RADIX 16 DIVISION, MULTIPLICATION, LOGARITHMIC AND
EXPONENTIAL ALGORITHMS BASED ON CCNTINUED
FRODUCT REFPRESENTATICNS

BY
MITOS DRAGUTIN ERCEGOVAC

Elec. Engr., University of Belgrade, 1965

THESTS

Submitied in partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Urbana-Champaign, 1972

Urbana, Illinocis

iii

ACEKNCWLEDGMENT

I wish to express my sincerest gratitude to my advisor, Professor
Jemes E. Robertson of the Department of Compuﬁer Science of the University
of T1llinois for his highly valued guidance, suggestions and support. I
thank also National Bcience Foundation and the Department of Computer
Science of the University of Illinois for their support.

Thanks are also due to Mr. Kishor S. Trivedi for many helpful
digcussions. Finally, T would like to thank Mrs. June Wingler for her

fine job of typing and Mr. Mark Gobel for excellent drawings.

iv

TARIE OF CONTENTS

lo INTRODUCTION-.---oc-.-cn-o-c----no-- ------ c.licnl--c--.1-;-..;--... l

2, MULTIPLICATIVE NORMATIZATTON s « a e oo eevsaoonsnsasarasvsnossnsasncsons 3

By DIVISTON. eereenvvosonsnsanuenassoneeeeresonnsosnssnsnsocasasnneses . 18
b, NATURAT: LOGARTITHM: e covacancesascncossninaanansansaorsersroenascnnane 20
5. ADDITIVE NORMALIZATION.. s roneennsnesnsnsnrasasnanencseneneneasen 29
6. MULTTPLICATTON: o cavaaacocsesaosenssasansocaaananaosnsasannnnionnnss 32
Te EXPONENTIALw cveveoacascascnsoaasassscncocosessnassnsnrssecascosasee 36
8. TMPLEMENTATION..:eseesosrecassncesasssssrsassoaasassnsanssaoassanee UB
Qe CONOLUSTONS . e sevensnarrooannsnnsenansanes feteiertercaatnereencennane 54

LIST OF REFERENCES « ¢« ezt aaavaruseerontrcnsaseasenarasarsarasossecnasnee 56

a4 s e anedesstrdd T tTrerEErE S LA R R I R A R R R RN I B A I B N R R R R - 5i

1. INTRODUCTION

There is no doubt that the availeble technological possibilities could
Justify hardware implementatibn of a much wider class of functions than is
presently dﬁne. If the corresponding algorithms have similarity, this is
even more true. One effective way to obtain such a class of algorithms is to
use, in a convenient way, continued products (CP) or continued sums (CS8) during
the function evaluatipn. The use of comtinued products in the caleculation of
some elementary functions appears as early as 1959, in Volder's CORDIC
techniquel 5]. The main results of thig approach hate been recently summarized
in the form of a unified algorithm by Walther[6]. épecker[?] derived also a
class of algorithms using the concept of continued products. Of particular
importance and usefulness are the results obtained by Delugish{1l]. He has
defined efficient algorithms for a wide class of functions including division,
multiplication, square root, logarithm, exponential, trigonometric and inverse
trigonometric functions, with operation times from 1 to 3 multiplication
cycle timeg. Thege algorithms are specified for the radix 2, using a redundant
digit set {-1, O, 1} in continued products (sums)., The main idea isg replacenent
of & required operation or function evaluation by two simple step by step
processes using addition/subtfaction, shifting and possibly a set of precomputed
constants, stored in a read-only memory. One of the processes is normalization,
through which the digits of continued products (sums) are generated and anoﬁher
is the related result evaluation. These processes can be carried oubt in
parallel, so for a fast operation at leasi tw6 arithmetic units,'almost the

same, are required.

The work done here is based upon the results obtained by Delugish. It
is motivated by the fact that the higher radix implementation offers some
speed/hardware trade~offs, worth investigating. In particular, the radix 16
is considered in four algorithms: division, multiplication, 1ogarithm'and
exponential. The central problem is to find the rules, which are more difficult
when the higher radix is used, for selection of the digits of continued
products {stms). The rules and the complete algorithms are developed for
fractional parts in the conventional range [1/2, l), of the floating point
numbers. The radix 16 merely means "4 bits~at-a-time" and represents, in
some sense, the radix of implementation, not of an operand;- The exponent
arithmetic, being simple, is not considered. The use of a redundant
representation [2, 3] effects the selection rules, but not the number of
steps to be performed, the probability of zero, "no addition," being too
small for the radix 16 approach. In the binary case [1], the redundancy
1s essential also in decreasing the average mumber of full steps. As a
difference, in the radix 16 case, the nurber of steps is fixed and corresponds
to the number ' of radix 16 digits, used to represént the fractional part. The
Glgit-by-digit evaluation, employed in the described algorithm, is not a
consequence of inherent properties in the continued products (sums) approach,
but reflects a realization strategy, which attempts to achieve a reasonably
fast implementation for all functions uﬁder,consideration, retaining at the
same time simplicity. Some comparisons between radix 2 and radix 16 approaches
are made and a more efficient solution, requiring essentially one "pipelined"

arithmetic unit is described.

2. MULTIPLICATIVE NORMALIZATION -

By normalization we mean a step by step transformation of a given
nuber Xbefl/E,l) to one (or to any other numbér N, in general). For uniformity
and gimplicity of later described algorithms, the linear convergence is imposed
on normalizetion. Namely, an m~digit normalized number is obtained in {(m+1)
iterative steps. If the reciprocal of a given number X, can be represented

0

in s conbinued product form as

m
l/Xb =7 Mi
i=0
then the normalization of Xb to one can be achieved through a multiplicative
iteration:
Bap "% Mg ko0 e (2:1)
and
m ~
Xm+l = Xb -‘W'Mi =1
i=0

The factors of a continued product representation are of the form
M o=1+5 - T (2.2)

. _
where Sk is a one-digit constant, so that an implementation of (£.1) will

require only addition and shift operations. The value of Sk is chosen such

that the error €l after step k becomes

N g
]ek+l|m|1-xk-(1+sk=16‘k)[§ —-%@35 167K (2.3)

where !Sk is the largest constant in the chosgen set {Sk}. In other words,

!max
at every step k, by proper choice of constant Sk’ the k~th digit of the partially
normalized number Xk will be forced to zero or (radix - 1). Therefore, the

final normalized quantity X 41 Will differ by at most 16_.m from wnity. To

define the normalization procedure, one must find the rules for selection of

the proper value of Sk’ given Xk and the set {Sk}. The set {Sk} 1s determined

ag follows.” To make the selection process simple, it ig essential to have a
redundant number representation. Therefore, the set {Sk] will contain more

than r elements, both positive and negativef The maximal value ISkmaxI’ or
better, the redundancy ratio is= obtained from the practical'requirements[ﬁ]:

- one of the simplest ways to form the term

-k+ . .
Sk(Xk 16 ™) in the recursion,

Te = Tyl = Xy + K367 (2:4)

is to use a multilevel adder structure, with corresponding
selection~complementation networks generating the

following sets of multiples:
-k .
10, *1, 2} *‘(Xk°l6) in level 1;
10, +, 48} % (Xk-l6"k) in level 2.

Thevefore, the maximal value should be Iskmax|= 10 corresponding to the

redundancy ratio ISkmaxl/(rnl) = 2/3. The set of constants Sk is then
{10, v.., 1, 0, 1, ..., 10} (2.5)
where the overbar denctes negative values. Now the error (2.3) becomes

!€k+1' = ll"Xk'Mkl < %716-k (2.6)

Tt is straightforward to show that for Xoe{1/2,1), the reciprocal
l/XO can always be represented in a continued product form using constants
Sk from the set (2.5). Thereforg, the normglization procedure define@‘by the
recursion (2.1) is always possible. |

The main problem now is to define a practical selection procedure.

