e.fi→ e′.fi
(RC-FIELD)

e→ e′

(T)e→ (T)e′
(RC-CAST)

mbody(m,C) = x.e0

(new C(e)).m(d)→ [d/x,newC(e)/this]e0
(R-INVK)

e0→ e0
′

e0.m(e)→ e0
′.m(e)

(RC-INVK-RECV)

ei→ ei
′

e0.m(. . . ,ei, . . .)→ e0.m(. . . ,e′i, . . .)
(RC-INVK-ARG)

ei→ ei
′

new C(. . . ,ei, . . .)→ new C(. . . ,e′i, . . .)
(RC-NEW-ARG)

Fig. 5. CFJ semantics

24

to record the constraint d on the return type, with the formal variables z existentially
quantified.10

In T-NEW, similarly, we establish that the static types of the actual arguments to
the constructor are subtypes of the declared types of the field, and contain enough in-
formation to satisfy the class invariant, c. The declared types (and c) contain references
to this.f; these must be replaced by the formals f, which carry information about the
static type of the actuals. Note that the object o we hypothesized in an analogous situa-
tion in T-INVK does not exist; it will exist on successful invocation of the constructor.
The constrained clause of the new expression contains all the information that can be
gleaned from the static types of the actuals by assigning them to the corresponding
fields of the object being created.

Let C be a class declared as class C(T f : c) extends D(: d){M}. Let θ be a substi-
tution and the type T be based on C. We define inv(T,θ) as the conjunction cθ,dθ and
(recursively) inv(D,θ). We bottom out with inv(Object,θ) = true. For a variable x,
we use the shorthand inv(C,x) to mean inv(C, [x/self]).

We add a single subtyping rule to the rules of FJ to require that the subtype con-
straint entail the supertype constraint. (Whenever we state an assumption of the form
“x is fresh” in a rule we mean it is not free in the consequent of the rule.)

The operational semantics are essentially those of FJ.

A.3 Soundness

Here we prove a soundness theorem for CFJ.

Lemma 1 (Substitution Lemma). Assume Γ ` A d, Γ,Ax ` A v B, and Γ,B x ` T e.
Then there exists a type S such that Γ ` S e[d/x] and Γ ` Sv A x;T.

Proof. Straightforward.

Lemma 2 (Weakening). If Γ ` T e, then Γ,S x ` T e.

Proof. Straightforward.

Lemma 3 (Body type). If mtype(C(: d),m,z0) = T x : c→ S, and mbody(m,C) = x.e,
then there exists U,V such that C v U, Vv S, and T x,U this ` V e.

Proof. Straightforward.

Lemma 4. We have Γ ` T v T . If Γ ` T1 v T2 and Γ ` T2 v T3, then Γ ` T1 v T3.

Proof. Straightforward.

Lemma 5. if Γ ` Sv T , then fields(S,z) has fields(T,z) as a prefix.

Proof. Immediate from the definition of fields.

10 Recall that the zmay occur in d but must not occur in a type in the calling environment; hence
they must be existentially quantified in the resulting constraint.

25

Lemma 6. if Sv T , then mtype(S,m,z) = mtype(T,m,z).

Proof. Immediate from the definition of mtype.

Lemma 7. if Γ,T f `U vU ′, and Γ ` Sv T , then Γ,S f `U vU ′.

Proof. By induction on derivation of Γ,Tf `U vU ′. We have four cases.

– Γ,T f `C vC. Trivial.
– Γ,T f `C v D where class C extends D. Trivial.
– Γ,T f `CvE where Γ,T f `CvD and Γ,T f `DvE. Follows from the induction

hypothesis.
– Γ,T f `C(: c)v D(: d) where Γ,T f `C v D and σ(Γ,T f,C(: c)x) `C d[x/self]

with x fresh.
By the induction hypothesis, Γ,S f ` C v D. By Lemma 4, σ(Γ,S f,C(: c)x) `C
d[x/self]. So we can derive Γ,S f `C(: c)v D(: d).

Lemma 8. if Γ ` Sv T , and σ(Γ,T f) `C c, then σ(Γ,S f) `C c,

Proof. By definition, σ(Γ) is the set of constraints obtained from Γ by replacing each
type assertion C(: d)x in Γ with d[x/self], inv(C,x) and retaining any constraint in Γ.

By induction on derivation of Γ ` Sv T . The only interesting case is, S =C(: c) and
T = D(: d). Assume Γ `C(: c)v D(: d) and σ(Γ,C(: c) f) `C e. Then σ(Γ,C(: c) f) =
σ(Γ)∪ c[f /self].

By subtyping, σ(Γ,C(: c) f) `C d[f /self].
Therefore σ(Γ,D(: d) f) `C e.

Lemma 9. if Γ ` Sv T , then Γ `C(S z;c)vC(T z;c).

Proof. By induction on derivation of Sv T . The only interesting case is S = C(: c) and
T = D(: d).

Assume Γ `C(: c)v D(: d). Then Γ `C v D and σ(Γ,C(: c)x) `C d[x/self] with
x fresh.

