
Reducing loads and stores in stack architectures

Thomas VanDrunen Antony L. Hosking Jens Palsberg
Purdue University, Dept. of Computer Science

West Lafayette, IN 47907-1398, USA�
vandrutj,hosking,palsberg � @cs.purdue.edu

September 30, 2001

Abstract

The stack model of execution uses a stack to hold temporary results during evaluation of a program.
Systems such as Java virtual machines that use this model can be implemented so that they have more
efficient access to the stack than to local variables. Thus, converting local variable accesses into stack
accesses can improve the performance of stack-based programs, as suggested by the experiments of
Koopman [1994], Maierhofer and Ertl [1998], Vallée-Rai et al. [2000], and Shpeisman and Tikir [1999].
In this paper we provide a foundation for these experiments by formalizing and generalizing various
known transformations for reducing the number of loads and stores, and by proving their correctness.

1 Introduction

Stack architectures were first formulated in the 1960s as a response to a belief that it is hard for compilers to
utilize registers effectively. Instruction sets were based on a stack model of execution, in which operands are
pushed on a stack from memory or popped off the stack into memory. Operations take their operands from
the stack and then place the result back onto the stack. In addition to simplifying compilers by eliminating
register allocation, stack machines permit a compact instruction encoding, since an instruction needs only
to encode the operation to be performed, while its operands and result are implicitly consumed from and
produced to the stack, respectively. Meanwhile, advances in register allocation have seen modern hardware
revert to general-purpose register architectures. This has been taken to the extreme with current load-store
RISC architectures, in which operations consume/produce operands solely from/to registers, while load and
store instructions move values between memory and registers.

The advent of network computing has prompted renewed interest in stack architectures as a compact
encoding for programs that must be transmitted across the Internet, since smaller programs take less time
to transmit. For precisely this reason, the Java Virtual Machine (JVM) specification [Lindholm and Yellin
1999] defines an abstract execution platform to which Java programs are compiled, using a stack-based
instruction set. These are commonly referred to as bytecode instructions since they are encoded as a byte
stream with each instruction represented as a variable length sequence of bytes. A Java virtual machine is
a software program that executes compiled Java bytecode programs. It can either decode the bytecodes and
interpret their effects, or it can dynamically translate them to the native instruction set of the host machine
for direct execution. Such dynamic translation of Java bytecodes to native host instructions is commonly
referred to as just-in-time (JIT) compilation, since the bytecode programs are translated as necessary on-
the-fly, as they are executed. Some virtual machine implementations even mix these execution strategies,
interpreting bytecode that is infrequently executed and for which the translation overhead is needlessly
expensive, while compiling frequently executed bytecode for which translation up front pays off because
the compiled native code can be cached for subsequent re-execution.

1

In any case, whether bytecode is interpreted or compiled, efficient execution requires mapping virtual
machine resources to those of the underlying hardware. In particular, both source-level local variables
and intermediate values held on the JVM stack are candidates for allocation to hardware registers. When
bytecode is interpreted, a common technique is to manage an explicit evaluation stack in memory, and to
cache values from the top of the stack in hardware registers [Ertl 1995], while locals are usually stored in
memory. As such, any reduction in the use of locals in favor of stack slots can reduce memory traffic and
increase performance: instead of loading a variable from memory onto the stack each time it is used, its
value can be cached in the stack and reused in subsequent operations.

When bytecode is translated to native code by a JIT compiler, there are many register allocation tech-
niques that can be applied to allocating both locals and stack slots to hardware registers. A key issue in
dynamic translation is keeping compile times to a minimum (including the time for register allocation) if
“just-in-time” is not to become “just-too-late”. Again, several allocation techniques are possible. A simple
approach is to assign a fixed register to each stack slot (handling overflow where necessary), and to use reg-
ister renaming to simulate stack manipulation operations such as those supported by Java in the form of the
swap and dup bytecodes. More advanced bytecode compilers will pool stack slots and local variables and
use traditional register allocation techniques based on polynomial-time approximations to the graph coloring
problem [Chaitin 1982; Chow and Hennessy 1990; Briggs et al. 1994; George and Appel 1996], or more
recent approaches that offer a near-linear approximation [Poletto and Sarkar 1999] in an attempt to be more
competitive in performance-sensitive settings such as JIT compilation. Again, eliminating locals in favor of
stack slots may improve performance by reducing register pressure and easing the job of the allocator.

