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Abstract
Key identities and fundamental notions of mathematics such as symmetry ap-

pear in an exposition linking three relationships - groups of equations - involving
consecutive integers.

1 Introduction

Mathematics structures pattern ideas. Two authors [1], [5] point to patterns lead-
ing to mathematics as a scientific (organized) body of knowledge. Number patterns
described here are regularities and related occurrences that came to the attention
of ordinary people long before there was an organized or formal field called mathe-
matics. Several situations involving quantity-patterning described here illuminate
useful identities that are basic to the field.

Observing the regularities we call number patterns , is akin to laboratory study.
Education via a laboratory approach is also called doing experiments. Many in
education see that as a way to stimulate and enliven learning the knowledge in
a field. Experiments are like number patterns: both reveal questions that led to
the current body of knowledge. Familiar (and not-so-well-known) formulae result
from experience in observing patterns. This will be shown through identities and
pattern relations below.
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Pattern awareness may be the human skill that led to a much of the knowledge
we study in school. Whether that is so or not, this paper presents three numerical
issues together, to convey how mathematics grew from pattern observation.

2 Background

A mathematical puzzle in a magazine column [2] included this key statement:

We are interested in finding a sequence of 2n + 1 consecutive positive
integers, such that the sum of the squares of the first n + 1 integers
equals the sum of the squares of the last n integers. The simplest such
sequence is

32 + 42 = 52 (1)

While students often learn about the Pythagorean theorem and some specific
instances, neither the name nor the values in any such triple possess power to
stimulate. I found my own imagination jolted by the second equation (next section)
expressing the idea of this statement, and hope others will be similarly impacted.

Sources for this article include [6], an unavailable letter [7] mentioned there,
and [8]. The latter presents the first four such sequences. Using an observation by
[7], [6] presents the first five. However none of the available sources call attention
to pattern thinking. When it is used, this pattern case [i.e., (1)-(3); see equa-
tions beginning the next section] and a simpler example [equations (4)-(6) below],
quickly lead to mathematical concepts.

3 Observations

What value begins the series of adjacent squares? Gardner wrote that Linton [7]
gave a formula for the lowest value in an equation like the two that follow:

102 + 112 + 122 = 132 + 142 (2)

212 + 222 + 232 + 242 = 252 + 262 + 272 (3)

Instead of the lowest value, view this through pattern thinking. That leads first
to looking at these three equations in terms of symmetry, and then to the general
case. Start with the number of entries on the left side: always one more than how
many are on the right. Symmetry is present (and is the most useful general pattern
notion). The symmetry is about the largest of the numbers (before squaring) on
the left (expression with most entries).
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Divide the numbers that are squared into three groups: those lower than the
value closest to, and left of, the equals sign; that number itself; and those on the
right side of the equality.

In (1)-(3), but actually any consecutive squares equation, all terms are derived
by counting from the particular value we just isolated (one of three groups). That
value is always immediately left of the equals sign when there is one more term at
its left than on the right. If we call the isolated value (with location just left of
the equals sign when the larger number of consecutive squares is on the left side)
the pivot, numbers to be squared on the left are obtained by counting down from
it (those at right, up).

There are other expressions not involving squares that are very similar to the
above equations, for example (4)-(6). In each case (1)-(6) there is a single number
from which all others in that equation are found by counting down or counting up.
Equation (7) states this algebraically for the (4)-(6) case.

1 + 2 = 3 (4)

4 + 5 + 6 = 7 + 8 (5)

9 + 10 + 11 + 12 = 13 + 14 + 15 (6)

(t− a) + (t− a + 1) + ... + t = (t + 1) + ... + (t + a) (7)

We see just a-many entries on the RHS of (7). By collecting all terms with t’ s
on the LHS and all without t’ s on the RHS we obtain the equality of items on the
extremes of (8), while the value t clearly comes from subtracting the terms where
it appears multiplied by a and (a + 1):

(a + 1)t− a(t) = t = 2(sum− of − numbers− from− 1− to− a) (8)

Writing the equation (8) parenthetical expression in standard mathematical
notation gives:

t/2 =
a∑

i=1

i = a(a + 1)/2 (9)

The relationship at the right side of equation (9) is readily demonstrated by
writing two rows of numbers 1 through a, one below the other but in reverse order.
Vertically adding similarly-located values gets just a entries that all are (a + 1)
in value. But that addition yields sum-of-the-numbers-from-1-to-a twice:
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2
a∑

i=1

i = a(a + 1) (10)

We now know that in an expression like (4)-(6) a number just left of the equals
sign (side with larger number of terms) has value t ; that t begins a counting down
and up process that is behind such an equality; and that t has value calculated
as follows using only the number of terms on the right (fewer entries), a :

t = a(a + 1) (11)

Linton’s formula for that lowest value, which we’ll call b, in terms of a for the
number of entries on the right side of the equation, is:

b = a(2a + 1) (12)

4 Squares

The significant issue raised by [2] is, for consecutive squares, not what lowest value
appears in such expressions [e.g., (1)-(3)], but how is the pivot to be found . Begin
with expressing the consecutive square property by extending (7):