The constants S are selected in such a way that the error condition (2.6)

k
is satisfied for every step. Since the set of comstants Sk has been chosen
0 be redundant, the range of Xk’ for all k, can be partitioned in the
overlapping intervals, each corresponding tp a particular constant Sk' In
the overleps, at least two constants Sk’ differing by 1, are a valid choice.
Sk can be determined on the basis of Xk’ but to keep selection defendent on

the same register positions, i.e., to retain the same "weights" for selection

rules, it is convenient to define the gcaled remainder as
R = 16k'l(xk-1), 0<k<m (2.7)

The selection process can now be carried on the remainders, obtained

recursively from

-+
k lS

Ry = 16R, + 8 + 16 Ry 0<k<m (2.8)

This recursion Follows from (2.1), (2.2) and {(2.7).
If the general form of this reéursion for radix r is considered, then
the following remarks concerning implementation requirements can be made:
1) The mumber of shifting paths, necessary to generate the last
term in the recursion (2.8), is inversely proportional to the
radix »;

ii) For the higher radices of the form

2
EP, p=l’ 2, 3, L)

such that multiple formation can be done with a cascade of adders,

, R _
and with the set of Sk s such that Iskmaxl =

extra levels with respect to the radix 2 is p = 1. Clearly, the full

% (r-1), the mmber of

carry propogation need be provided only at the last level.
Now, sterting from the condition for error (2.6), redefined for

scaled remaindgrs ag
-2/3<R_<2/3 (2.9)

the selection rules can be derived. The intervals can be determined by
straightforward calculations:

- for every S, , given bounds on R (2.9), find the interval

k
boundaries as the minimal and maximal value of Rk such that
equation (2.8) holds. 1In addition, the continuity of the range
should be preserved by retaining only the overlapping intervals.
The numbers representing boundaries between intervals should be
gimple in the binary sense so that limited precision can be
used 1n implementation of the selectioﬁ rules.

From the definition of the scaled remainder (2.7) it can be observed
that the normalization will be more accurate if the initial step (k=0) is
performed on X and then continued using Rk for k=1, ..., m. Since

0
Rl = Xl -~ 1 this change in the procedure is almost triwvial.
The rules of the selection for the initial step can be made very
gimple, due to the fact that SO may be chosen to be either O or 1. The

ruleg are:

8,=1 if 1/2 <X, < 5/8;

8,=0 if 5/8 <X <L

The choice of 5/8 as the boundary value is made so that the X, will
be in a convenient range. From the rules, the range of X; is [5/8, 5/k).
It ig easy to see that even for m = 1, the continued products i%i(l+sil6_i)
can represent values less then 4/5 or greater than 8/5, hénce meking
normalization successful. Therefore, the restriction of SO to the values
0 or 1 is valid.

The precision, necessary to express boundaries between intervals is
at most sgix bits after the radix point. For convenience the bounds of the
intervals will be given slso to this precision.

For the step k = 1, the lower and upper bounds of intervals containing
R, and denoted as a and b, are calculated for all possible Sl and‘displayed

1
in the following table.

Table 2.1

8, a < 6lml <b
10 -26 -23
9 -2k -22
8 23 20
7 -21 -18
6 -19 -16
5 =17 -1
L =1L -11
3 =12 -8
2 -9 -5
1 -6 -2
0 -2 3
-1 2 T
-2 T 12
-3 12 18
mit 18 2
e e o e e e s ey g e e S e kO)
-5 26 32
-6 35 ho
-7 46 5l
-8 60 69
-9 77 88

The values below the sharred line may not be used since corresponding

intervals are not contiguous. Since =3/8 < R, < 1/k, as follows from the

1
initialization rules (k=0), the constants Sl can be, without problems,
restricted to the set {3, eeay 9)s

By the same procedure the interval bounds a and b for RE are

calculated. The correspondence between values of S2 and allowed intervals

is given in Table 2.2.

Tahle 2.2

5, a < 6ll-R2 <b
10 N IT2) ~36
9 =37 =35
8 =33 -29
T ~29 =25
6 -25 =21
5 20 -18
L =18 -1k
3 -1k -10
2 -10 -6
1 -6 -2
0 -2 3
-1 2 6
-2 6 10
-3 10 ik
=l 1h 18
-5 18 23
-6 23 27
=7 27 31
-8 31 35
-9 35 39
-10 39 T

The intervals in which R2 may be found are contiguous and 82 can
have all values from the set {10, ..., 10}.
For the remaining steps, k > 3, the simple relationship holds between

the value of Sk and the bounds of the corresponding interval:

(mask-l) < 38R < (-esk+1) (2.10)
and

8 € 110, -ov, 10}

The result (2.10) indicates, first, that the selection rules for k > 2 are
invariant and, second, that the selection can be performed by founding the
scaled remainder to one non-sign digit (in radix 16). The selection process
itself becomeg very simple after the first three steps, due to the following
fact. The last term in the remainder recursion, 16_kSkRk, cannot affect the

most significant bits of R .., used in'seleeting'sk for k > 2. At least

+1?
k - 3 most significant digits of Rk remain unchanged except for possible
complementation, due to the change of the sign. Therefore, at the k«th

step, constants Sk’ Sk+1’ voey SEk-§
k > (m+3)/2 all remaining constants 8,s +++y 8 are actually availsble and

are known. For m digit precision, when

the process of normalization can be simplified. Namely, the basic remainder

recursion {2.8) can be replaced by a simple form:

Ri4q = 16R, + 8, k é_(m+5)/2 (2.11)

The aforementioned features reveal the amenability of the normalization
procedure to higher radix implementations. Once the process gets started,
remaining steps are progressively easier.

As mentioned before, for k > 3 the selection of 8 's can be performed

k
through rounding, i.e., the most significant non-gign (radix 16) digit of Ry

represents the correct value of Sk’ after rounding. It is, then, natural to

t

specify the selection rules for "irregular" steps k - 0, 1, and 2 through a
modified rounding procedure rather than using a table look-up or a direct

combinational approach.

10

The following definitions are relevant to the description of the

selection ruleg as well as the algorithms.

Sign and magnitude representaetion of the constants Sk:

' 3 . .
= (1-2s5) £ 82, & € 10,1} for all i
i= :

8
k 0

Two's complement representation of scaled remainders:

L .
-1

R, = -T, %iil r,2 7, r, € {0,1} for all i;

{m is the number of radix 16 digits)

Truncated scaled remainder:
ﬁk = =Ty % r.2 "+
j=1 -

Non~sign part of'ﬁk:

% r.e'l if vy = O3
i=1 1

T =

k 6 — i
5 or.2 ifr, = 1;
. i O
i=1

Gtep-dependent rounding constant:

U, 8wl W oet0,1] and
i=l * *

Then

& =1 (Tk+Uk).l6J and
Sign (Sk) = Sign (Rk)

where | Y| denotes largest integer not larger than Y.

(2.12)

(2.13)

(2.1k)

(2.15)

(2.16)

(2.17)

Step k = O
For the initial step, a modified procedure in selection is applied.

The extension of normalization to the negative values of XO

through the initiai step. The selection rules and the starting value of the

is eapily achieved

scaled remainder are specified ag follows:

For X, ¢ [1/2,1),

8y =1 if 1/2 <%, < 5/8;
8y =0 if 5/8 < Xy <13 (2.18)
Rl = Xl i l = XO + XOSO - l |

For negetive values of XO’ it is a gimple approach to debermine SO

by the rules analogous to (2.18) and then generate the negative of Xl while

calculating Rl as

=bm
= = o = - -
Rl Xl 1 ZXO + XOSOS + 2 1 (2.19)

and proceed with normalization as in the case of positive XO”

Step k = 1

From the Table 2.1, the interval break points are chosen so that the
gimple wvalues of Ul are gufficient to obtain Sl' According to the proposed
approach

8, = L(T1+Ul).,16j and Sign (sl) = Sign (Rl)

In Table 2.3 the correspondence between intervals and rounding

constants (Ui) for each allowed value of S. is given.

1

Table 2.3

6h(Rl+1) 6th 6L;Ul

40 23 1h
41 po .
8 Yo 21
43 - 20
7 i 19 10
45 18
6 L6 17
L7 16
5 L8 15 6
49 14
50 13
51 10
50 11 3
53 0 -
sl 9
55 8
56 T 2
57 6
58 5
59 b
60 3
61 o
62 1
63 0
0 0
1 1
2 D
3 3
L 4 1
5 5
6 6
T 7
8 8 0
9 9
10 10
11 11
12 12
13 13
14 14

15

Now, it is a simple task to find relations between U; end R_in the
form of Boolean equabtions. The derivation of those equations, listed below,

is given in Appendix A.

o
[}
=
Il
@]

o
Il
)
N

(2.20)
= ro§£(§é+§5)
ug =T+ Eé?ﬁ
ug = ;5rh

Step k = 2

Using the data from Table 2.2, the interval break points are selected
in such a way that the corresponding values of T2 and Ué will produce correct

values of SE:
8, = L(T2+Ué)l6j and Sign (82) = Sign (RE)

The correspondence hetween ﬁg and U2 ig shown in Table 2.4,

The Boolean equations are derived in Appendix B and listed below:

Uy = x Ei(§é+55) + rg (2.21)

Ug =T, (r1+r2r3)

1L

Tahle 2.4
o S 0 8, 6’-|-(R2+l) _ 61@2 6l|-U2
10 23 Lo 3
o6 37
9 27 36
30 33
8 31 e
3y 29
T 35 28
%8 o5
6 39 2L
10 21
5 43 20
yh 19
L5 18 2
Iy L6 i
49 1k
3 50 13
5% 10
2 5k 9
57 6
1 58 5
0) 1

15

Table 2.4 Conbtinued

R, 20 8, 6hR,, 64T, 64,
0 0 0 =3
1 L
) o o
5 5
-2 6 6
9 9
-3 10 10
13 13
=1} 1 14
17 17
-5 18 18
21 21
-6 2p 2P
03 23 .
24 ol 1%
06 o6
=7 27 27
30 30
-8 31 31
3l 34
=9 35 35
38 38
=10 39 39
Yo 4o

¥ - = =" =
or _61LU2 2 whenever t6 re 1.