The task of generating bytecode that effectively uses the evaluation stack to both minimize code size
and improve performance by avoiding local variables has been referred to as stack allocation [Maierhofer
and Ertl 1998]. It is made even more difficult in the face of common techniques for scalar optimization
[Muchnick 1997]. These often rely on code transformations that effectively assume an underlying register
machine, such that temporary values can usually be held in registers. For example, common subexpression
elimination (CSE) relies on caching the result of the first evaluation of a redundant expression in a temporary,
which can then be reused at subsequent occurrences of the redundant expression instead of recomputing it. A
similar situation holds for variations on this theme, such as partial redundancy elimination (PRE) [Morel and
Renvoise 1979; Chow et al. 1997]. Moreover, commonly-used intermediate representations for optimizing
compilers, such as static single-assignment form (SSA) [Cytron et al. 1991; Stolz et al. 1994; Gerlek et al.
1995; Wolfe 1996; Chow et al. 1997; Briggs et al. 1998; Hasti and Horwitz 1998; Sastry and Ju 1998] also
assume that temporaries can be freely created, with lifetimes that do not conform to a last-defined-first-used
stack protocol. Generating stack-based code from such intermediate representations requires effort to avoid
allocating temporaries as local variables, instead allocating them on the stack wherever possible.

Stack allocation implies that operations can find their operands at the top of the stack when they need
them. Fortunately, if the target stack machine supports the necessary stack manipulation operations, then the
stack can often be manipulated such that input operands are made available to the operation that consumes
them, as needed. So long as the cost of such manipulation is less than the cost of the corresponding loads
and stores from a local variable then caching a temporary on the stack can pay off.

Several efforts have been made studying the opportunities and effects of replacing loads and stores with
stack manipulations. Koopman [1994] conducted a preliminary investigation of such optimization, laying
out the basic process of searching for pairs of loads from a local variable in a basic block and preserving
the value from the first load so the second load can be eliminated, referring to this as stack scheduling.
The copied value was always sent to the bottom of the stack and brought up to the top when needed later.
This transformation was to be used with other simple optimizations, such as those which eliminate variables
killed by the transformation.

Maierhofer and Ertl [1998] expand on Koopman [1994] by noting that the copied value need not be
pushed all the way to the bottom of the stack, but only out of the way of intervening instructions. They

2

make explicit the need for a live-variable analysis of the block before the transformation is done, so that
pairs of the same definition of a variable, and not simply the same variable, are matched. They show how to
compute optimal stack allocation using a dependence graph among the instructions; since optimal allocation
is exponential, they give heuristics for a good stack allocation that is faster to compute. They also define a
cost model by which they claim optimality, under which they assume that accesses to local variables cost
three times as much as stack manipulations. They describe how their transformation must search backward
through the code for loads of local variables.

Vallée-Rai et al. [2000] use an ad hoc approach in their Soot framework for optimizing Java bytecode.
Class files are converted to a three-address intermediate representation, optimized using well-known tech-
niques, and converted back to Java bytecode. Generating bytecode that makes effective use of the stack is
an explicit goal for Soot, and the ad hoc techniques applied are similar to those originally implemented by
Nystrom in our own BLOAT framework [Nystrom 1998; Whitlock 2000; Hosking et al. 2000].

Shpeisman and Tikir [1999] have listed specific instances for code replacement in Java bytecode. Their
replacement strategies did simple analysis on code occurring between store and load and between two loads,
and considered the many variations on dup bytecodes available for Java. They did not formalize the trans-
formation or explicitly use the remaining Java stack manipulation operation, the swap bytecode.

Source code Before stack allocation After stack allocation
A b = a * a; iload Local$1

iload Local$1
imul
istore Local$2

iload Local$1
dup
imul
istore Local$2

B b = (a + 5) / a; iload Local$1
ldc 5
iadd
iload Local$1
idiv
istore Local$4

iload Local$1
dup
ldc 5
iadd
swap
idiv
istore Local$4

C a = 5;
b = a + 6;

ldc 5
istore Local$1
iload Local$1
ldc 6
iadd
istore Local$2

ldc 5
dup
istore Local$1
ldc 6
iadd
istore Local$2

D a = 5;
b = 7;
c = 6 - a;

ldc 5
istore Local$1
ldc 7
istore Local$2
ldc 6
iload Local$1
isub
istore Local$3

ldc 5
dup
istore Local$1
ldc 7
istore Local$2
ldc 6
swap
isub
istore Local$3

The table above shows four examples of the kind of stack allocation that is described in the above-mentioned
papers. Example A gives a fragment of Java source code, its corresponding bytecode fragment as produced
by Sun’s javac compiler, and the result after stack allocation is applied to the bytecode fragment. The
contents of local variable Local$1 (representing the local variable a in the source code) is loaded (i.e.,
pushed) twice to the stack. The instruction imul pops these two operands, multiplies them, and pushes the
result on the stack. Finally, that result is stored (i.e., popped) to Local$2. The two iload Local$1

3

operations in succession imply loading a value identical to the one that is already at the top of the stack. This
redundant read from memory can be replaced by a dup instruction, as seen in the right column. Example
B has two loads from Local$1 that are separated by two other instructions, and illustrates the effect of
stack manipulation instructions to bring an operand to the correct stack position for it to be consumed. The
instructions leave a value on the stack (the result of iadd); if the value loaded from Local$1 is duplicated
after the first load, this value will be below the result of the intervening code when needed. Thus we need a
swap instruction in place of the second iload to put the stack into a proper state.