We want to show Γ ` E(Sz;e) v E(T z;e). We have Γ ` E v E. We need σ(Γ,E(:
C(: c)z;e)x) `C (D(: d)z;e[x/self]).

Since σ(Γ,E(: C(: c)z;e)x) = σ(Γ)union(C(: c)z;e)[x/self], we have σ(Γ,E(: C(:
c)z;e)x) ` (C(: c)z;e)[x/self].

Therefore, σ(Γ,E(: C(: c)z;e)x) ` (D(: d)z;e)[x/self].

Theorem 1 (Subject Reduction). If Γ ` T e and e→ e′, then for some type S, Γ ` S e′

and Γ ` Sv T .

Proof. We proceed by induction on the structure of the derivation of Γ ` T e. We now
have five cases depending on the last rule used in the derivation of Γ ` T e.

– T-VAR: The expression cannot take a step, so the conclusion is immediate.
– T-CAST: We have two subcases.

26

• R-CAST: For the expression (T) o, where o = new C(d), we have from T-CAST
that Γ ` C(: U f;self.f = f) o. Additionally, we have from R-CAST that `
C v T [o/self]. We now choose S = C(: U f;self.f = f;self= o). From
Γ` C(: U f;self.f = f)owe get Γ` S o. From Lemma 2 and `Cv T [o/self]
we get Γ `C v T [o/self]. From Γ `C v T [o/self] we get Γ ` Sv T .

• RC-CAST: For the expression (T) e, we have from T-CAST that Γ ` U e. Ad-
ditionally, we have from RC-CAST that e→ e′. From the induction hypothesis,
we have U′ such that Γ ` U′ e′ and Γ `U ′ vU . We now choose S = T . From
Γ ` U′ e′ and T-CAST we derive Γ ` S (T)e′. From S = T and Lemma 4 we
have Γ ` Sv T .

– T-NEW: We have a single case.
• RC-NEW-ARG: For the expression new C(e), we have from T-NEW that Γ `
T e, θ = [f/this.f], fields(C,θ) = Z f, Γ,T f ` T v Z, and σ(Γ,T f) `C
inv(C,θ). Additionally, we have from RC-NEW-ARG that ei → e′i. From the
induction hypothesis, we have Si such that Γ ` Si e

′
i and Γ ` Si v Ti. For all j

except i, define S j = Tj and e′j = e j. We have Γ ` S e′ and Γ ` S v T . From
Lemma 7, Γ,T f ` Tv Z, and Γ` Sv T , we have Γ,S f ` Tv Z. From Lemma 2
and Γ ` S v T , we have Γ,S f ` S v T . From Lemma 4, Γ,S f ` S v T ,
and Γ,S f ` T v Z, we have Γ,S f ` S v Z. From Lemma 8, Γ ` S v T ,
and σ(Γ,T f) `C inv(C,θ), we have σ(Γ,S f) `C inv(C,θ). We now choose
S = C(: S f;self.f = f). From Γ ` S e, θ = [f/this.f], fields(C,θ) = Z f,
Γ,S f ` S v Z, σ(Γ,S f) `C inv(C,θ), and T-NEW we derive Γ ` S new C(e′.
We have T = C(: T f;self.f = f). From Lemma 9 and Γ ` S v T , we have
Γ ` Sv T .

– T-FIELD: We have two subcases.
• R-FIELD: For the expression (newC(e)).fi, we have from T-FIELD that Γ `
T0 e and fields(T0,z0) = U f, where z0 is fresh. Additionally, we have from
R-FIELD that fields(C) = C f . We have T0 = C(: T f;self.f = f) and, from
T-NEW, Γ ` T e, θ = [f/this.f], fields(C,θ) = Z f, Γ,T f ` T v Z, and
σ(Γ,T f) `C inv(C,θ). From Γ ` T e, we have Γ ` Ti ei. We now choose S = Ti.
Finally it is straightforward to show Γ ` Sv (T0z0;z0. fi = self;Ui).

• RC-FIELD: For the expression e.fi, we have from T-FIELD that Γ ` T0 e and
fields(T0,z0) = U fi where z0 is fresh. Additionally, we have from RC-FIELD
that e→ e′. From the induction hypothesis, we have S0 such that Γ ` S0 e′ and
Γ ` S0 v T0. We now choose S = (S0 z0;z0.fi = self;Ui). From Γ ` S0 e′,
Lemma 5, and T-FIELD, we derive Γ ` Se′. From Γ ` S0 v T0 and Lemma 9,
we have Γ ` Sv T .