16

Step k 23
As mentioned before, the selection procedure for all remaining steps .

consists of rounding:

5, = L(2,40,).16], Sign (5,) - Fan (R)

6 -l
where U, = % w2 T = 1/32, i.e.,
. N 1
i=1
uy = 0, it 5 (p.22)
1, = 1
5

We now summarize the multiplicative normalization of a given number

Xy = %, o xie'l in the form of the Following algorithm.
$=1

Algorithm N (Multiplicative Normalization): (2.23)
Step NW1. [Initialize] k « O3

8y« 1 if /2 < X, < 5/8;

By < 0 if 5/8 <Xy <13

Ry « %, (1+so) - 13
Step N2. [Loop] for k < m perform:

k «k + 1;

8y « L (Tk+Uk)l6J; Sign 8 < Sign R, j
if k < (m+3)/2 then:

K41 :
Bk i v 16Rk + sk + 16 SkRk’

else:

Rk+i +‘16Rk + Sk;

17

where | Y! denotes the largest integer not larger than Y¥; Tk and Uk are

defined according to {£.15) and (2.16) with

U o=u, = O}
u.3 = Klro”é;
w, = Klro§h(§é+§5);
ug = Kl(ro+;5;ﬁ) + Klrg * ;i(;é + ;5? +trg] +K
ug = Kl'f"srlL + Kéro(rl+r2r3)
and Kl’ K2 and K stand for k = 1, k =2 and k > 3, respectively.
This algorithm will normalize a given number X, to one in {mm+1)

steps with the error bound
=1
X4 -1l <2/3-16 (2.24)

and simultaneously generate digits of the continued product representation

of l/XO. The method of multiplicative normalization is convergent by

definition of the procedure and the existence of such procedure has been

shown by construction of the selection rules. In deriving those rules, the‘
aim was to achieve sufficient simplicity, not necessarily optimality. The
implementation agpects will be discussed later. From the algorithms considered
here, division and (natural) logarithm are based upon‘the multiplicative

normelization and will be described in that order.

3. DIVISION

As stated before, the proposed algorithms apply to floating point
numbers with binary radix of the exponent. The radix 16 or, in other words
"h bits at a time" is used to speed up operations on fractional parts.
Since, in general, the exponent manipulation presents no problems, we
will not be concerned with the exponent arithmetic here.

Let Yo, X, € [1/2,1) be fractional parts of the given floating

point dividend and divisor, respectively. Then by multiplying both the

dividend and the divisor with the same sequence of factors Mk

m
% YOiZoMi
Q=g = —F— (3.1)
O XOT;-M.
i=0 *

if XO'ITM:.L - 1, the fractional part @ of the quotient is obtained as Y O’eri.

Defining the factors Mk to be of the form

u =1+ sk-16"k (3.2)
and S, € {10, +.., 10}
one can determine constants S through the multiplicative normalization
(Algorithm N}. To form a desired quotient Q, let Qy = ¥, and define

recurgively the partial result as

ey = G = G 199,°267), 0 <xgm (3.3)

19

Then Q = Qm+l has m correct digits, the error bound in the normalized
divisor being X . - 1] & 2/3.16™", |

In presenting the algorithm for division, as well as for the other
operations, it is assumed that the normalization and thé result evalﬁafion
are carried out in two similar arithmetic units. Iater, when discussing
implementation aspects, it will be shown how the proposed algorithms can
be realized‘wifh esgentially one arithmetic unit with a tolerable decrease

in performance.

Algorithm D (Division)
(AUL: Normalirzation) {AU2: Result Evaluation)

Step Dl. [Initialize] k « O3

Step W1 (Algorithm N); Qy « ¥y3
Step D2. [Loop] for k < m perform:
Step N2; Qg < G * kakm'k;

An exsmple of the division is given in Figure 3-1. The
"predictability” feature, described before (2.11), is apparent at step
k ='T: the first five digits of RS’ when recoded, are the next five

constants 88’ ceey B

12-

In Figure 3-2, the basic hardware configuration, consisting of two
arithmetic units, is shown. The control part is not described. The only
difference between the two arithmetic units is that AUL has the additional

network TU and the five~bit register S5, used in the selection process.

19

Then Q = Qm+l has m.correct_digits, the error bound in the normalized .
divisor being [X . - 1] < /3167,

In presenting the algorithm for division, as well as for the other
operations, it is assumed that the normalization and thé result evalﬁaﬁion
are carried out in two similar arithmetic units. Later, when discussing
implementation aspects, it will be shown how the proposed algorithme can
be realized wi%h essentially one arithmetic unit with a tolerable decrease

in performance.

Algorithm D (Division)
(AUL: Normalization) (AU2: Result Evaluation)

Step DL. [Initialize] k « O3

Step N1 (Algorithm N); Q « Y43
Step D2. [Loop] for k < m perform:
Step N2; Qg < Q + kakm'k;

An example of the division is given in Figure 3-1. The
"predictability" feature, described before (2.11), is apparent at step
k = 7: the flrst five digits of RS’ when recoded, are the next five
constante 88, seng 812.

In Figure 3-2, the basic hardware configuration, conaisting of two
arithmetic units, is shown. The control part is not described. The only
difference between the two arithmetic units is that-AUl has the additional

network TU and the five~bit register 8, used in the selection process.

20

21

11

oi

T-¢ aamITL
Z0L1%6858THSE8°0 00000000000000° T V1€Z823%866LLY " G-
¢o»~¢ommmﬁ¢wmm.o 2000060000000 1 8AE8I4YES6LLYS” I-
80L1468581%5€8°0 £000¢000000000° T 26624%7956LLYGT" 9=
2102%68581%5€8°0 1,£00000000000° 1 931098661495 17’ g
L822E68581%SE8 "0 0£L88656666666°0 GBYV99988uVIAL -~ L-
794890658 195€8°0 11415100000000°1 LY3SELVLY G189 - 9
BEL1102LS81%SE8°0 LE5916L6666666°0 Q126V396vV3aL65°- 1
969122258195 €48 °0 €L095616666665°0 339390£638L65 1~ -
L7L6060L1295EB°0 %22LZ9ELE00000° T 13 1VL90DE 69V 3€- €
GOLLZBIHEEESES O 06628656L56566°0 d6L310v8216122°= €~
2099869L5665€8°0 8.52L.88069000" 1 0340234222L02" G-
16%602L06%9258°0 65¥S1696%29020° T 00Q 443 480VL %5 L
¥665S081L7TE6S 0 ZEIYGBL666660L°0 8E 200000 TLAEV Y- 0
{yWi230 NI) (1vW1230 N1 (1YWI1J3GYX3H NI)
T+%0 . T+MX 14y MS

20L1268681%5E8°0 =0X/0A 2666908TL%1E65°0 =UA 2e2raBLO66660L 0 =UX

AUL: Sy
E? ?Rgﬂ.
! ADDER
° 'T T‘J (0;24;28in167 " R,
| SELECT-COMPLEMERT |o— Sy
ADDER i o
¥ (0;2 12216~ 1R,
|
] SELECT-COMPLEMENT fo— Sy
~kblg, &
Rie15 16Ry + 5 +167 518, Ry 1677 Ry
' [SHFTING KETWORK Je— Kk
Ry -
[; }
Ry+1
avz: 1°u+1
b ADDER’
; ¥ {Qi4; 28116740,
f |7 SELECT-COMPLEMENT for 5y
ADDER ;
¥ {0721;£2)%16"%Qy
| SELECY-COMPLEMENT Ju— Sy
Qu+13Qy *"15'*5“0& iG'ka
[sHIFTING NETWORK ja— k
Qy
] a]
TQkﬂ