Example C shows, in the unoptimized code, a store to variable a (represented by Local$1) followed
immediately by a load from the same variable. That is, a value is pushed back on the stack immediately
after it has been popped. Duplicating the value before it is removed eliminates the need to reload it. Note
also that if all the loads from a definition of a variable (or, when using SSA, all the uses of that variable) are
eliminated, the definition is dead and the store can be removed. (More accurately, it would be replaced by
a pop, since the value is on the stack and needs to be removed. A peephole optimizer can then remove the
dup/pop pair, as the pop cancels the effect of the dup.) It seems realistic to hope for the elimination of all
of a variable’s uses in code that has been transformed by optimizations which create short-lived temporary
variables. In example D, the code from an entire statement in the Java source comes between the store to
and load from Local$1. We can still preserve a value on the stack while the statement is computed. Again,
this may enable the elimination of a store.

As these examples suggest, the transformations search for sequences containing a load or store of a
given variable followed by a load of the same variable, perhaps with other instructions in between. Such
intervening code must have certain properties. First, there can be no intervening store to the variable to
invalidate the original definition, otherwise duplicating and using the original value would preserve an out-
of-date value that is invalid at the latter use. Second, we must be able to place a duplicated value at a position
in the stack such that the intervening code will neither disturb it, nor increase the height of the stack to put
the duplicated value out of reach of its subsequent use. Missing from the prior work is a generic encoding
and formalization of the specific patterns in the bytecode that can be replaced

2 Our Result

We present two program transformations that generalize the ones noticed in the papers cited above; we
define a static analysis that enables the transformations, and we prove correctness, that is, the code before
a transformation is semantically equivalent to the transformed code. We work with the following grammar
for an idealized subset of JVM bytecodes: these include several bytecodes with their usual semantics, but
we generalize dup and the swap variants with dup x� and roll � , respectively, with semantics as given
below. In keeping with this semantics, where convenient we will refer to dup x0 and roll 1 using their
Java bytecode names dup and swap, respectively. We use � to denote the empty string of bytecodes, and
we denote concatenation of bytecode sequences by juxtaposition.

� � Instruction �� � Instruction���	��

istore �� iload �� ldc �� iadd dup x�� roll �

� � Var (a set of variable names �
� � Int (the set of integers)

��� � � � � Nat (the set of non-negative integers)

We will define a small-step operational semantics using three semantic domains:

������� Stack

Int �

4

� � Store

Var �� Int� � � � � � � � State

Instruction ��� Stack � Store �
A stack is a sequence of integers with the top on the left. We use nil to denote the empty stack, and we
denote concatenation of stacks by � (e.g., � � �	�). A store is a finite mapping of variables to integers. We use
dom

� � � to denote the set of variables defined in
�

(i.e., the domain of
�

). A state is a triple consisting of an
instruction, a stack, and a store. A final state is a state

� � � � � � � where �
 � . We will use the abbreviation� � � � � for a final state
� � � � � � � .

The semantics is given by the reflexive, transitive closure of the following rules:
�
istore � ��� ��� � �
� � � � � � � ��� � ��
 �� � �
 � � ��� � ��
iload � � � � � � �
� � ��� � � � � ����� ��� � � � ������� � � ��

ldc � � � � � � �
� � � � � � ��� ��� � ��
iadd � � � � � ��� � � � � ����� ��� ��� � � � � � �
 � ��� ��� � ��� ��� � ��

dup x� ��� ��� � � � � � � � �"! ��� � ��� ���#�$�$��� � �&% ��� � ��! ��� � � � � � �
 � ��! ��� � ��� ���#�$�$�'� � �&% ��� � ��
roll � ��� ��� � �
� � � � � ��(��� � ��! ���)�$�$�	� � ��(+*�� ��� � � � � � �
 � ��! ���#�$�$�'� � ��(�*�� ��� � ��(��� � �

It is straightforward to prove that if
�,� � � � � � � � � � ��� � � � � � �-� � � � � , then

�,� � � �/. � � ��� � �0� � � �/. � �-� � � � � . We
will use this observation repeatedly and without reference.

