
An Online Collaborative Ecosystem for
Educational Computer Graphics

Garett D. Ridge
garett@cs.ucla.edu

Computer Science Department
University of California, Los Angeles

Demetri Terzopoulos
dt@cs.ucla.edu

Computer Science Department
University of California, Los Angeles

Figure 1: Some interactive panels from our collaborative online code editor, the “Encyclopedia of Code”.

ABSTRACT
We introduce a coding framework that supplements introductory
computer graphics courses, with the goal of teaching graphics fun-
damentals more effectively and lowering the excessive barrier of
entry to 3D graphics programming. In particular, our framework
provides tiny-graphics.js, a new WebGL-based software library for
implementing projects, including an improved organization sys-
tem for graphics code that has greatly benefited our students. To
mitigate the difficulty of creating 3D graphics-enabled websites
and online games, we furthermore introduce the “Encyclopedia
of Code”—a World Wide Web framework that encourages visitors
to learn 3D computer graphics, build educational graphical demos
and articles, host them online, and organize them by topic. Our
own contributed examples include various interactive tutorials and
educational games. Some of our modules expose students to new
graphics techniques, while others explore new modes of online
learning, collaboration, and computing. In comparison to earlier
online graphics coding platforms and mainstream graphics edu-
cational materials, the resources that we have developed offer a
significantly unique set of features for both inside and outside our
classrooms.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
Web3D ’19, July 26–28, 2019, Los Angeles, CA, USA
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6798-1/19/07. . . $15.00
https://doi.org/10.1145/3329714.3338133

CCS CONCEPTS
•Computingmethodologies→Computer graphics; •Applied
computing → Computer-assisted instruction; • Software and its
engineering→ Software libraries and repositories.

KEYWORDS
Computer Graphics education; WebGL; tiny-graphics.js; JavaScript
Library; Encyclopedia of Code.
ACM Reference Format:
Garett D. Ridge and Demetri Terzopoulos. 2019. An Online Collaborative
Ecosystem for Educational Computer Graphics. In Web3D ’19: The 24th
International Conference on 3D Web Technology (Web3D ’19), July 26–28,
2019, Los Angeles, CA, USA. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3329714.3338133

1 INTRODUCTION
Creating computer graphics visualizations while problem solving
is a great way to make topics seem more intuitive. So how does a
student, a programmer, or even a mathematician learn to make use
of computer graphics for the first time? Is there a “right way” to
learn this skill? At universities, teachers in graphics courses are
tasked with finding the answer.

Some students begin graphics courses without a programming
or math background, and yet graphics can be a way for them to
gain such a background. Even those who are outside the university
system can benefit from learning graphics from a programmer’s
or mathematician’s perspective, in order to increase their under-
standing of both, rather than trying to glean this skill from online
graphics tutorials, which may not emphasize such fundamentals.

Unfortunately, due to numerous complex steps, most of today’s
approaches to creating a low-level, math-based graphics program
come with a substantial learning curve. The initial obstacles do not
particularly help the learner acquire the math and programming

https://doi.org/10.1145/3329714.3338133
https://doi.org/10.1145/3329714.3338133
https://doi.org/10.1145/3329714.3338133

Web3D ’19, July 26–28, 2019, Los Angeles, CA, USA Ridge and Terzopoulos

intuition that they ultimately seek, promised by gaining program-
matic control over visualizations.

1.1 Contributions
The overarching contribution of our work is to lower the difficulty
for graphics learners by eliminating steps, and to make the job of
graphics instructors easier as well. We offer source code and 3D
web-based content that can supplement a university or college-level
Computer Graphics course. We also offer a novel internet-based
framework for supporting and expanding that content.

First, we provide “tiny-graphics.js” (on GitHub, at URL https://
github.com/encyclopedia-of-code/tiny-graphics-js), a new WebGL-
based programming library for implementing projects in the class-
room. It is a single-file JavaScript utility. Unlike popular 3D graphics
frameworks like ThreeJS [Dirksen 2013], tiny-graphics.js is purpose-
built for education. It is small enough to accompany an assignment,
and has a strong record of such use with our own assignments. It is
designed to organize the 3D graphics process into object-oriented
modules for the programmer, sparing them from clutter.

Second, we preview a new online coding platform that uses tiny-
graphics.js. The website, called the “Encyclopedia of Code” (URL
http://encyclopediaofcode.glitch.me/), encourages web visitors to
learn graphics. Without installing anything, anyone can use its
online editor to build educational graphical demos and tutorials,
host them online, and organize them by topic. Our goal is to build a
crowd-sourced repository of remixable 3D demos and educational
tutorials. This consists of one unified codebase, so our encyclope-
dia’s examples can collectively serve as a programming engine in
addition to being a source of documentation and tutorials.

Our platform’s mission is to unify and democratize the creation
of visual tutorials. We also deliver to the masses their easiest option
for the creation and prototyping of low-level 3D programs. Together
with our code library and its examples, we introduce new tools and
paradigms for education, especially in topics relevant to Computer
Graphics. Our unique contribution is a system-wide reorganization
of the process of making graphics, thereby making the whole task
friendlier for students, researchers, and programmers.