Figure 3=2

el

22

4. NATURAT, LOGARITHEM
Ex ,
Let X = XO-E be a given floating point number with fractional
part XO € _[1/2',1) and exponent Ex' In formulation of the algorithm in
radix 16, we follow the same approach as for the radix 2 case, given in

[1]. To cbtain fn X, the problem is split in two parts. Namely,
X =Xy +E_tn2 (k1)

The algorithm for caleulation of the first term o XO is derived from the
identity:

' m m
Xg= Xy TM/TM (k.2)
i=0 7 i=0

where multipliers are Mk =1 + Sk-l6"'k and constants Sk € {10, eeey 0, »es, 103,
as defined before for the multiplica.tive normalization algorithm. Now,
@nxo=em(xo%m.)-fm(%m.) (4.3)
NP | P |
i=0 i=0
From the normalization algorithm N (2.26) we know that the error

in normalization is bounded by

i}
1%y = 1] <2/3+16

il

Therefore, (XO T Mi)

0 for m digits precision and én XO is reduced to
i=0

I

~om (Fu)= B {-%(14-8116""'1 - (1r.1)

n X
0 i=0 i=0

23

To cbtain &zXO

precomputed constants of the form

, one needs to perform the summation of m + 1 gets of

- on (1 + sk16'k)

stored in a fast read-only memory (ROM).

The stored constants are retrieved from the ROM using ék's, cbtained
in normalizing Xb., It is clear that this procedure is equally well spplicable
to any logarithm function--just the set of stored constants need to be
precomputed in the corresponding base. The summation {b.4) is performed
recursiveky: | |

L, =% +[-om(1+ sk-16‘k)] for k = 0, see, m
where L. =0 (.5}

Then ;m+l

accuracy of m digits because the stored constant cannot be exactly

= &zXO. It ghould be noted that this result may not have an

represented with m digits and during m + 1 additions, errors will accumulate.
If the result & X, is to be correct to m digits (4m bits), i.e., with error
less than 1/2-2“““3 then the precision of the second arithmetic unit should

be extended by
Am = [n (m+l)/on 27

where [X] is the smallest infeger not smaller than X; For m = 12, this
amounts to an extensioﬁ of 4 bits. If the algorithm is performed in radix 2,
to retain the same error bound, the extension will be 6 bits.

The calculation of the second term EX:&QE can be'performed using

conventional multiplication since Ex is always of short precision compared

to Xy The constent 2 2 can be stored in & ROM. As an alternative, i%
might be convenient to implement Ea:hﬁa using a multiplication algorithm
based on continued sums, as described in Chapter 6. Asguming that the
length of the eprnent Ex is 8 bits, such g solption Wiil increase thé‘total
time by 3 basic cyeles but reduce the hardware requirements by an extra low
precisidn multiplier. Namely, after‘&sz has been computed iﬁ the second
arithmetic unit (of Figure 4.2), this result is taken as the first partisl
product, Then the first arithmetic unit is initialized to EE? the step

counter set to zero and the multiplication Ex:&ze‘is performed using recursion

(6.2):

-k
Lk+l_Lk+(fm2)sk 16 for k= 0, 1, 2

where

Lo = Tmaa =‘g”"}’co
and SO, Sl’ SE are obtained through the additive normalization algorithm.
Therefore, the last partial product P, will represent the final result

3
on X. This approach has assimilated the extia add step, indicated in (4.1).

For higher radices the set of constants Sk is enlarged and
consequently the capacity of the ROM must be increased. As in the radix 2
case [1], there is no need to store all of the constants [- fn (1 + Sk-16“k)].
The possible reduction can be shown using the power series expansion for
the logarithm. |

The congtants to be stored are of the form
-k
on (1 + Sk‘l6 } = tn (L+a) and

Ske {10, I.C’ O, -l.’ 10}

Then

ﬂ/n(14-a.)=a~-;-'-a2+H.O.T. for -1<a <1

2 log,, 10 -1+ b

For | - k2k =) ~ iifﬂ, : {4.6)

and m digits accuracy

' -k ek
on (1 + sk-16) = sk-16

eliminating the need for storing more congtante. Therefore, for radix 16
the necessary capacity of the ROM is at mogt 10n;_.+ 15 words of m digits
(bm bits) each, including the constant fn 2, used in the initial stép a8
well a8 in evaluation of the term E in 2.

The algorithlm for natural logarithm is given below:

Algorithm L (Logarithm) ' | T

(AUL: Normalization) (AU2: Result Evaluation)

Step 1l. [Initialize] k « 03

Step N1. (Algorittm N); Ly « 03
Step 12. [TLoop] for k < m perform:
Step Ne2. if k < ky then:
: ' -k
Loy < Iy ~on (1 + sk16)3
else:

-k
Legp © T = 801673

Step L3. [Form fn XO + Ex fn 21
Step Al. (Algorithm A); (Ty = L)
~ initialize: R « EX;

for k < 2 perform:

Step A2. Ly « Ty + O E)Skl6-k;

25

26

where k, is given by (%.6), and algorithm A for additive normalization is
given in (5.6). In the example, Figure h-1, only the calculation of the
&zXO part is shown. The additiopal requirement for implementation of the
logarithm algérithm is a read-oﬁly memory (ROM), connected to the result

evaluation unit (Figure 4-2).

27

2£02291L21£226 "0~
Z€022% 1L Z1€225 *0-

86612% 12218225 °C~

¥e912%1.21tedcs "0~
€248T91LCTECCS*C-

ZYL6G21L21€2LS "0~

0080002L21£226 0=

€6GEILLOETELZS O~

8£996%865T€226 0~
%€ 1C429L COELZS *0=
$8€80089928€25 0~

2YSE6LBLST966S *0~

§6655081L91€69 0~

(IVWIZ30 NI)
T+%7

T-4 2anS1g

- 0000000C000000°1

00000000000000°T

" 99666666666666°0C

20966666666666°0
16996666666666 °0
01L£€866666666°0
89L18LS0CLOC000°T
895 T#€9€000000°" 1
$989L0L22000C0°T

JESECOYLBHULCO°T

1988%211615100°1

066,6595L0C8€0° T
886T119E%62981°1

. {IYWIDE0 NI
14X

2E02241L21€225°0~- ={0XINT

464653 Y1544586 .
2845V0S3VEOVHY -~
2293%3VA0V4Y 9 -
6E9EQVEOVHVO9Y *~
4%19980V9Y 0942 *-
0ZvL8399V09Y 2L *-
69499v3a5468081 -
0%SEQEJEDRABTY "
9€4340.8038192 °
$3v8033262292€ °
81499996358%€9 -
08v8523200Y86
09890£28740842 *

(WRWIJ3AVYX3H NI)
T+M4d

%665508TL%1€66 °0

=0X

N & O -

Qe
7=
€ -
Q-
6
Z-
1

AS

N oM N N~

A
1.

o1

-y

AUL: S

s
Cb ?Rk'qn]_
$ ADDER .
.,_..[_? (0;£4:18)%167* 1Ry
Ty U | SELECT-COMPLEMENT |e— Sy
T U I
Lr——rj § (0;1:£2) #1674 1Ry,
K Ry ' |
| SELECT-COMPLEMENT |o— Sy
]
- ' ~k+1
Ry+1% 16Re+ S +16~ ¥ 25 Ry AL ¢
| sMIFTING NETWORK Jo— K
Ru }
| R
Rp+1 fa— S
ROM
3 K
| ADDER
1 o
| sELEcT-coMPLEMENT la— 038y
| ADDER
L G
Lker=ly+Cy,08k<k, | SELECT-COMPLEMENT Je— 1;Sj
-‘W(Mi),OSk‘-kl ¢
Ck'{l 5k1km kY
bz L for Ex A2 | SHIFTING NETWORK le— 03k
-k ' Ci
L“1=Lk-8k16, Kysksm Ly :

Lg+1

Figure h-2

29 -

5. ADDITIVE NORMALIZATION

Algorithms for multiplication and the exponentisl, analogous to
thoge defined for division and the logarithm can be derived on the basis of
continued sums. The step by step process, in which a given number XO 6{1/251)

is normalized to zero by proper choice of constants Sk such that

o i .
X, - $8,.67 20 (5.1)
i=0
where 8, € {10, seey O, ous, 10}

is clearly a right directed recoding of XO. It is termed normalization

as an additive counterpart of the previously described multiplicative
normalization. The digits x, from the nog-redundant digit set {0, ..., 15}
are replaced, starting from the most significant, with the digits Sk
belonging to the redumdant digit set {EZL .;., Oy eesy, 10}. This recoding
is simple and exact. Namely, for every pair of digits Xk Xk+1, if

> 10, (maximal allowed value for S, .) then this pair is recoded as

XK+l T+l

Sksk+l’ where Sk =X+ 1 and Sk+l = =(15 - Xk+l)' Otherwise, 8 = X
To define the selection rules, we proceed as before. First, the

scaled remainder is defined as

R, = 161‘"37ck (5.2)

k=1
where Xk = XO - x 8,16

Then,

1

el

represents the basic recursion.
recursion (2.11), except for the

bounded, similarly as before:

and the selection rule is the same for all steps.