We use two functions to analyze instruction sequences: change
� � � calculates the total change in the

stack height over the sequence of instructions � , and needs
� � � calculates the depth of the stack that � reads.

change
� � �
 1

change
�
istore � � �

change
� � �3254

change
�
iload � � �

change
� � ����4

change
�
ldc � � �

change
� � ����4

change
�
iadd � �

change
� � ��254

change
�
dup x� � �

change
� � ����4

change
�
roll � � �

change
� � �

needs
� � �
 1

needs
�
istore � � �
 6�7'8 � 4 � needs

� � ����4 �
needs

�
iload � � �
 6�7'8 � 1 � needs

� � ��254 �
needs

�
ldc � � �
 697'8 � 1 � needs

� � ��254 �
needs

�
iadd � �
 6�7'8 �;: � needs

� � ����4 �
needs

�
dup x� � �
 6�7'8 � �<�=4 � needs

� � ��254 �
needs

�
roll � � �
 6�7'8 � �>��4 � needs

� � ���
Notice that needs

� � �@? 1
for all � . Notice also that needs

�
istore � � �
 needs

� � � �A4 for all � .
Notice finally that needs

�
dup �
 4 and needs

�
swap �
 : because those instructions need that many values

on the stack to execute. We consider an instruction to consume any values it reads, even if puts the same
values back on the stack. We use height

� � � for the height of stack � (i.e., the number of items in the stack):
height

�
nil �
�1

, height
�,� � ��� � �
 4�� height

� � � .
Intuitively, a sequence of instructions pops certain elements from the stack (its operands), leaves others,

and pushes more (its results) in place of what it took. When the stack reaches its low point during the
computation, it has shrunk by needs

� � � values. The substack remaining then stays intact during the whole
computation. The final change on the stack plus the size of the consumed substack is the size of the substack
added by � , as expressed by the following lemma.

Lemma 1. [Stack size] If
� � � � � � � � �B� � � � � � � � � , then there exist �'. � �/C � �/D such that � �
 �/C � �/. , � �
��D � �/. , height

� �/C �
 � � �-� � � � � , and height
� �'D �
 change

� � ��� height
� ��C � .

Proof. We proceed by induction on the structure of � . If �
 � , then � �
 � � , so we can chose �'.
 � � ,� C
 nil, and � D
 nil. We have change
� � �
E1

and needs
� � �
F1

, so height
� � C �
 � � �-� � � � � and

height
� ��D �
 change

� � ��� height
� ��C � . If �
 � � � , then there are 6 cases of

�
.

If
�

istore � , then change
� � �
 change

� ��� �G2H4 , and hence change
� �/� �
 change

� � �I�J4 . Moreover,
needs

� � �
 needs
� � � � �K4 . Hence needs

� � � �
 needs
� � �B2L4 . Then by induction, there exist �NM , �'O , ��P

5

such that
�
istore � �/� � � � � � �'O � ��M � � �
� � �"� � �'O � �/M � ��� � ��
 �� �>� � � �/P � ��M � � � � where height

� �	O �

needs

� � � �
 needs
� � �)2 4 and height

� �'P �
 change
� � � ��� needs

� � � �
 change
� � � � 4 � needs

� � �B2 4

change

� � ��� needs
� � � . Set �'.
 ��M , �/C
 � � � � �'O and ��D
 ��P . Then height

� ��C �
 4 � needs
� � �32 4

needs
� � � and height

� �'D �
 change
� � � � needs

� � � .
If
�

iload � or ldc � , then change
� � �
 change

� ��� � � 4 , and hence change
� �/� �
 change

� � �
2 4 .
Moreover, needs

� � �
�6�7'8 � 1 � needs
� ��� �3254 � . There are two cases:

� If needs
� � �
 1

and needs
� � � �
 1

, then by induction there exist �	M , �'O , ��P , namely �'O
 nil and��M
 � � �
� � � for some � and � � , such that
� � �/� � � � � � � � � �"� � ��O � ��M � � � � � � ��P � �/M � � � � where

height
� � P �
 change

� �-� �
 change
� � � 2 4 . Set � .
 � � , � C
 nil and � D
 � P � � � � . Then

height
� ��C �
 1

needs
� � � and height

� �'D �
 height
� ��P � � 4
 change

� � �
2 4 �L4
 change
� � �

change
� � ��� needs

� � � .
� If needs

� � � �
 needs
� � � �L4 , then by induction there exist �NM � ��O � ��P , namely �	O
 � � ��� � � for some� � , such that

� � �-� � � � � ��M � � �B� � �"� � �'O � �/M � � �)� � � ��P � �/M � � � � where height
� �	O �
 needs