2 RELATEDWORK
Our tiny-graphics.js software library serves as a direct replacement
of software-based course materials designed by Edward Angel.
Angel created new ways to teach graphics, and was additionally
part of an effort to unify graphics education at ACM SIGGRAPH
2017, calling for submissions of unique and interesting assignments
for graphics courses [Duchowski et al. 2017]. Our work aspires to
similar ends.

The tiny-graphics.js library has accompanied our university’s
Introduction to Computer Graphics course assignments since 2016,
replacing our use of supplemental code from the textbook by Angel
and Shreiner [2014] entitled Interactive Computer Graphics: A Top-
Down Approach with WebGL. As this widely cited book has been
used as the basis for SIGGRAPH’s introductory graphics courses
in recent years [Angel and Haines 2017; Angel and Shreiner 2016],
it sets the standard for graphics education. Compared to Angel’s
library, our tiny-graphics.js library has surpassed its original scope

in many ways, offering improved educational utility, organization,
functionality, and performance.

The most famous of other efforts to pre-organize the process of
3D graphics programming have resulted in large engines such as
ThreeJS for WebGL [Dirksen 2013], or for offline use, large propri-
etary commercial graphics modeling suites like Maya [Govil-Pai
2006]. Angel [2017] points out that such large frameworks are un-
suitable for the engineering classroom, since they purposefully hide
low-level architectural details that engineering students need to
see. Our own tiny-graphics.js is purpose-built for education and
keeps students close to these details. Its current scope is focused
merely on easing students into the organization of the graphics
process, such as managing shaders and geometry. In its current
phase, it should not be compared to industrial tools like ThreeJS
outside this educational niche because of an important difference:
Our source code is small enough for a student to read and under-
stand completely, including all the WebGL calls inside. The same
cannot remotely be said of ThreeJS’s source code. Besides being an
API, our library is meant via its size and readability to suggest an
organizational scheme for all graphics programs, not just ours.

There have been prior attempts to integrate graphics courses
with the internet. Angel [2017] describes using his textbook and the
Coursera platform to host a Massive Open Online Course (MOOC),
which 5,500 students began. Bourdin [2016] evaluated the few Com-
puter Graphics MOOCs in existence by supplying their own stu-
dents. They identified several pitfalls, including a low completion
rate attributed to the demotivating impersonal aspect of online
courses. Their students lost the Socratic eagerness to impress the
(distant) teacher. Our online platform compensates for this by al-
lowing submission of finished demos, sharing, and showing off.

Project Jupyter [Perez and Granger 2015] includes interactive
web editors and tutorials not unlike our educational platform. Jupyter
Notebooks are a means of publishing a computational method that
can be readily read and replicated using a web browser. They embed-
ded panels of code, prose, and results within the HTML document.
Lines of code in their editors appear in an order that suits the
documentation presented around them, an integral characteristic
of Knuth’s Literate Programming [Knuth 1984]. Our system goes
further than Project Jupyter in several ways. The full interactiv-
ity of Notebooks is hidden from casual, untrained web visitors; to
see the Notebooks as more than a static page requires either third
party web tools or the installation of Python packages. Our own
“Active Textbooks” described in Section 4.2 can instantly benefit
all web visitors, not just programmers or power users. Secondly,
Notebooks are hosted by individuals (such as on GitHub). There is
no central repository like ours that easily allows users to generate
and host new Notebooks themselves for purposes of remixing or
rapid experimentation. Lastly, Notebooks are often graphical in
nature, but usually only by plotting 2D charts and graphs. They do
not generally use 3D or involve the graphics pipeline or GPU in
any way, nor do they create 3D HTML canvas contexts (WebGL) as
we do. Notebooks are thus less suitable for teaching 3D graphics
or helping others develop low-level graphics programs, engines, or
games.

Code.org is a nonprofit dedicated to expanding access to Com-
puter Science, and they investigated the effects of their own pro-
gramming instruction website [Kalelioğlu 2015]. Their “Hour of

https://github.com/encyclopedia-of-code/tiny-graphics-js
https://github.com/encyclopedia-of-code/tiny-graphics-js
http://encyclopediaofcode.glitch.me/

An Online Collaborative Ecosystem for Educational Computer Graphics Web3D ’19, July 26–28, 2019, Los Angeles, CA, USA

Code” campaign [Wilson 2014] uses Computer Science games in the
classroom to engage tens of millions of the world’s K–12 students.
The online games listing for the Hour of Code collects the same
sort of interactive educational programming demos that our Ency-
clopedia of Code seeks to crowd-source, and some of them even use
WebGL. However, the workings of their games is not shown, which
is a lost opportunity to educate. Many of their sponsors’ contributed
games overlap in topics of basic programming, quickly bottoming
out in educational value. With our platform’s encyclopedia orga-
nization, there are as many opportunities to engage students with
such demos as there are topics in the Computer Science curriculum.
Our platform, unlike theirs, includes free hosting for individual
visitors to use for sharing new educational games or for remixing
programs during experimentation.