16R, = S,
gign of Sk'

IR] < 2/3

30

164

-m%%-%m*)

0<k<m (5.3)

This recursion corresponds exactly to the

The scaled remainders are

(5.4)

The rule is simple: Sk

equals the scaled remainder Rk’ rounded to one non-gign digit, the sign

being that of Rk‘ More precisely, the selection rule is:

8y = [(Tk + Uk)-l6j

where:
> .
T =5 r,2
k 121 i
5 .
- =i
T, = zr2
k 121 i
Rk = mro + l%?r,a"l;
. i
i=1
u, = 1/32.

This choice of conventional rounding, i.e.,

(5.5)

and Sign Sk = Sign Rk

O0<k<m

U = 1/32 will actually

restrict the set of constants 8, to {8, ceey 0, wss, 8}. This choice is

31

preferred because it is simplest and the restricted set of Sk is sufficient
for recoding. The choice of U, = 6/256 would require a full set of constants
Sk‘ Although the selection ru1e7(5.5) holds for the initial step as_well,
it is more convenient to use the fact that for %] > 1/2, as is the case,
|SO| can always be taken to be L. Frbm the definition of the scaled
remainder (5.2) it follows that it is preferable to start always with
|SO| = 1, 'Othérwise, for k = 0, to prevent loss of accuracy, an extension
of one radix-16 digit would be necessary as well as an additional right
shift path, needed only in this step. As indicated before; the result of
additive normalization is always exaét, i.e.,

X, - _% 8116'1 =0

i=0

For reference purposes, the additive normslization is summarized in the

form of algorithm A, given below.

Algorithm A (Additive Normalization): (5.6)
Step Al. [Initialize] k « 03

SO «~ 13

Ry « X, - 8,3
Step A2, [Loop] for k < m perform:

E«k + 1.

8, « [(Tk + Uk)16J; Sigr; 8, « Siegn R,

Risy = 168 ~ 8y

where Uk = 1/32.

32

6. MULTIPLICATION

The algorithm for multiplication, given here, is based on a
conventional procedure applied to the radix 16 case. ILet the multiplicand
and the multiplier be floabing point mumbers, sabtisfying the usual

requirements, i.e.,

EY ' -
T=7Yp2 T, ¢ [1/2,1)
Ex
X =X2 X, € [1/2,1)

Again, only the multiplication of fractional parts is described,
omitting straightforward exponent arithmetic agz well as postnormalization
of the result.

Congider

P:YOXO
=Y [X.- % 20+ % 7]
O 0 . i . i
i=0 i=0

where m is the number of radix 16 digits in the fractional parts. If terms

Zk = Sk‘l6"k are properly chosen, then

m "
X - E ° -t =
0" i si 16 0

and
pi13

P=Y 5 g 167 '
O i=0 Si 16 (6‘1)

where the constants Sk’ as before, are from the set {ifﬁ aany Oy aney 10}.

Applying additive normalization on‘Xb, the constants 8 can be cbtained,

k
as described by Algorithm A (5.6).

The summation of the partial products is performed simultaneoﬁsly

in the second aritimetic unit, using the following recursion:
=P o+ Y08 1678 0<k<m (6.2)
k+1 k 0 "k 4 = ‘ *

where P. = 0.

33

Since the normalization of X is exact, the only error in multipli-

0

cation comes from the single precision result representation.
The algorithm for multiplication, compatible with other proposed

algorithms, is given below.

Algorithm M (Multiplication): ' (6.3)
(AUL: Normalization) (AU2: Result Bvaluation)

Stép Mi., {[Initialize] k « O
Step Al (Algorithm A); B, « 0

Step M2. [Loop] for k < m perform:
Step A2; P vB t Yosklé"k;

An example is shown in Figure 6-1. TFor implementation, shown in

Figure 6-2, an extra register to hold the multiplicand is needed.

C00LYSBYHETTTY 0
000L%S87¥ETTZY °0
COOLSBY%ET1Z% °0
CO0LYS8YHETTIZY *0
000L%S8Y%E 112 *0
Q0ULYSBYHE 1124 °0
DODLYS8HHETT2Y °0
€€H2802SHETITY 0
$680508%8€112% 0
Z958EBZETITTIZY°0
€E6L9EL50691T% °C
96%€998988LLCY °0
9665508 1LY 1€6S °0

§IYWIIJ30 NID
T+%d

000L9€8%YETIT2%°0 =0X#0A

T-9 omSTI

£0000000000C00 °0-
10000000000000 °0-
10020000C0UC0U 0=
10000000000000 *0-
10000G00006000 *0=
1060000000000 *0=
10000000000000 *0~
§9%(9650C060G0°0-
18%2€5€1900000°0=
Z€Z401906€0CC0°0

89L5%125L€6000°0~

CELHSBLEEEHYZZULO

89L6%120000062°0~

§IVRIO3Q NI
T4MX

6655081441265 °0 =0A

000000 0000008¢E:-
000000000008 €2~
0003C0000008€2: -
000000000008 £2--
00C0G00000UBER -
G00000000008€2:-
G0J0C0C00208E~
000008€2000001:-
00008€2000001 L~
0008043444382

008€2000001L0€ -
omucmummmwmwum.

8E200000 TLAEYY -

{IVWIDJ30VX3IH NI}
T+Md

CETYSBLEH6660L °0

=0¥%

0 O O o 6 N

)

LA T R S L

us

A

1t

0%

L T 2 T 0 IR ol T R+ B R - <

S

55

AUL: 5
o S
d: s

8o ADDER :
'—“'l T ? (O3 4;28)
Te .Ug | SELECT-COMPLEMENT fa— Sy
T U [aoper
f {02122}
”~ . . l
k Ry :

| SELECT-COMPLEMENT fo— Sy

Rk+1=16Ry~Sg

| SHIFTING NETWORK le— (o

Ry ?
[_ % _J (1)
Rl
AU2: Pr+1
t
! ADDER
; ¥ {0;:4;8)%x16 " Yo
r | [seLecT-comPLEMENT fe— Sy
ADDER
1 (0;£1;2) %167 % Vo
| SELECT-COMPLEMENT le— Sy
4
P41 = P+ YoSgl6™k : ‘ 16" vo
| sHIFTING NETWORK ok
Py
L P B | Yo i

Pyt

Figure 6=2

T. EXPONENTIAL

The following manipulation, as defined for radix 2 case in [1],

applies without change to the radix 16, producing a convenient form of the

exponential eX. In the identity

eX _ e}{- ngge- n 2

let

Xtne = T +F

where I and F denote integer and fractional part, respectively.

Now

X T2 Fne
e e

e =
- 2Ie]ﬂ" n 2
and defining XO as
XO = Fin?2
we obtain the result in the form
Y = YerY =& oete

(7.1)

(7.2)

(7.3)

(7-4)

%6

X
Therefore the problem of finding e is subsbtantially reduced to the problem

X

of finding e O, the factor EI being easily incorporated into the exponent

part of the result Ey.

The exponent X is any number such that Y is in the

37

X
wachine range. Therefore, |F| <1, |X| <fn2 yielding e O e (1/2, 2). It

is & simple detail of an actual design to cbtain F bounded between -1 and
X

0, giving e 0 € (1/2, 1}, as usual. In the following discussion, we assume

that
-l<F<O0 or
-in2 <X, <0 ' (7.5)

0

The described approach requires two extra multiplications before the main

algorithm can begin. Namely, one multiplicatidn is necessary to determine

the terms I and F and another to obtain XO’
X
The algorithm to evaluate e O, described here, is similar to the
other algorithms, both in derivation and in structure.