� �-� �

4G� needs

� � � and height
� � P �
 change

� �-� �/� needs
� �-� �
 change

� � �N2 4 �@4 � needs
� � �
 change

� � ���
needs

� � � . Set ��.
 ��M , �/C
 � � , and ��D
 �/P . Then height
� �/C �
 height

� �	O � 2 4
 4 � needs
� � ��2 4

needs
� � � and height

� �'D �
 change
� � ��� needs

� � � .
If
�

iadd � , then change
� � �
 change

� ��� �
2 4 , and hence change
� �/� �
 change

� � � � 4 . Moreover,
needs

� � �
=6�7'8 �;: � needs
� � � ����4 � . There are two cases:

� If needs
� � �
 :

and needs
� � � �
 1

, then by induction there exist �	M � ��O � ��P , namely �'O
 nil, and��M
 � ����� ��� � � � � for some � � � �/� � ��� , such that
�
iadd �/� � � ��� � � � ��� � � � � � � �
� � �"� � ��O � ��M � � �
� �� ��P � ��M � � � � where height

� �'P �
 change
� � � ��� needs

� � � �
 change
� � ��� 4 . Set �'.
 � � , �/C
 � ��� ��� � ��� �

and ��D
 ��P � � �/��� ��� � . Then height
� �/C �
 :

needs
� � � and height

� �	D �
 change
� � ��� 4 �L4

change
� � ��� needs

� � � .
� If needs

� � � ? :
and needs

� � � �
 needs
� � �#2 4 , then by induction there exist �NM � �'O � �/P , namely�'O
 � ���	� ��� �-� � � for some � � � �/� � ��� , such that

�
iadd �/� � � �/� �-� � ��� �-� � � � ��M � � �
� � �-� � ��O � �/M � � ��� �� ��P � ��M � � � � where height

� �'O �
 needs
� � � �
 needs

� � ��2 4 and height
� �'P �
 change

� � � � � needs
� � � �

change
� � ���L4 � needs

� � � 2 4
 change
� � ��� needs

� � � . Set �	.
 ��M , �/C
 � ��� � � � ��� � � � � and��D
 ��P . Then height
� ��C �
 : � height

� � � �
 4)� height
� �'O �#4)� needs

� � � 2 4
 needs
� � � and

height
� �'D �
 change

� � ��� needs
� � � .

If
�

dup x� , then change
� � �
 change

� ��� ��� 4 , and hence change
� �/� �
 change

� � ��2 4 . Moreover,
needs

� � �
=6�7'8 � ����4 � needs
� � � ��2 4 � . There are three cases:

� If ��� 4�� needs
� � � �
 1

(and so needs
� � �
 ��� 4) then by induction there exist �IM � ��O � ��P , namely�'O
 nil, ��M
 � � ��� � � � � � �
� � � ! for some � , � � , � � ! such that

�
dup x� �/� � � � �
� � � � � � ! � � � �� �-� � � O � � M � � �)� � � � P � � M � � � � where height

� � P �
 change
� �-� ��� needs

� �-� �
 change
� � � 2�4 and

height
� � � �
 � . Set ��.
 � � ! , �-C
 � � � � � � and ��D
 ��P � � � � � � � � � � � . Then height

� ��C �

4 � �
 needs

� � � and height
� � D �
 height

� � P � � � � � � � � � � ���
 change
� � �#2K4 � 4 � � � 4

change
� � ��� �<��4
 change

� � � � needs
� � � .

� If ��� 4�� needs
� �-� ��� 1 (and so needs

� � �
 ��� 4) then by induction there exist �IM � ��O � ��P , namely� O
 � � �-� � �,� , � M
 � � � � � �-� � � ! for some � , � � , � � ! , � �,� such that
�
dup x� �/� � � � �-� � �,� � � � � � � ! � � �
�� � � � ��O � ��M � � �)� � � ��P � �/M � � � � where height

� �'P �
 change
� � � ��� needs

� � � �
 change
� � � 2�4 and

height
� � �,� � � � �
 � . Also height

�,� � ��� � �,� �
 height
� � O �
 needs

� �-� � so height
� � �,� �
 needs

� �-� � 2 4 .
Hence height

� � � �
 height
� � �,��� � � ��2 height

� � �,� �
 ��2 needs
� � � ��� 4 . Set ��.
 � � ! , �/C
 � � ��� � �,��� � �

and ��D
 ��P � � � � � � � . Then height
� ��C �
 40� �
 needs

� � � and height
� �'D �
 height

� ��P � � � � � � ���

change

� � � 2 4 � needs
� � � � � � 2 needs

� � � � � 4 � 4
 change
� � � � � �54
 change

� � � � needs
� � � .