The arts-supporting “Processing” project [McCarthy et al. 2015]
includes the p5.js JavaScript library for making interactive graphical
code editors and tutorials, as well as a website containing examples
on diverse topics. Academics have used its embeddable web panels
to create cloud tools, enabling their students to experiment with
graphics and robotics programming [Zubrycki and Granosik 2017].
The p5.js editors have no “save” button nor free re-hosting.

Hartmann et al. [2007] made an academic attempt to democratize
application development via collaborative coding. Like our project,
their “d.mix” tool was an earlier exploration of what happens when
web visitors of any skill level can host pages and remix each oth-
ers’ pages into novel creations. Only certain major website APIs
were supported, and unlike our web-based system, d.mix must be
installed to be used.

Selwyn and Gorard [2016] explored modern students’ use of
Wikipedia as an academic resource. Although the Wikipedia model
of collaboration has produced comprehensive educational materials,
our platform can offer additional dimensions of 3D visualization,
interactivity, and automation. Wikipedia articles are purely reading
resources generally without an associated program for the com-
puter to work on while the user reads. On our our platform, the
computer’s workload when rendering an article can either draw
a visualization for the current visitor or perform topic-relevant
calculations that are cached server-side to benefit concurrent or
future visitors.

Similar websites such as BabylonJS’s tutorials, WebGL Play-
ground, Glitch, D3JS, and Shadertoy exist, but each merely includes
a specific subset of the features our platform offers, while other im-
portant features are missing, such as interactivity in documentation,
free hosting and remixing for individuals, transparency, or control
over the entire source code as opposed to a single sub-component
or shader program.

3 MOTIVATION
In terms of preparation and learning, it is costly to build prototypes
using low-level 3D graphics programs today. A common alternative
is to forgo low-level control, and to employ overpowered industrial
tools to wrap basic graphics functionality—the simple mathematics
of projecting 3D triangles onto a 2D plane of pixels.

Graphics beginners are faced with long lists of setup steps, es-
pecially in the case of newer “shader-based” approaches.1 These
approaches are both more complex and harder to learn. The graph-
ics learning curve is extreme. Drawing just a single triangle requires
secondary “shader” programs, multiple types of GPU memory man-
agement, and at least three computer languages (in the case of
WebGL). Mandatory setup steps to initialize the graphics card (GPU)
give it the shader program code and any raw data buffers pertinent
to the 3D scene, and obtain pointers to these in GPU memory. Even
after this setup, all the subsequent shape-drawing actions of the
programmer are still cluttered with boilerplate code for loading and
switching between pointers to the GPU. Nothing is drawn without
these steps [Angel and Shreiner 2014]. There is no built-in way to
organize them.

Common graphics card interfaces exposed for doing the above
steps are called DirectX and OpenGL, the latter being more widely
available and more prevalent in education [Angel and Shreiner
2014]. Regardless, graphics methods all follow a similar pattern.
The phrase “OpenGL program” is widely taken to imply C++ due to
the ubiquity of the language in early graphics education, but it need
not be—Python, Java, and JavaScript can make the same OpenGL
calls. 3D Graphics programming in one language feels familiar in
all the others.

JavaScript is currently the onlymeans of running code on browsers
inside of web pages. When JavaScript is used, OpenGL (version ES)
commands can be used which are then called WebGL, but they are
still the same API function calls as would appear in C++.

Angel [2017] described his rationale for eventually moving his
helpful C++ based libraries over to WebGL. He lamented a worsen-
ing learning curve of C++ graphics setup, citing difficulty in setting
up uniform C++ compiling environments for all students, who also
have inconsistent hardware. Angel found that WebGL has compa-
rable performance to C++, plus the advantages of a standardized
environment on all platforms (including phones), an interpreted
code engine that aids development, and advanced coding tools built
right into modern web browsers.

We too have found WebGL to be the current best platform for
graphics instruction and training. Code examples that run inside of
websites are more easily analyzed, packaged with inline tutorials,
compiled to any machine, debugged, hosted, shared, and remixed.
JavaScript’s presence of functional programming styles have spe-
cific graphics applications, and tend toward smaller total source
code. We make full use of the 2015 “es6” version of JavaScript,
which adds further brevity and power to the language. Perfor-
mance workarounds such as WebAssembly and Emscripten can
run at near native speeds. JavaScript’s benefits for prototyping and
sharing code on the web are clear.

4 THE TINY-GRAPHICS.JS LIBRARY
The tiny-graphics.js file factors away the repetitive logic of GPU
communication into reusable objects. It gives a JavaScript program
access to linear algebra routines, useful user-interface controls and

1Graphics tutorials online abound that still use outdated “pre-shader” coding
paradigms, which are alluring due to their simplicity. However, support for their
older commands has been removed from new graphics cards, and never existed in web
browser implementations. Eventually it dawns on newcomers that they must commit
to learning the new way [Davidovi’c 2014].

Web3D ’19, July 26–28, 2019, Los Angeles, CA, USA Ridge and Terzopoulos

Figure 2: These animation projects were created by students using our tiny-graphics.js library during offerings of our univer-
sity course Introduction to Computer Graphics. The library has been an effective educational tool, both for easing the students
into learning graphics programming, and for enabling their programs to achieve visual results like these using little more
than mathematics. This was a motivating force in conceptualizing and implementing course projects. Section 6 presents our
observations about the project submissions.

readouts, and drawing utilities needed by modern shader-based
graphics.