– T-INVK: We have three subcases.
• R-INVK: For the expression (new C(e)).m(d) we have from T-INVK that Γ `
T0 (new C(e)), Γ ` T1:n d1:n, mtype(T0,m,z0) = Z1:n z1:n : c→ U, Γ,T0:n z0:n `
T1:nv Z1:n, and σ(Γ,T0:n z0:n)`C c, where z0:n is fresh, and T0 =C(A f ;sel f . f =
f) and Γ ` Ae. For simplicity, define d0 = (new C(e)). Additionally, we have
from R-INVK that mbody(m,C) = x.e0. From Lemma 3, mtype(T0,m,z0) =
Z1:n z1:n : c→ U, and mbody(m,C) = x.e0, we have D,V such that C v D, V v
U , and Z1:n z1:n,D this ` V e. From Lemma 4, Lemma 2, T0 = C(A f ;sel f . f =
f), Γ ` T0 vC and C v D, we have Γ,T0:n z0:n ` T0 v D. From Lemma 2 and

27

Z1:n z1:n,D this ` V e0, we have Γ,Z1:n z1:n,D this ` V e. From Lemma 1, Γ `
T0:n d0:n, Γ,T0:n z0:n ` T0 v D. Γ,T0:n z0:n ` T1:n v Z1:n, Γ,Z1:n z1:n,D this `
V e0, we have a type S such that Γ ` S e0[d/z0:n,new C(e)/this] and Γ ` Sv
T z0:n;V.

• RC-INVK-RECV: For the expression e0.m(e), we have from T-INVK that Γ `
T0:n e0:n, mtype(T0,m,z0) = Z1:n z1:n : c→ U, Γ,T0:n z0:n ` T1:n v Z1:n, and
σ(Γ,T0:n z0:n)`C c, where z0:n is fresh. Additionally, we have from RC-INVK-RECV
that e0 → e′0. From the induction hypothesis, we have S0 such that Γ ` S0 e

′
0

and Γ ` S0 v T0. For all j > 0, define S j = Tj and e′j = e j. We have Γ ` S e′

and Γ ` S v T . From Lemma 6 and Γ ` S v T , we have mtype(S0,m,z) =
mtype(T0,m,z). From Lemma 7, Γ,T0:n z0:n ` T1:n v Z1:n, and Γ ` S v T , we
have Γ,S0:n z0:n ` T1:nv Z1:n, From Lemma 8, Γ` Sv T , and σ(Γ,T0:n z0:n)`C
c we have σ(Γ,S0:n z0:n) `C c We now choose S = (S0:n z0:n;U). From Γ `
S0:n e

′
0:n, mtype(S0,m,z0) = Z1:n z1:n : c→ U, Γ,S0:n z0:n ` T1:n v Z1:n, and

σ(Γ,S0:n z0:n) `C c, and T-INVK we derive Γ ` S e0.m(e′1:n). We have T =
(T0:n z0:n;U). From Lemma 9 and Γ ` Sv T , we have Γ ` Sv T .
• RC-INVK-ARG: For the expression e0.m(e), we have from T-INVK that Γ `
T0:n e0:n, mtype(T0,m,z0) = Z1:n z1:n : c→ U, Γ,T0:n z0:n ` T1:n v Z1:n, and
σ(Γ,T0:n z0:n)`C c, where z0:n is fresh. Additionally, we have from RC-INVK-ARG
that, for i > 0, ei → e′i. From the induction hypothesis, we have Si such that
Γ ` Si e

′
i and Γ ` Si v Ti. For all j except i, define S j = Tj and e′j = e j. We

have Γ ` S e′ and Γ ` S v T . From Lemma 7, Γ,T0:n z0:n ` T1:n v Z1:n, and
Γ ` S v T , we have Γ,S0:n z0:n ` T1:n v Z1:n, From Lemma 2 and Γ ` S v
T , we have Γ,S0:n z0:n ` S v T . From Lemma 4, Γ,S0:n z0:n ` S v T , and
Γ,S0:n z0:n ` T1:n v Z1:n, we have Γ,S0:n z0:n ` S v Z1:n. From Lemma 8,
Γ ` S v T , and σ(Γ,T0:n z0:n) `C c we have σ(Γ,S0:n z0:n) `C c We now
choose S = (S0:n z0:n;U). From Γ ` S0:n e

′
0:n, mtype(S0,m,z0) = Z1:n z1:n : c→

U, Γ,S0:n z0:n ` S1:n v Z1:n, and σ(Γ,S0:n z0:n) `C c, and T-INVK we derive
Γ ` S e0.m(e′1:n). We have T = (T0:n z0:n;U). From Lemma 9 and Γ ` S v T ,
we have Γ ` Sv T .

Let the normal form of expressions be given by values v ::= new C(v).

Theorem 2 (Progress). If ` T e, then one of the following conditions holds:

1. e is a value v,
2. e contains a subexpression (T)new C(v) such that 6` Cv T[new C(v)/self],
3. there exists e′ s.t. e→ e′.

Proof. The proof has a structure that is similar to the proof of Subject Reduction; we
omit the details.

Theorem 3 (Type Soundness). If ` T e and e→∗ e′, with e′ in normal form, then e′

is either (1) a value v with ` S v and ` Sv T, for some type S, or, (2) an expression
containing a subexpression (T)new C(v) where 6` Cv T[new C(v)/self].

Proof. Combine Theorem 1 and Theorem 2.

28