6

� If � �H4�� needs
� �-� � and so needs

� � �
 needs
� �/� � 2 4 and needs

� �/� �
 needs
� � �'�@4 , then by induction

there exist �'M � ��O � ��P , namely �'O
 � � �G� � � ! � � � �G� � � , for some � , � � ! such that
�
dup x� � � � � � �G� � � !��� � � ��M � � � � � �-� � ��O � �/M � � �0� � � ��P � ��M � � � � where height

� �	O �
 needs
� �-� �
 4 � needs

� � � and
height

� �'P �
 change
� � � � � needs

� � � �
 change
� � ��2 4�� needs

� � ���=4
 change
� � ��� needs

� � � . Set��.
 ��M , �/C
 � � �I� � � ! � � � and ��D
 ��P . Then height
� ��C �
 height

�,� � �I� � � !�� � � �
 height
�,� � �I� � � !��� � �'� � � � 2 4
 height

� � O �I2 4
 4G� needs
� � � 2 4
 needs

� � � and height
� � D �
 change

� � �'� needs
� � � .

The case of
�

roll � is similar to that of
��

dup x� , we omit the details.

The function needs
� � � determines how large a portion of the stack is used by an instruction sequence � .

The following lemma says that altering the bottom of the stack not included in needs
� � � does not affect the

change to the store across the computation of � .
Lemma 2. [Stack independence] If

� � � � � � � � � �>� � � �-� � � � � � � � and needs
� � �
 height

� � � , then
� ��� � �� � � � � ��� � � � � � � � � � � � �

Proof. We proceed by induction on the structure of � . If �
 � , then �
 � � and
�
 � � . If �
 � � � , then

there are 6 cases of
�
.

If
�

istore � , then height
� � �
 needs

� � �
 needs
� � � � �
 4)� needs

� � � �9? 4 , so we can write�
 � � ��� �/� . We also have and height
� � �
 4 � height

� �'� � , so needs
� �/� �
 height

� �/� � . Now

� ��� � � � � � � �
 �,� � � � � � � � � � � � � � � � � �3� � � � � � � � � � � ��� � ��
 �� �
� � � � � � � � � � � �
so from the induction hypothesis we have

� � � � � � � � � � �
 �,� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � ��� � ��
 �� �
� � � � � � � � � � � � ���
The other five cases are similar, we omit the details.

A transformation is correct if the code before and after the transformation is equivalent:

� ��� � � iff
�

for all ��� � � � � � � � � � � � � ��� � �
� � � � � � � � � iff
� � � � � � � �3� � � � � � � � �� .

It is straightforward to show that � is an equivalence relation. It is also straightforward to show that � is a
congruence, that is, if � ��� � � , then � ! � � �/. � � ! � � �-. for all � ! � �/. .
Theorem 3. [Correctness] Suppose istore � does not occur in � .

a. If change
� � �
 � 2 � 2 4 and needs

� � �
 � ��4 ,
then iload � � dup ��� � iload ��� iload � � dup ��� dup x� � roll � .

b. If change
� � �
 � 2 � and needs

� � �
 � ,
then istore � � iload ��� dup x� istore � � roll � .

Proof. Consider first (a). We will show the direction from left to right: if we can execute the left-hand side
as shown, then we can execute the right-hand side as shown.

�
iload � � dup � � � iload � ��� � � �

� �,�
dup � � � iload � � � � � � ����� � � � �

�	� � � iload � � � � � � ��� ��
 � � � � � �
� � �

iload � ��� � � � � �
� �,� � � � � ����� � � � � � ���

�
iload � � dup � � dup x� � roll � ��� � � �

� �,�
dup � � dup x� � roll � � � � � � ����� � � � �

� � �
dup x� � roll � � � � � � ��� ��
 � � � � � �

� � � roll � � � �C � � � � � ��� � �/. � � �
� � �

roll � � ��D � � � � � ��� � �/. � � � �
� �,� � � � ����� ��D � �/. � � � ���

7

In the execution of the left-hand side, notice that since we can execute the first occurrence of iload � , it
must be the case that � � dom

� � � . Regarding � � , we have from Lemma 1 that we can choose �N. � �/C � �/D such
that �
 �/C � ��. , � �
 �/D � ��. , height

� ��C �
 needs
� � � , and height

� �'D �
 change
� � ��� height

� ��C � . We will
now justify that the right-hand side can be executed as shown. The first step can be taken because we have
established that � � dom

� � � . The next � steps can taken because each dup instruction finds at least one
element on the stack. The dup x� instruction can be executed because height

�,� � � � ��� �
 � � � � ? height
� � �0?

height
� �/C �
 needs

� � �
 ���=4 . We choose � �C such that height
� � �C �
 � �=4 and

� � � � ��� ��
 � � �
 � �C � ��. .
From Lemma 2,

� � � � ������
 � � �
 �-�C � ��. , and needs
� � �
 � �H4
 height

� ���C � we have that � can be executed,
that the resulting store is

� � , and that the resulting stack is of the form �ND � � � � � ���G� �/. . Finally, roll � can
be executed because height

� �	D �
 change
� � ��� height

� ��C �
 �#2 �92 4�� � � 4
 � , We have � �
 �/D � ��. .
Finally, since istore � does not occur in � , we have

� � � �
 � � � � � . The direction from right to left can
be proved in a similar fashion.