The tiny-graphics.js framework has been used during eight offer-
ings of our university’s course Introduction to Computer Graphics.
It was rewritten for each new generation of students using prior
students’ feedback about points of confusion. The instructors of our
course attest that tiny-graphics.js is enabling students to progress
further by the end of the course than before, as evidenced by what
topics appear in their submitted term projects. Our term projects
consist of a short video or game that students present in a competi-
tion (Figure 2).

Prior to tiny-graphics.js we used the small linear algebra soft-
ware library provided with the textbook [Angel and Shreiner 2014]
enabling students to get started with hands-on graphics program-
ming experience. Angel included supplemental code and links to
demos that run inside websites. Since these demos are presented as
fully working units, we found that our students liked adapting them
when beginning projects. However, we observed students would
later have trouble and produce spaghetti code when extrapolating
these demos to the desired complexity of a full project, having been
locked in to the textbook’s loose organizational scheme.

The second chapter of the textbook is spent building a “hello
world” like program that displays one triangle, showing students
the minimal code needed to draw graphics. This leaves unanswered

the question of how to organize a larger graphics program, the
sort with multiple scenes, which our students’ projects attempt.
There is no consensus on an answer across WebGL tutorials that
can keep all the unrevealing and cluttersome “boilerplate” code
from being a distraction to the educational experience. Typically,
as in Angel’s demos, several lines of GPU management code are
mixed in between every action.

Our chosen organization factors away this repetitive logic, hiding
the boilerplate code. The source code region inside which students
work exposes only the concepts that matter to the student. In some
examples especially (Section 5.2.6), students only see lines of code
about concepts with which they expect to deal, such as the matrix
transforms and vector math that their instructor describes in lecture.

4.1 Improvements
Our tiny-graphics.js library transcends the approach in [Angel
and Shreiner 2014] and other academic tutorials by organizing the
user’s graphics code, while remaining flexible enough to allow the
programmer to selectively choose dynamic pieces of their program.
Those pieces are typically shape vertex arrays, shader programs,

An Online Collaborative Ecosystem for Educational Computer Graphics Web3D ’19, July 26–28, 2019, Los Angeles, CA, USA

texture images, or entire scenes.2 Our first improvement was to rec-
ognize all of those as important logical units into which a graphics
program naturally subdivides; our library therefore encapsulates
each of these pieces in an object-oriented structure.

We designed tiny-graphics.js to flexibly switch between these
encapsulated structures, while fitting in a single easily digestible
file small enough to supplement a textbook or an assignment. It
provides Document Object Model (DOM) elements and keyboard
interfaces so user input can trigger the activation of different en-
capsulated structures in the program. It sets up the elements of
graphics programs, such as shapes, shaders, and scenes, each encap-
sulated in a single JavaScript class made by extending base classes
such as Shape and Shader. The base classes commit their data to
GPU memory when necessary, and record to which HTML canvas
region they are registered in case multiple display areas should ap-
pear on the website. By encapsulating scenes as objects, the library
simultaneously draws potentially multiple scenes per canvas in an
event-driven fashion. Additional classes manage the overall WebGL
process.

4.2 Active Textbooks
Traditionally, demos provided to supplement a programming text-
book suffer from the inherent limitation of existing on a separate
medium from the textbook itself. Students must interrupt their
reading and switch to a computer to view them. To get around this
structural restriction, we now describe howwe combine educational
materials with our demos.

Our library’s 3D animations can benefit websites across the
whole internet due to our embeddable content. All the different
types of UI content tiny-graphics.js can display on a web page are
each procedurally generated as embeddable, highly portable panels.
We insert UI panels into the DOM tree wherever the user has left a
placeholder HTML tag in their web document, accommodating any
existing content and layout. In JavaScript the user simply instan-
tiates certain UI “Widget” classes defined in our object-oriented
system, which we considered as more logical units to break off from
the process of presenting graphics. This short JavaScript call also
can appear alongside the placeholder tag, leaving the rest of any
existing document intact with minimal footprint.

The resulting system is quite flexible. When the user puts a
“Canvas Widget” from our library on their page, they will see a
working WebGL region with an interactive 3D program. The user
may pass into it any defined JavaScript “Scene” subclass that draws
something.

To display the code of that “Scene” subclass instead, the user
would pass that same Scene object into a “Code Widget” and embed
that on their page. This generates a color-coded navigator that
highlights how some or all of the source code works, including
inline links to definitions wherever a class name appears.

2Vertex arrays are a necessary part of today’s graphics programs. They are a chunk
of arbitrary data that is divided up per point, supposing a collection of points. The
data is copied to the GPU and re-used to draw similar shapes efficiently. Shaders are
secondary programs, separate from the JavaScript and in their own language, written
for the GPU to execute. A shader program’s job is to define two things: Where a drawn
shape will land onscreen, and how to color in the affected pixels. A sub-program called
the “vertex shader” performs the former, and the “fragment shader” performs the latter.
Potentially, a different shader program could be used for each shape drawn onscreen.