We start with the identity

X X -t (FM) e (M) (7.6)
6] 0 , i . i
e = e i=0 i=0
. ' wk
where Mk =1 + Sk 16 0<k<m
and, 8 € {10, eey O, «uey 10)

Once again, if constante Sk are selected properly, then

Xy - on B+s16™)]%0 (1.7
. i
i=0
and the result iz obtained as
% on (B M)
0 ~ i=0 * m -i
e = £ = T (1 + Sil6) (7-8)

i=0

38

i.e., in the form of a continued product. To define the selection procedure,
we note first that
k=l 4
xk=xm v fn {1l + 8,16), O<k<n (7.9)
0 . : i -
i=0 : ‘
Then X
Kppy = X - on (1 + 51{1.6 Js 0<k<m (7.10)

and the scaled remainders, upon which the selection is performed, can be

defined as
R, = 16k"lxk, 0<kgm .(7.11)
The basgic recursion is
R, = 168 - 165 00 (1 + sk16“k), 0<k<m (7.12)

" This recursion shows that again precompubed constants of the form
in (1 + Sk16mk) are necessary. Since these congstants are the same ones used
in the logarithm evaluation, all remarks about storage requirements and

simplification apply here:

- for k>k; =~ éﬁé%iLﬂﬁa : (k.6)

the logarithmic constants can be replaced with Sk-16_k reducing the basic

recursion (7.12) to:

Ripp = l6Rk - Sk, for k > kl (7.13)

The last expression shows that for k > kl the selection process
will be identical to one defined by the additive normalization (5.6). It
would be, therefore, natural to try to find selection rules such that the

similarity with additive normalization can also be satisfied for k < kl.

29

We now consider rules for k < kl in reverse order. First we recall
that the selection rules are determined by choosing appropriate boundaries
between intervals in Rk corresponding to particular Sk'_ Next we assume that
the five bit érécision is suffiéient, i.e., bthe boundaries between intervals
can be represented as L/32, L being an integer. To find an interval in Rk

corresponding to Sk’ the hounds aré determined as
' -1 k-1 Ky = -1 k- -k
R (B, -167 + 167 0(145,267), B +167 + 16 on(148,167%)) (7.21)

where §k+1 and Rk+l are minimal and max1mal allowed values of Rk+l’

respectively. From the power series expansion, we have

on (1 + sk16'k) = sk:r_6"k ey (7.15)
where
8 2 8.3 8 b
1 Pk 1 Tk 1 7k
€, = m = e 2 e o = F oeaes s (7.16)
X 2 1Bk 3 ok n 125-'1:

the condition of expansion clearly being satisfied.
Let

&) = 16k-ek (7.17)

then, to select Sk’ Rk must be in the interval

Re € (% B * 8 T o) % Ry * 5) (7.18)

or, using the assumption of 5 bit precision

k bk)

Bee 550 5 (7.19)

Lo

where

(2(Ry gp * 8y + &p)]

w

k

and for all 8 (7.20)

|

by = 12(R g + 5 + eyl

where [x)] denotes the smallest integer not smaller than X, and [x] denotes

the largest integer not larger than x. Since gk and §£ have asymptotic

limits - 2/3 and 2/3, respectively, it follows that if |ek| < 1/6, then

ak and bk can be determined as

By = re(-I%Hl + Sk)]

and for all 8 (7.21)

By = 12(Rgyy + 5]

Clearly, |e | < 1/6 is a sufficient but not a necessary condition.

If the last expressions for 8 and.bkrare valid then for selection
of 8, the rounding of R, to the most significant nonw-gign (radix 16) digit
suffices, i.e., the selection process becomes the same as in additive

normalization. Of course, once 5 is obtained, the next remainder is

k
calculated using all terms in the basic recursion (7.13). By caleculating
e, it turns out that for k > 3, |ek| < 1/6 and hence we have simple selection
rules as before.

For k = 2, it can be shown that it is possible to find intervals
in R, for all 8, except S, = 10, such that if R, € [(28,-1)/32, (28,+1)/32)

then 82 ig the correct constant. Therefore, if the range of R2 is restricted

go that S2 = 10 is excluded, again rounding can be used as a selection rule.

31

It has been found that this restriction in the possible range of R2 does

neither affect the selection process for k = 1 and k = 0 nor the representa-.
X

tion of e O.

For k = 1 intervals are determined, as before, using (7.1} aﬁd the

results are given in Table T.l.

Table T.1
8, ay < 32Ry < by
10 15 32§2
9 1h 15
8 12 1
T 11 12
6 9 11
5 8 10
N 6 8
3 5 6
2 3 5
1 1)
0 -1 1
-1 -3 -1
-2 -5 (-11/2) -3
-3 32R, -11/2

For all other values of Sl’ i.e., for {3ZZ caey E} intervals are not
contiguous and hence those constants may not be used. In fact, if the

possible range of RE is not restricted, S1 = I can be included in the set

of allowed constants in step 1. The actual selection rules for k = 1 can
be gpecified as in multiplicative normalization, il.e., using conventions -
described by expressions (2.12 - 18) one can determine an additive constant

U, and through modified rounding cobtain 8

1 Another choice, which is given

l°
here, is torestrict the range of Rl so that conventional rounding applies.

This restriction should not affect the possibility of representation of the

required result. From Table 7.1, if =.171 < R..< .212 then Sle{E,i, 0,1,2,3}

1

L2

can be selected applying rounding to one non-sign digit precision and no

special rules, differing from those for k > 1, are necessary.

To obtain Rl in the desired range, the following initialization
(step X = 0) can be devised. BSince XO € (=~ fn2, 01 by assumption and
Rl = Xl = XO - in MO the rules are:
Table T.2
XO MO én MO Rl
[-1/8, 0] 1 ' : 0 [-1/8, 0]
. -1/
[-3/8, -1/8) e ~1/h r-1/8, 1/8)
=17/32
(- tn2, =3/8) e /3 -17/32 [-.162, .157)

X
Since e © € (1/2, 1], it can be easily shown that such a choice for

the initialization as well as the restricted sets of constants in steps 1
and 2, i.e., Sl 3 {-2-, cesy 5] and 82 € {§, «eey 10} can give the correct
continued product representation of the result.

A summary of the procedure for evaluation of eX follows:

Preparatory Operationsg P (7.22)
Step PL. N« Xﬁugg e;
Step P2. if X > 0 then:
I « [N] + 13
else:
T « [N
Step P3. F el - I

XO«FQ/RE;

b5

where [N] denotes the integer part of N; after preparatory operations,fxo

will be in the range (- & 2, 0], with corrected integer part I.

Algorithm B (Exponential)

(AUL: Normalization) (AU2: Result Evaluation)
Step El. [Initialize] k « O;
Rl +-Xb - &sz; El +-MO;
8tep E2. [Loop] for k < m perform:
k «k + 13
. | : -k,
if k¥ < kl then: B Ek+l «-Ek + Ek8k17 3

B, «]_(Tk+Uk)l6j;
Sign Sk « Sign Rk;

k -k
Ry © 16R, - 16 on (1 + Skl6)F
else:!

Step A2. (Algorithm A);

T (7.23)

where k, is defined in (4.6), and U_ = 1/32. An example is shown in Figure

7-1l. The read-only memory, for this algorithm, communicates with the

normalization unit, Figure T7-2. The remaining configuration is the same

a8 before.

by

G6GE08THLESH06 0

S65E08THLEBY (G 0

S09e081I9LE8%06 *0

CEGEIBTIVLIERBY GO °Q

SE6E08 17LEB406 *0
902888 T%LES 06 *0
965ELGEHLEEH06 *0
L989968YLESYCE *0
ZZIEYEILSEEH 06 0

ec12868ILLE8%D6 %0

C306L8TLTIFLS06 %0

0000000000058 °0
000000 Ce000C0 T

{IVWID3a NI
T+3%3

0 =1

161409¢8%.9608°1

T-L 2anITd

00000000000000 *0
0000022¢006000°0
11000000000000*0-
SLECOCOCLEIO00 0~
SL€00000000000°0~
LOSE6000000000 *0~
€5195610000000 0=

L19916LC0000C0%0~

. %9081828100000°0

ZEYEZHH6EY0000° 0=
wﬂmmmwwoomoaco.on
2S9T92HETESEEC°0

10006000CCAL00T %0~

§IWKWIJ3AC NI}
. T+ XX

0117656%0cL668°0 =4

={0X}dX3

161209€9%29608°T ={0X) dX3
;.9Tx000000015.6088-
__91+0000C001526088

. 00003V89294341-

0004V892%4%34 1% -
- -9T*0004V8 92y ¥ 43Ty
04V89ZryddTH 0y
0498923000240 %G--
069223802%0%51°~
04894140648V3T"
0ovde62988seT 3 -
00233908065632% -
0000298Y9€8568 " .
V1866666666661 °-