(t− a)2 + (t− a + 1)2 + ... + t2 = (t + 1)2 + ... + (t + a)2 (13)

Again, the terms - numbers that are squared - are in three groups. One consists
solely of the pivot, t . All other numbers to be squared are obtained by counting
down or up from it. But we know:

(c− d)2 = c2 − 2cd + d2 = (c2 + 2cd + d2)− 4cd = (c + d)2 − 4cd (14)

The property displayed in (14) applies to (13) and creates a simple result.
When two numbers are added or subtracted and the result is squared, they yield
the same squared terms and only differ in the sign of their cross-products. Every
minus element in (13) has a corresponding plus term except t2 itself. This means
that (13) can be rewritten:

t2 = 4
a∑

i=1

ti (15)

This simplifies to:

t = 4
a∑

i=1

i (16)

4



But due to (10), the expression for sums of integers from 1 to n, (16) can be
restated more simply in an expression similar to equation (11) for the linear case,
as:

t = 4
a∑

i=1

i = 2a(a + 1) (17)

5 Values

To see how the identities may have come out of observing patterns, we coin words
for the above concepts, where the algebra used symbols. E.g., in the analysis a
was helpful. Let’s call that the order. The symbol b can stand for base or bottom.
That value is each consecutive square equation’s lowest value. The observed values
for order and base of equations (1)-(3) follow in tabular form (Table 1). Notice
that the product of order and number of entries is the base (entries refers to the
total number of terms or elements in an equation). Stated algebraically, this is
Linton’s formula, (12), namely a(2a + 1) = b.

order base number of entries
1 3 3
2 10 5
3 21 7

Table 1: Product Pattern

Another table, Table 2, shows symmetry about the pivot. It also displays
pattern relationships between characteristics of different order equations.

(count down from) pivot = (count up from)
3 4 = 5

10 11 12 = 13 14
21 22 23 24 = 25 26 27

Table 2: Symmetry Pattern

Note that the number of left side terms times the largest value on the right
divided by the number of right side terms is the base of the next higher order
equation. Because we are counting up from the pivot the largest value on the right
is t + a. Hence this statement can be rendered algebraically as:

(ta + aa)(aa + 1)/aa = ba+1 (18)

Since (12) holds in general, (18) can be rewritten using ba+1 = (a+1)(2a+3) :
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(t + a)(a + 1)/a = (a + 1)(2a + 3) (19)

Algebraic manipulation quickly yields the extremes of (17), t = 2a(a + 1).

6 Square Sum of Summed Squares

A series of consecutive squares summed begins with unity. As the number of
elements summed increases, an interesting fact appears. The total is only square
when last number squared is twenty-four [4] . (For more detail on this question
see [3] ; proof is beyond the scope of this item.)

Watson’s proof depends on another summing squares relationship, one that
equates the sum of squares beginning at one and progressing through the integers
to some value n as the product of three factors in n. The relationship is:

12 + 22 + ... + n2 = n(n + 1)(2n + 1)/6 (20)

Although 12, 18, 24, 30 and 36 all are evenly divided by 6, the only one of
these candidates for n so that (17) is square is n = 24.

The way to establish (17) begins with the first few values of such a sum as
n increases from unity. One can find these as 1, 5, 14, 30, and 55 by direct
computation and then notice each satisfies the right hand side of equation (17).
With (17) known true at some value, it can be proven by a simple process. The
process involves this observation: if it holds at say n implies or causes it to also
be valid at (n+1), then as long as it is true for some case n it must be true for any
n. Its truth at the five numerical values indicates a pattern. The patterns makes
it worth investigating this relationship:

n(n + 1)(2n + 1)

6
+ (n + 1)2 =

(n + 1)(n + 2)(2n + 3)

6
(21)

Evaluating the two expressions in (18) by multiplying out terms gives the same
result. Hence (17) is true in general.

Watson demonstrated n = 24 is the only value so a sum of numbers squared
from 1 to n itself is square (viz.,(17).) n = 24 causes the sum value from (17) to
be 4900 = 702.

7 Conclusion

Mathematics began with agriculture and commerce. We could describe it as num-
bers, geometry and trigonometry set down with proof and rigor. We have seen three
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pattern relationships involving numbers and two identities that concisely portray
notions present in them.

Today’s version of this mathematical field of knowledge grew. It is now a
complex structure that many of those at the learning, and some at the teaching,
side of education, find intimidating. The complexity is in part the result of how
the early knowledge has been influenced and expanded by needs in economics,
medicine, physics, engineering, and computing. Historically proof and relevance
to new knowledge (e.g., irrational numbers in mathematics), made (1) and the
Pythagorean theorem central, and (2) unimportant. But what is most important is
to keep interest alive in both students and their teachers. The number relationships
displayed here can be used to address this issue. There is great value in maintaining
a sense of wonder about mathematical issues and elements. The above exposition
examined numbers, patterns, identities, and proof-like reasoning. We hope that
these cases offer students and teachers a way to stimulate mathematical learning.
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