To see a textual explanation or tutorial article about the demo in
question, the user would pass that same Scene object into a “Text
Widget”. The HTML documentation will be extracted out of the
same JavaScript class, since we package documentation generators
inside Scene code. The Text Widget panels can recursively contain
the other panels. This means that the final document can alternate
between textual documentation, a panel that highlights a piece
of code, or an interactive 3D demo of what has been made so
far that progressively grows throughout the article, in as many
combinations as needed to walk the student through a program’s
workings.

This capability, which we dub “Active Textbooks”, allows our
users’ creations to resemble Jupyter Notebooks [Perez and Granger
2015], but with the power of WebGL, including interactive 3D an-
imated areas. Our tutorials can mix interactive areas, 3D scenes,
code navigators, and most importantly for programmers, code edi-
tors. By mixing documentation with code and presenting the code
in any desired order, we capture the essence of Knuth’s Literate
Programming [Knuth 1984] for a new, graphics-focused audience.

This year, all the documentation of tiny-graphics.js (describ-
ing how various shapes, shaders, and tiny-graphics.js itself are
designed) is being converted into this Active Textbook form. The
goal is for the student to learn how to build their own low-level
graphics engine by showing them how ours is built, piece by piece,
stopping along the way to show intermediate 3D results with which
the student may interact, or code snippets that grow in complexity
throughout each tutorial. By showing how to make our engine, we
pursue the ideal of everyone being able to make a game or graphics
engine themselves rather than merely adapting one whenever they
want to visualize any mathematical or graphical phenomenon on a
computer.

In the following section we will present our web platform for
spreading this information to the masses and democratizing the
creation of 3D graphics prototypes online.

5 THE ENCYCLOPEDIA OF CODE
Introductory graphics courses typically end by covering some of
the diverse special effects topics and applications explored by the in-
dustry. These industry techniques normally appear in the computer
graphics research literature or even make their way into textbooks.
We use them as “extra credit” topics students may add to their term
projects. Concluding the course this way encourages students to
branch off into different areas of the graphics research field.

A graphics course therefore benefits from having a supplemen-
tal repository of graphics effect examples. By collecting these we
can better field questions about the specialized branches of graph-
ics each student wants to explore. Thanks to tiny-graphics.js, it
has been fairly easy for us to create new educational examples on
any given topic. We have developed a set of working demos as
supplemental class materials. In addition to showing how to use
tiny-graphics.js in a variety of ways, they cover various graphics
techniques and applications. Some stand alone as educational pages
about the mathematical underpinnings of graphics, thereby extend-
ing educational benefits to a wider population than just the users
of tiny-graphics.js.

Web3D ’19, July 26–28, 2019, Los Angeles, CA, USA Ridge and Terzopoulos

Our “Encyclopedia of Code” thereby emerged from our univer-
sity’s Introduction to Computer Graphics course. It consists of a
web server (implemented with Node, Express, and MongoDB) with
hosting from glitch.com.

5.1 Innovation
Our crucial realization was that we can crowd-source more of
these special topics demos from other graphics experts, enthusiastic
students, or hobbyists using the Internet.

Using standard web forms, our online coding platform allows
ambitious users of our library to add their own demos of computer
graphics effects, ideally packaged with documentation and tutorials
written using our Active Textbookmodel from Section 4.2. Each new
demo gets placed on its own sub-address URL.Most contributions so
far are subtle modifications of existing demos, generated as visitors
play around with code and observe the graphical consequences of
each change.

Our back-end database is structured such that all the demos
stored there are class definitions in JavaScript source code. Each
of them can access others within the same codebase. Compared to
services like GitHub that isolate individual projects [Dabbish et al.
2012], anyone writing code for our web platform can instantiate any
JavaScript class definition ever submitted. It is acceptable to main-
tain such a full namespace because we encourage the cumulative
submissions to take the form of an encyclopedia about everything.
Within encyclopedias, one expects a name to map uniquely to a def-
inition. Our design promotes the eventual expansion of our articles
into an openly editable online encyclopedia with broad coverage,
much like Wikipedia [Selwyn and Gorard 2016], but specialized for
any topic better served by 3D visuals and interactivity.

A crowd-sourced set of JavaScript classes will be large, so rather
than sending the entire stored codebase to every web visitor, we
send source code as small, digestible educational pieces. We use de-
pendency injection to deliver minimal programs to visitors instead
of the whole codebase. In some cases only three classes (imple-
menting each of our base classes Scene, Shader, and Shape) need
injection into the website’s source code—this happens to be the
minimum amount of JavaScript necessary to use tiny-graphics.js.
Supplying small subsets of our stored source code ensures good
performance on our client pages. In addition, only the few injected
classes are displayed in the user’s code navigator, so the reader
does not see anything extraneous when trying to understand any
example programs the Encyclopedia of Code shares.

In summary, our goal is to allow anyone to make a 3D graphics
prototype without any large source code dependencies just by visit-
ing a website, an option that did not appear to exist previously. Most
existing web-based coding platforms for fast graphics prototyping
focus on 2D graphics, or lack hosting. With our platform, coders
can post their result for others to remix and adapt.

