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Internal Outline
• Two components: control and data

(communication/sharing)
• One key question: how much to virtualize, i.e., hide

machine?
• Tradeoff: hiding improves programmability (productivity), portability,

while exposing gives programmers control to improve performance
• Important of machine trends

• Future partitioned vs. cc shared
• Transactions will save us

• PGAS: what is it? What about OpenMP?
• Looking ahead towards multicore: these are not SMPs. Partitioned vs

cc shared memory
• What works for performance: nothing virtualized *at

runtime*, except Charm++
• Open problem: load balancing with locality
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Two Parallel Language Questions
• What is the parallel control model?

• What is the model for sharing/communication?

    implied synchronization for message passing, not shared memory

data parallel
(singe thread of control)

dynamic
threads

single program
multiple data (SPMD)

shared memory
load

store
send

receive

message passing
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vector machines 

distributed memory machines

DSM
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HPC Programming: Where are We?
• BG/L at LLNL has 64K processor cores

• There were 68K transistors in the MC68000
• A BG/Q system with 1.5M processors may have more

processors than there are logic gates per processor
• Trend towards simpler cores, but more of them

• HPC Applications developers write programs that are as
complex as describing where every single bit must move
between the transistors in the MC68000

• We need to at least get to “assembly language” level

Slide source: Horst Simon and John Shalf, LBNL/NERSC
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A Brief History of Languages
• When vector machines were king

• Parallel “languages” were loop annotations (IVDEP)
• Performance was fragile, but there was good user support

• When SIMD machines were king
• Data parallel languages popular and successful (CMF, *Lisp, C*, …)
• Quite powerful: can handle irregular data (sparse mat-vec multiply)
• Irregular computation is less clear (multi-physics, adaptive meshes,

backtracking search, sparse matrix factorization)
• When shared memory multiprocessors (SMPs) were king

• Shared memory models, e.g., OpenMP, Posix Threads, are popular
• When clusters took over

• Message Passing (MPI) became dominant

We are at the mercy of hardware, but we’ll take the blame.
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Partitioned Global Address Space Languages
• Global address space: any thread may directly read/write

data allocated by another  shared memory semantics
• Partitioned: data is designated local/remote message

passing performance model
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• 3 older languages: UPC, CAF, and Titanium
• All three use an SPMD execution model
• Success: in current NSF PetaApps RFP, procurements, etc
• Why: Portable (multiple compilers, including source-to-source); Simple

compiler / runtime; Performance sometimes better than MPI
• 3 newer HPCS languages: X10, Fortress, and Chapel

• All three use a dynamic parallelism model with data parallel constructs
Challenge: improvement over past models that are just large enough
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Open Problems
• Can load balance if we don’t care about locality (Cilk)

• Can we mix in locality?
• If user places the work explicitly can we move it? They can

unknowingly overload resources at the “place” because of an
execution schedule chosen by the runtime

• Can generate SPMD from data parallel (ZPL, NESL, HPF)
• But those performance results depend on pinning
• E.g., compiled a program and run it on P processors, what happens if

task needs to use some of them?
• Can multicore support better programming models?

• A multicore chip is not an SMP (and certainly not a cluster)
• 10-100x higher bandwidth on chip
• 10-100x lower latency on chip

• Are transactions a panacea?
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Predictions
• Parallelism will explode

• Number of cores will double every 12-24 months
• Petaflop (million processor) machines will be common

in HPC by 2015 (all top 500 machines will have this)
• Performance will become a software problem

• Parallelism and locality are key will be concerns for
many programmers – not just an HPC problem

• A new programming model will emerge for
multicore programming
• Can one language cover laptop to top500 space?

• Locality will continue to be important
• On-chip to off-chip as well as node to node