{IVWI230VYX3IH NI)
1+MY

017t656%0€L598°0 =13)107»X

966658 TLYTEES °0 =0X

M N e W OO NG

&4

us

L B " B L R

o

45

AUl: Sk .
s . :
[jh 1Rk+1
o —ef ADDER
T (0;£4:£8}#Cy 164
Tl Uy | SELECT-COMPLEMENT |e— 0;Sy
T m ADDER
LT__T—I ? I (Oitl;+2)nCy 16K
A
K Ry I _
| sELECT-COMPLEMENT |o— 1:5;
{ Rg+1=15Rk—16kCu, . ; -
16%Cy
= <k<k
Cu = v (M), 1sk<ky, | SHIFTING NETWORK |e— (-K),
Re |
Ry+1=16Ry- Sk, k
{ = 1
Ck=1l, Kisksm H Cu
Rk+1 o 5,
ROM
o— K
Au2: ?Ekﬂ
R
L ADDE ¥ | (0it4:x8)%167%E,
| SELECT-COMPLEMENT fe— S,
ADDER
[¥ | (0:t1;£2)%16" %€y 1
| SELECT-COMPLEMENT |e— S,
-k
Eyg+1°Eg+ ExgSgl6 lewkEk
- | sHiFTinG NETWORK fe— k
Ey

Ex+1

Figure T=2

6

8. - IMPLEMENTATION

One of the basic features, relevant for an efficient realization of
the previopsly described algorithms, is that the original operation is
repiaced.by the two much simpler processes of limited dependency. Through
one process, the normalization, a sequence of constants Sk’ the digits of
the continued products (sums) are generated. Another process, the result
evaluation, produces the final result using constants Sk' Both processes
are defined recursively, reqﬁifing only simple hardware coperations:
addition, shift and multiple formation.

A realization, providing one separate arithmetic unit for each
process, clearly offers the fastest solution and the simpiest control
requirements. Since both units are identical, as far as the main configu-
ration is considered, a replication using an advanced technology should
make this cost acceptable. If the speed is not of primary importance, one
arithmetic unit can be used in both processes, performed in series. For
simplicity, the processes should alternately use the afithmetic unit so
that the current value of S, need only be available. A "pipelining" of
processes through one adder and shifting network, described at the end of
this chapter, can échieve only 15%-25% slower operation than the double
arithmetic unit realization, using essentially one arithmetic unit.

Ags mentioned in the Introduction, this investigation of the use

of radix 16 in implementation of the described algorithms, has been motivated

b7

by a possible speed improvement over the radix 2 approach and by some trade-
offs in hardwafe requirements. In . the following comparisons of the radix 2 |
[1] and radix 16 solutions, a tworarithmetic mit realization is assgmed in
both cases. Furthermore, no actual design being done iﬁ either approéch,
given comparigsons are approximebte in nature and restricted only to the
size-dominant parts. Control is assumed to be synchronous, each recursive
step being performed in one basic cycle. The main parts of the arithmetic
units, used in comparisons, are as follows.

a) The adder structure with the multiple formation networks,

used in the radix 16 case, is estimated to be twice ag complex

as the corresponding part in the radix 2 case. Namely, in the

former case, two adders and two (1 out 2) select and complement

networks are required, while the later case requires one adder

with one selech-complement network. The speed of addition in the

radix 16 case will be only slightly decreased if both adders are

wified into one three-input adder. If the add time of a two-

input adder (the radix 2 case) is t, o0 We estimate that talﬁ < l.Etag,

for sufficiently large m.

b) The shifting network, required to shift right/left k-digits,

for 0 <k <m - 1, is simpler for a higher radix. We assume that

the Ffast shifting network is realized using a "barrel switch"

technique [8]. Namely, shifting is performed in two or more levels

so that the cémbination of level shifts corresponds to the required

total shift. This technique, besides being fast, ensures low

loading requirements and the shifting can be done using same paths

both ways: shift count is represented in two's complement, a

negative number specifying left shift.' Implemented in integrated

18

circuits technology easily with its regular and simple structure,
the barrel switch as a standard block can be used also in some other
operations, €.8.; shif%ing, normalization, etec. Because of an
additional level, the shifting network in the rédix 2 case is
estimated to require 30%-50% more hardware than radix 16 for

m = 48 to 64 bits. For example, if m = 48, then level 1 may
provide displacements of 0, 16 and 32 positions, level 2 provides
then displacements of O, 4, 8 and 12 positions, and in the radix

2 cage, an additional level 3 would be necessary with the
displacements 0, 1, 2 and 3 ﬁositions. Speedwisge, then, tsha >
1°3tshl6’ where tsh denotes shifting delay.

¢) The selection procedure in the radix 2 case requires implementa-
tion of a simple 4 bit comparison. For the radix 16 approach, the
required precision for selection is 7 bits and the five Boolean
equations (2.25), costing less than 4O literals, are to be
implemented. As described before, the gelection is performed
using rounding, so the additional inputs to the 7 most significant
positions of the adder should be provided as well as the 5 bit
register 8 to store the current value of the constant Sk' Even
with those requirements, the selection hardware size is small
compared with the rest of the unit. In the radix 2 case, this

is even more true, so0 the selection hardmare'reqniremen%s axre
neglected in bﬁth cases.

d) TFor m bits precision, the number of precomputed logarithmic
constants, stored in theread-onkygmmory (ROM) ig about m, in

the radix 2 case, and about 3m, in the radix 16 case.

49

e) The contrbl part, which includes also the step counter (two

bits shorter in the radix 16 case) is nobt comsidered as being

highly dependent on & particular realization technique.

From ﬁhe above congiderations, the hardware requirement ratio for
the radix 2 and the radix 16 is approximately 2:3. The basic cycle can be
taken to be the same, since the add time is dominant over control, selection
and shifting time. The ROM capacity requirement ratio is about 1:3% in
favor of the binary case.

Let the performence of an implementation in the radix r be
Pr =&%Er/Tr, where Tr is the total delay necessary to evaluate&ger bits of the
result, as defined in [4]. Tr is equivalent to the basic cycle. In the
radix 2 case, the prcbability of Sk =VO (po = 2/3) is utilized by providing
an adder bypass and reducing the number of full bagic cycles to m/5 on the
average, where m is nuwber of bits. Then, it can be taken that the radix 16
bagic cycle is T16 = BTE, gince the number of basic cycles in the radix 16
case is always the same, the probability of Sk = O being too low. Then,
the ratioc of performances is Pl6/?2 = 4/3 on the average. If the efficiency
of the implementation is defined as the ratio between performence and cost
per bit, then, with all previous assumptions, E16/E2A: 1 without consider-
ing ROM requirements. If the ROM capacity requirement is %taken into account
then the radix 2 appfoach will offer more efficient Qesign, but the radix 16
case will maintain betﬁer performance with shorter execution time. The
selection procedure for radix 16 has been shown to be sufficlently simple.

Bven with the available efficient technological solutions, the use
of two arithmetic units may be objectionable. Since both the process of
normalization and the process of result evaluation have addition as the

basic operation, a "pipelined" use of the same adder would be possible,

50

provided proper latching of the operands and the results 1s made. One way
to achieve this is shown in Figure 8-1. The adder with multiple formation
networks is split into two equal parts AS" and AS' by breaking the carry
path and inserting a one-bit carry register C. Outputs from the left half
SN" of the shifting network are to be saved in a latch L. The selection

is carried ouﬁ in the block -8 on the basis of adder outputs and returns the
value of Sk' The initial operands are in register B, for normalization,
and in register A, for result evaluation. Each register contains two .
separately controlled halves, B", B' and A", A', The outputs from AS" and
AS' are commected, under a separate control, to the inmputs of A" and A’
registers, respectively. One separate path a from A" to SN" must be pro-
vided. The operation of this scheme is described for the division algorithm,
with the help of Figure 8-2, with the initial control detalls omitted.

The normalization process requires realization of the recursion
Ry = léRk + 8+ 16_k+lSERk vhile the result is evaluated as Q ., = Q +
16-kSka, Since the operand lﬁRk in the first equation corresponds to the
operand Qk in the second equation, additional path b from B to AS must be
provided as well ag one U-bit register not shown in the scheme, to save
the most significant digit of the left half of Rk.