5.2 Example Pages in the Encyclopedia of Code
Next, we describe how the Encyclopedia of Code has been applied
in the classroom, via specific example 3D applications we have
hosted that offer coding help or instruction. These examples help
the instructors of our course explain graphics effects and field topic-
specific questions from students. Furthermore, our demos offer

tiny-graphics.js as a better starting point for students who wish to
adapt it into projects, and our instant online code editor makes this
process easy. The following sections describe our example pages.

5.2.1 Minimal Executable Demo. Navigation to this demo reveals
roughly the smallest possible program that can be implemented
with tiny-graphics.js. This colors in a single triangle. Despite its sim-
plicity, it shows students the organization scheme of tiny-graphics.js.
This demo comes with a “Code Widget” UI panel (Figure 1) for
source code navigation, which shows the visitor the rather short
JavaScript class that generated the graphical scene. Two inline links
that are visible in the code are one trivial shape definition (the
triangle) and one trivial shader program. Clicking nearby links
reveals all the other source code that came with it on the web page,
including tiny-graphics.js. As described in the previous section, our
web server will not send any extra code classes not needed by the
demo.

5.2.2 Dynamics Demo. This page shows an animation of falling
shapes (Figure 3). It teaches students how to animate shapes smoothly,
in incremental motions that are not restricted to known paths. To
do so, it simulates physical dynamics to compute linear and angular
velocity. The demo and its documentation show students how to
organize timestepping for maximum smoothness and reliability
according to the famous blog post “Fix Your Timestep!” by Fiedler
[2004], which decouples the simulation step rate from the frame
rate by interpolating steps.

Compared to the previous demo, this one requires more Java-
Script classes from our server, particularly for drawing the various
shapes that appear onscreen. Our server injects code for these into
the page, which in turn causes our displayed code navigator to
include many unique shape definitions. Scrolling down past the an-
imation reveals these definitions injected into the dependencies.js
file, and the visitor can click through them to explore the program.
Our demo has been helpful to students who have attempted the
realistic animation of 3D shapes, and they have incorporated its
code into many of their term projects.

5.2.3 Collision Demo. This demonstrates how to approximately
detect when 3D geometry collides using a simple mathematical
heuristic that involves change of bases and discretization. It ani-
mates a variety of flying shapes to contrast them with the hidden
collision shape. The geometric volumes stop moving and stick to-
gether in a structure whenever their rotations or translations cause
them to touch. This demo manages its time-stepping, animation,
and shape generation by re-using all of the same JavaScript classes
as the previous demo, but its definition and accompanying expla-
nation teach something different.

5.2.4 Matrix Game. Matrices are the main mathematical tool for
moving shapes into place in graphics. This educational game teaches
the concept that we observed our students to miss most frequently
on exams—the order of matrix multiplications. Our students have
difficulty performing the correct change of basis that reflects what
they are intuitively trying to do to place geometry in the virtual
world. Mistakes are not necessarily made when selecting an indi-
vidual matrix to change the basis, but when choosing the correct
left to right ordering of several matrices in a product.

An Online Collaborative Ecosystem for Educational Computer Graphics Web3D ’19, July 26–28, 2019, Los Angeles, CA, USA

Figure 3: From left to right, our demos on dynamics, surfaces, frustums, and ray tracing.

Figure 4: Colorful buttons control the Matrix Game. The
game gives 3D feedback and also shows the matrix product
mathematically, in two different ways.

Figure 5: The second level of the Matrix Game, with tar-
gets (axis arrows) whose transforms oscillate as functions of
time. Their placements correspond exactly to the matrix op-
erations that a programmer would iterativelymake in order
to draw the two faded, hinged cubes.

Our hardest exam questions ask students to choose between
several alternate orderings of the same matrices to accomplish a
certain geometric movement. When programming, they will sim-
ilarly need to sequence matrices together in the correct order to
draw shapes. Since matrix products are incrementally built within
an intermediate variable, it is difficult to build good intuition about
the whole product.

Our “Matrix Game” (Figure 4) depicts a coordinate system as
axis arrows and includes a few buttons, one for each of the basic
affine transformation matrix types. Students can first learn what
translation, rotation, scale, and shear matrices are by observing how
they modify the drawn local reference frame. For a clearer under-
standing, below the animation the final matrix product is written
two ways—as abbreviated basic matrix terms multiplied together,

and numerically as a final product affine matrix. Both update live
as the student presses buttons. A cursor shows where new matrices
will be inserted; students can switch between post-multiplying and
pre-multiplying new terms to generate either matrix order, while
observing how that changes the drawing, thus improving their
intuition.

Failure to mentally separate the code from the mathematics that
students are actually doing has been a clear source of confusion. It is
therefore important for students to see the written forms of matrix
products independently of the lines of code they would normally
type to multiply matrices in an incremental fashion. This helps
disabuse them of the flawed common question of which matrix
happens “first” or “last”.

Students can optionally play our interactive matrix visualization
as a game, in which they chase a yellow coordinate basis drawing
as it flies to different locations. Each goal must be reached with a
single edit to the product. The student must reason whether to use
pre or post multiplication when appending additional basic affine
transformation terms to their net transformation. Some gameplay
moments are directly based upon several of our course’s previous
exam questions with which students had trouble, such as one goal
that involves a rotation action counter-intuitively changing the
lengths of the axis arrows due to the presence of a scale matrix.