Next consider (b). We will show the direction from left to right: if we can execute the left-hand side as
shown, then we can execute the right-hand side as shown.

�
istore � � iload � � ��� � �

� � � iload � ��� � ��� � ��
 �� �
� � �

iload � ��� � � � � �
� �,� � ��� � � � � � ���

�
dup x� istore � � roll � � ��� � �

� �
istore � � roll � � � � � � � �C � � � ��� � . � � �

� � � roll � � � �C � � � ��� ��. � ��� � ��
 �+ �
� � �

roll � � ��D � � � ��� ��. � � � �
� �,� � ��� �/D � ��. � � � ���

In the execution of the left-hand side, notice that since we can execute the istore � instruction, it must
be the case that � is nonempty, say, �
 � � ��� � . Regarding � � , we have from Lemma 1 that we can choose��. � �/C � ��D such that �
 �/C � ��. , � �
 �/D � �/. , height

� ��C �
 needs
� � � , and height

� �'D �
 change
� � ��� height

� ��C � .
Finally, since istore � does not occur in � , we have

� � � � �
 � ��� � ��
 �+ � � � �
 � . We will now
justify that the right-hand side can be executed as shown. The dup x� instruction can be executed because
height

� � �
 height
� � �N� 4 ? height

� �'C �N� 4
 needs
� � �N� 4
 � � 4 . We choose ���C such that height

� �'�C �
 �
and �
 � �C � ��. . The istore � instruction can be executed because it finds least one element on the stack.
From Lemma 2, �
 ���C � ��. , and needs

� � �
 �
 height
� ���C � we have that � can be executed, that the

resulting store is
� � , and that the resulting stack is of the form �ND � � � � � ��. . Finally, roll � can be executed

because height
� �'D �
 change

� � � � height
� ��C �
 � 2 ��� �
 � , We have � �
 �/D � �/. . The direction from

right to left can be proved in a similar fashion.

Our calculus is not a true subset of Java bytecode because it uses generalized dup x� and roll � instruc-
tions. Java has dup, dup x1, and dup x2. The instruction roll 0 is equivalent to doing nothing at all,
and the Java swap is equivalent to roll 1. The transformations thus possible in Java bytecode are listed
below, for an instruction sequence in which istore � does not occur.

iload ��� dup ����� iload � 	 iload ��� dup �
������ change � ��������� needs � �������
istore � � iload � 	 dup istore � � change � ������� needs � �������
iload ��� dup ����� iload � 	 iload ��� dup �
������ swap change � ������� needs � �������
istore � � iload � 	 dup istore � � swap change � ������� needs � �������
iload ��� dup ����� iload � 	 iload ��� dup �
� dup x1 � change � ��������� needs � �������
istore � � iload � 	 dup x1 istore � � change � ��������� needs � �������
iload ��� dup ����� iload � 	 iload ��� dup �
� dup x1 � swap change � ��������� needs � �������
istore � � load � 	 dup x1 istore � � swap change � ������� needs � �������
iload ��� dup ����� iload � 	 iload ��� dup �
� dup x2 � change � �������! needs � �����"
istore � � iload � 	 dup x2 istore � � change � ��������� needs � �������
iload ��� dup ����� iload � 	 iload ��� dup �
� dup x2 � swap change � ��������� needs � �����"
istore � � iload � 	 dup x2 istore � � swap change � ��������� needs � �������

8

Acknowledgments. VanDrunen was supported by a Purdue Andrews Fellowship and an Intel Doctoral
Fellowship. Hosking was supported in part by a National Science Foundation award, CCR–9711673, and by
gifts from Sun Microsystems, Inc. Palsberg was supported in part by a National Science Foundation Faculty
Early Career Development Award, CCR–9734265.

References
BRIGGS, P., COOPER, K. D., HARVEY, T. J., AND SIMPSON, L. T. 1998. Practical improvements to the construction and destruc-

tion of static single assignment form. Software—Practice and Experience 28, 8 (July), 859–881.

BRIGGS, P., COOPER, K. D., AND TORCZON, L. 1994. Improvements to graph coloring register allocation. ACM Trans. Program.
Lang. Syst. 16, 3 (May), 428–455.