The operation begins with the divisor Xb in the B register and the
dividend in the A register. Corresponding to the scheme, the superscripts
' and " denote the right and the left half of each result. The basic cycle
now conbains two periods, each period terminated with the clock pulse.

The time of the period corresponds to approximately one half of the full
length addition time. The registers are assumed to be of magter~slave type.
In the first period, R! is obtained and then, simultaneously, Qé from A®

1

is trangferred to B‘yRi from AS' to A' and the ‘generated carry bit is saved

51

ey
S |
g
S 3 ¥
L
5
COUNT —] E SN
Bl
B
A" E AI
s]

Figure 8-1

52

gmg 2aITI
Tﬁ@:@&« . gewg Trug g ¥ ¢ 2 1
- § ¢ b ® & © - § ' ¥ $ }
_ |
! m
] |
1l
W ee e Z 1 ol or INnOD LdMS
! ! .
T+we e & @ g g " omw Vg
, |
e T % o W %0, %=%! v 93y
N . o e ~ S ~o | “
o) t: o ™ % Ot D6 1,8 o3
| l
. 7 eeoe 7 m| .| It b0 HOLYT
}
{
9 0 sss O 5 2 9 L 1D AuMYD
B '
Ty Ty Wp 2y %y o Wlo=%, v o3y

i
"o “H °d D Ty o] o.x” :,8 93y

- 53

in C. During this period, operation on the left half is inhibited. Tn the
second period, the right half evaluates Qi while the left half finishes
caleulation of Rl by obbtaining Ris The latch L and the path a provide for

correct sharing of the shifting network. Once Ri is obtained, Sl can be

determined, the register transfer, now on both halves, is done and the
process repea’l;su Shift count is changed when_Q% is obtained, matching
requirements of both recursions. Path b is selected whenever Rk is being
caleulated., After 2m + 3 periods, where m is the number of radix 16 digits,
the result Q = Qm+l is cobtained in the A register. It is reasonable to
egtimate that the period will take 0.55-0.6 of the basic cycle so that the
total time of operation in the pipelined mode will be increased by 15% to
25%. Since the major blocks, adder with multiple formation networks and
shifting network, are veduced from two to one, and since the new data paths,
latches and the extra control are still significantly less complex than
the major blocks, the solution might be optimal.

Without going into detailed description, we mention that a pipelined
implementation is also possible in radix 2. With the assumption that
(%

) <<t the total number of full cycles will be aboutb

shift T Tgelect add’

M/3 on the average, where M is the mumber of bits, if bypassing of the

adder is perfoymed whensver SR = 0, In a pipelined version, analogous to
the one previously described for radix 16, after Sk is determined and before
the next period starts, the full scaled remainder is in the register A. 1If
the next Sk ig zero, the transfers between registers are inhibited and only
one~bit left shift on the register A is performed, making selection of the
next Sk possible. When Sk becomes non-zero, the normal operation is

regumed. Therefore, the average numbexr of full cycles can be preserved

in a pipelined version.

9. CONCLUSIONS

A radix 16 approach for implementation of the algorithms based on
the continued products (sumé), as proposed by Delugish [1] in the binary
case, has been studied. Those algorithms, in general, offer simplicity in
mechanization and uniformilty in hardware requirements for a wide class of
elementary fimctions. The use of & higher radix makes the execution of the
algorithms faster, but additlional complexity, both in the selection pro-
cedures and hardware, must be considered. For the radix 16 case, it has
been found that the selection rules remain relatively simple. Namely,
the starting difficulties disappear after the first three steps, making
the rules very simple. Furthermore, aflter performing the initial steps,

an increasing number of consbants S, is simultaneously available at each

k
successive step. This property can be ubilized to simplify normalization
or to define a variable radix method, provided fast and cheap multi-input
adder arrays are avallable. Buch a method would restore fast convergence
of the algorithms, which is, in some sense, lost by spécifying algorithms
in a step by step mode using a fixed radix. Hardware requirements for
implementation of algorithms bhased on continued products (sums) are, even
for the radix 2, greater than those of conventional arithmetic umits but
8t11l not prohibitive. A fast variable shift network, not commonly found
in conventional arithmetic units, is an essential part for the proposed
algorithme, but can be used advantageously in many other operations, like

floating point normalization, conversion between floating point and fixed

point number representations, shifting, etc.

5l

25

Only division, multiplication, logarithm and exponentisl have been
presently consideredn Whether square root, trigonometric and inverse trigo-
nometric functions can be easily:included in the radix 16 approach, remains
to he decidedrby finding corresponding gelection rules. It is belieﬁéd :
thet this is possible.

Pgince the bagic hardware is used for implementation of many algorithms,
even a deslgn with two arithmetic units would be acceptable.' The outlined
"pipeline” solution makes the entire approach more attractive, since the
most complex parts, like the adder structure with the multiple formation
network and shifting network, are shared by both processes. This solution
illustrates also a pbssible general approach in defining arithmetic algorithms:
a difficult operation is decomposed intoa get of simple processes with such
interdependencies that the overlapping of thelr execubtion iz feasible. In
this particular case, the normalization and the regult evaluation are two

such processes.

[1]

el

[3]

[4]

[5]

{6l

[7]

[8]

LIST OF REFERENCES

B. G. DelLwgish, "A class of algorithms for automatic evaluation of
certain elementary functions in a binary computer," Report No. 399,
Department of Computer Science, University of Illinois, Urbana,
June 1970.

J. E. Robertson, "A new class of digital division methods," IRE
Transactions on Electronic Computers, vol. EC-7, pp. 218-222,
September, 1958.

, Lecture Notes for Computer Science Courses 394
(Fall 1970) and 482 (Spring 1971), Department of Computer Science,
University of ITllinoig, Urbana.

D. E. Atkins, "A study of methods for selection of quotient digits
during digital division,” Report No. 397, Department of Computer
Science, University of Illinois, Urbana, June 1970.

J. BE. Volder, "The CORDIC trigonometric computing technique,” IEEE
Transactions on Flectronic Computers, vol. EC-8, No. 5, pp. 350—53h
September 1959.

J. 8. Walther, "A unified algorithm for elementary functions," AFIPS
Conf. Proc., vol. 38, pp. 379-385, Spring Joint Computer Conference
1971.

W. H. Bpecker, "A class of algorithms for InX, ExpX, SinX, CosX,
Tan™'x, and Cot™lX," IEEE Transactions on Electronic Computers,
vol. EC-1%, No. 1, pp. 85-836, February 1965.

1

R. L. Davis, "The ILLIAC IV processing element,"” IEEE Transactions on

Computers, vol. C-18, No. 9, pp. 800-816, September 1969.

56

- APPENDIX

A. Derivation of equations u, = f(ﬁl)

, ¢ P
We defined Ul = ¥ ui2 1. From the Table 2.% it can be ochserved that
i=1

ui—_'fi(rj) isl’ royg 6

LB
It

O, svey I}'

Uging minterm notation we obtain:

- for To = 1:
"don't care" minterms are My Ty eeey Tg
Up = U, = 0
U = myg tmyy =T,
W= My F M, = (Eé + Eé);ﬁ (A1.1)
ug = T,
ug = Mz =TTy

- for rO = 0:

T 1 " .

don't care” minterms are m m5, caey mlS'
Uy = U, = uz = = 0
(Al.2)

=
il
=]
[

57 T T Fahy

116 = ml = 1'51‘11-

" 58

Combining (Al.1l)} and (Al.2), equations for step k = 1 are:

ul = u2 = 0

1.15 = I‘O‘Ife 7 ‘

‘i1+ = 1T, (T, + r,) | | (a1.3)
11.5 = I‘O - TBI.,-F

Y6 = T3Ty

Derivation of equations u, = f(ﬁe}.
- for Ty = 1:
"don't care" minterm are My Myy weey My
ul=u2=u3=u4:0
U, =1 : (AL.4)

Vg = Mg b mg b m, +mg Fm km =T 4 Eé(;5+§ﬁ)

- Tor ro = Q1

"don't care" minterms are Mygy Moy eeey Byg

ul = u2 = u3 = uLL = 0

U= my+m o m, s +om 4 m = ;i(§é+55) (A1.5)
Ug = Wg o+ m chmg + my + m10.=) TPy

but u_ and u6 can be given also as:

p)

u, = ?i(§é+§5) +ry

according to remarks given after Table 2.k.
Therefore, for step k = 2
uy = uE = u3 = u.lL =0
5 =T+ Ei(§é+§5) + ¥ (A1.6)
U = ro(rl+r2r3)

u