Our game includes additional “levels” with further educational
value. In one that teaches animation concepts, the student appends
matrices that vary over time (such as by rotating at a constant rate
or periodically back and forth). The student chases moving targets
and ultimately traces out the transformation matrices needed to
perfectly hinge two cubes at their corners (Figure 5), addressing a
common student question. Another level of the game explores the
rules of the inverse of matrix products, which students encounter
when they deal with camera matrices.

Employing this tool in class live on a projector for pre-exam
review saves the instructor time and energy compared to the tra-
ditional alternative of drawing several of these situations on a
chalkboard. Since it is public, this web page can benefit graphics
instructors the world over regardless of whether or not they are
using tiny-graphics.js.

5.2.5 Shapes Tutorial. This tutorial walks students through how
to model an increasingly complex progression of shapes, starting
with gentle examples like a triangle and tetrahedron, and ending
with a subdivision sphere. One pinwheel shape is generated using
matrices and iteration. Another example combines several squares
into a cube, showcasing the ability of our tiny-graphics.js library to
generate performance-friendly compound shapes. This approach

Web3D ’19, July 26–28, 2019, Los Angeles, CA, USA Ridge and Terzopoulos

likewise built the axis arrow shapes used in our Matrix Game (Sec-
tion 5.2.4) into a single performance-friendly buffer.

5.2.6 Transforms Sandbox. This page serves as ideal starter code
for a first course assignment, since its animation contains only lines
of code that deal with matrix transformation steps and single-line
drawing commands. To do this, it shares code with our shapes
tutorial, but as a JavaScript subclass that exposes only the function
that renders each frame of the scene. This hides all initialization
of shapes, Phong lighting, and materials in the superclass until
students are comfortable enough to look there.

5.2.7 Surfaces Demo. This example includes code that generates
arbitrary surface patches and surfaces of revolution. These range
from simple shapes such as cylinders and cones to complex func-
tions that sample and interpolate arrays of points (Figure 3). Most
shape definitions require less than a dozen lines of code thanks to a
helpful utility function that we provide for the generation of these
shapes. This function allows the user to pass arbitrary operations
as callbacks to the generator. The operations incrementally specify
one point’s location based on the previous point. We use these
input callbacks to freely deform a triangulated sheet of rows and
columns. Our Surfaces Demo is an introduction to drawing smooth
shapes in the general case. It implements numerous shapes each in
only a few lines of code, which provides students many possible
examples to adapt into their own custom shapes as they learn basic
3D modeling.

5.2.8 Frustum Viewer. This page explains the workings of view
volumes, universal tools in graphics for projecting 3D shapes onto
2D screens. The animation draws view volume shapes superim-
posed onto a 3D scene. This is a visual diagnostics tool that can
augment any loaded scene, and does so to concurrently draw the
view volume of that scene. Figure 3 shows how the frustum can
project simple scenes (such as several balls) onto one of its 2D
planes using ray tracing, a feature that updates live as the frustum
is moved or switched between orthographic and perspective. Our
Frustum Viewer promotes understanding of projection matrices, in
source code small enough to explore and understand. It furthermore
includes a useful utility function that, given any projection matrix,
can recover the locations of the corners of the view volume.

5.2.9 Ray Tracer. In our introductory graphics course, we have tra-
ditionally issued an assignment that requires students to complete
a partial implementation of a real-time CPU-based ray tracer using
WebGL, which is shown in its complete form in Figure 3. Our ray
tracer adapts the code from our Frustum Viewer to generate rays.
This assignment allowed students to explore ray-volume intersec-
tions, recursion, and the formulas of Phong shading. As shown in
Figure 3, a scanline progresses from left to right, replacing pixels
of a non-raytraced rendering of the scene, to render reflections,
refractions, and shadows.

5.2.10 Scene Graph Manipulator. Scene graphs are a major topic
of computer graphics. These graphs help students not only to orga-
nize and re-use parts of their scene, but to reduce the calculations
their program must do. A scene graph is a tree data structure that
represents the spatial layout of a scene and the logical relationships

Figure 6: Our Scene Graph Manipulator Demo.

between its parts. Since each graph node stores a local transfor-
mation relative to its parent, the location in space of a particular
node is computed by traversing the tree down to the node, while
accumulating a product of transformation matrices on the way
down.

We demonstrate that scene graphs have powerful uses, even in
modern shader-based graphics programs that no longer depend
on them for managing some internal matrix “stack”. Among scene
graph implementations, ours is noteworthy for pairing the scene
graph with a user interface that emphasizes immediate feedback. It
allows live editing of the graph’s nodes and stored matrices. The
shape associated with the current graph node immediately redraws,
along with the shapes of any child nodes further down the branch,
since the relative change propagates down the tree. Our tool espe-
cially encourages the reuse of nodes and entire branches, allowing
the automated repetition of nodes with the touch of a button. The
visually compelling and surprising shapes that result are rewarding
and informative to the student. Figure 3 shows some of the shapes
that were built in seconds using our tool, with only a rough plan
in mind for the final shape. Repeating nodes (and their pattern of
transformations) using the UI sends them down a path that might
curve and spiral as the repetition progresses. The tool may be used
to create the highly symmetric shapes shown by procedurally re-
attaching a scene graph’s entire branches to other parts of a tree, or
by duplicating them around the tree. These compelling examples
serve as yet another tool we provide for building intuition about
the effect of the order of matrix multiplications.