CHAITIN, G. J. 1982. Register allocation and spilling via graph coloring. In Proceedings of the ACM Symposium on Compiler
Construction (Boston, Massachusetts, June). ACM SIGPLAN Notices 17, 6 (June), 98–105.

CHOW, F., CHAN, S., KENNEDY, R., LIU, S.-M., LO, R., AND TU, P. 1997. A new algorithm for partial redundancy elimination
based on SSA form. In Proceedings of the ACM Conference on Programming Language Design and Implementation (Las
Vegas, Nevada, June). ACM SIGPLAN Notices 32, 5 (May), 273–286.

CHOW, F. C. AND HENNESSY, J. L. 1990. The priority-based coloring approach to register allocation. ACM Trans. Program. Lang.
Syst. 12, 4 (Oct.), 501–536.

CYTRON, R., FERRANTE, J., ROSEN, B. K., WEGMAN, M. N., AND ZADECK, F. K. 1991. Efficiently computing static single
assignment form and the program dependence graph. ACM Trans. Program. Lang. Syst. 13, 4 (Oct.), 451–490.

ERTL, M. A. 1995. Stack caching for interpreters. In Proceedings of the ACM Conference on Programming Language Design and
Implementation (La Jolla, California, June). ACM SIGPLAN Notices 30, 6 (June), 315–327.

GEORGE, L. AND APPEL, A. W. 1996. Iterated register coalescing. ACM Trans. Program. Lang. Syst. 18, 3 (May), 300–324.

GERLEK, M. P., STOLTZ, E., AND WOLFE, M. 1995. Beyond induction variables: detecting and classifying sequences using a
demand-driven SSA form. ACM Trans. Program. Lang. Syst. 17, 1 (Jan.), 85–122.

HASTI, R. AND HORWITZ, S. 1998. Using static single assignment form to improve flow-insensitive pointer analysis. See PLDI’98
[1998], 97–105.

HOSKING, A. L., NYSTROM, N., WHITLOCK, D., CUTTS, Q., AND DIWAN, A. 2000. Partial redundancy elimination for access
path expressions. Software–Practice and Experience. To appear in Special Issue on Aliasing in Object-Oriented Systems.

KOOPMAN, P. J. 1994. A preliminary exploration of optimized stack code generation. Journal of Forth Applications and Research,
241–251.

LINDHOLM, T. AND YELLIN, F. 1999. The Java Virtual Machine Specification. Addison-Wesley.

MAIERHOFER, M. AND ERTL, M. A. 1998. Local stack allocation. In Proceedings of the International Conference on Compiler
Construction (Lisbon, Portugal, Mar.). Lecture Notes in Computer Science, vol. 1383. 189–203.

MOREL, E. AND RENVOISE, C. 1979. Global optimization by suppression of partial redundancies. Commun. ACM 22, 2 (Feb.),
96–103.

MUCHNICK, S. S. 1997. Advanced Compiler Design and Implementation. Morgan Kaufmann.

NYSTROM, N. J. 1998. Bytecode level analysis and optimization of Java classes. M.S. thesis, Purdue University.

PLDI’98 1998. Proceedings of the ACM Conference on Programming Language Design and Implementation (Montréal, Canada,
June). Vol. 33.

POLETTO, M. AND SARKAR, V. 1999. Linear scan register allocation. ACM Trans. Program. Lang. Syst. 21, 5 (Sept.), 895–913.

SASTRY, A. V. S. AND JU, R. D. C. 1998. A new algorithm for scalar register promotion based on SSA form. See PLDI’98 [1998],
15–25.

SHPEISMAN, T. AND TIKIR, M. 1999. Generating efficient stack code for Java. Tech. Rep. CS-TR-4069, University of Maryland.
Oct.

STOLZ, E., GERLEK, M. P., AND WOLFE, M. 1994. Extended SSA with factored use-def chains to support optimization and
parallelism. In Proceedings of the 27th Annual Hawaii International Conference on System Sciences (Jan.). 43–52.

VALLÉE-RAI, R., GAGNON, E., HENDREN, L. J., LAM, P., POMINVILLE, P., AND SUNDARESAN, V. 2000. Optimizing java
bytecode using the Soot framework: Is it feasible? In Proceedings of the International Conference on Compiler Construction
(Berlin, Germany, Apr.), D. A. Watt, Ed. Lecture Notes in Computer Science, vol. 1781. 18–34.

WHITLOCK, D. 2000. Persistence-enabled optimization of java programs. M.S. thesis, Purdue University.

WOLFE, M. 1996. High Performance Compilers for Parallel Computing. Addison-Wesley.

9