6 USER STUDY AND OUTCOMES
The students enrolled in multiple offerings of our Introduction to
Computer Graphics course have reported high satisfaction with
tiny-graphics.js and the resources contained in the Encyclopedia of

An Online Collaborative Ecosystem for Educational Computer Graphics Web3D ’19, July 26–28, 2019, Los Angeles, CA, USA

Table 1: Students answered the following questions with
answers on a scale from zero (strongly disagree) to ten
(strongly agree) by choosing integers.

Question Median
Score
(0-10)

Response
Rate (n)

Is the next graphical application you make likely to
include tiny-graphics.js?

7 65

Did the organization system in tiny-graphics.js
help to free your time, enough to make you reach
topics that were farther in the graphics material (lec-
ture slides, textbook) than you otherwise might have
reached?

9 65

Did our assignments based on the tiny-graphics
framework help make you reach topics that were
farther in the graphics material (lecture slides, text-
book) than you otherwise might have reached?

9 62

Did the extra code examples posted by your TA
(special topics demos) help make you reach top-
ics that were farther in the graphics material (lec-
ture slides, textbook) than you otherwise might have
reached?

8 62

Would you have rather built your assignments and
project without tiny-graphics.js’s system of pre-
organizing your web application andWebGL calls for
you?

1 74

Are you interested in contributing to an online tiny-
graphics.js-based repository of example graphics ef-
fects?

5 61

Code. Table 1 shows glowing student responses to an anonymous
questionnaire issued using Piazza.com after the completion of our
Fall 2018 course. One question measured a high student interest in
contributing to a potential crowd-sourced collection of educational
3D web demos. Overall, this survey shows our students had no
regrets about using the resources we built for them. Otherwise our
survey’s power is limited; only limited conclusions can be drawn
from it. As of yet we are unable to experimentally rule out other
factors affecting student satisfaction, or to compare their reactions
to other platforms or libraries.

A better metric comes from the instructors of our course. Citing
their experience, they report that since introducing tiny-graphics.js,
student term projects became more consistent; they no longer in-
clude submissions suggesting that a team is lost in the material.
Figure 2 shows a sampling of student project submissions that used
tiny-graphics.js. Prior to its adoption, projects always showed a
high degree of effort and creativity, but were also quite limited
in content. Most of our saved term projects from earlier offerings
of the course showed a single scene from one or two angles. One
custom shape was required, but in some cases it was as simple as a
4 sided pyramid. The most advanced topic students reached in the
curriculum was texturing. The more recent projects in Figure 2 in-
clude more elaborate shapes like terrain and foxes (examples shown
on the right side). The newer submissions typically included several
scenes with lengthy camera movements, and more custom shapes
per project. During the Fall 2018 quarter, all the team term projects

that were submitted contained interactive controls, compared to
just 2 out of 68 projects in a 2015 run of the course, just prior to our
overhaul of the code. With tiny-graphics.js students were free to
think about things like game logic and user interfaces because the
low level details of graphics became easier for them, even though
we did not hide these architectural workings from them.

Figure 2 also demonstrates that students reached further mate-
rial within a graphics textbook. In projects students were able to
show simulated physics of elastic volumes (bottom left example),
reflections (center left), and custom shader effects (upper left). Cus-
tom shaders were previously unheard of in our course due to the
deep modifications required in the code, but in our Fall 2018 run of
the course nearly every team used custom shaders on some shapes.
They used these to explore effects like bump mapping or reflection
mapping, qualifying for extra credit. In projects that used tiny-
graphics.js, over the years we have observed successful student
implementations of advanced graphics and research techniques
such as L-systems, machine learning, computer-vision-based user
interfaces, marching cubes, the diamond-square algorithm, atmo-
spheric effects such as volumetric lighting glare and shadowing,
rippling water surfaces, fire, particle effects, elasticity, Newtonian
physics, and spline curves. These positive observations about our
term projects are our primary means of evaluating the successful
outcome of our new way of organizing the graphics coding process.

7 CONCLUSIONS AND PROSPECTS
We have introduced the educational duo of tiny-graphics.js and
the Encyclopedia of Code. The ease provided by tiny-graphics.js in
creating organized code, simple or complex visuals, and interactivity
has enabled us to create a variety of educational demonstrations
for consumption by computer graphics students. The code of each
example generates documentation that accompanies it online, thus
resembling interactive, Literate Programs. We have paired our code
library with the Encyclopedia of Code, an online platform that
accepts crowd-sourced code contributions and enables anyone to
generate and modify 3D graphics prototypes online with ease.

Our outcomes to date bode well for other universities and indi-
viduals who choose to adopt our library and online platform, as
well as for our goal of making low level graphics coding available
to the masses. In a world where anyone can read about how to use a
game engine, we would like to usher in a new world where anyone
can make a game engine themselves, in order to gain full control
over visualizing anything that they can represent mathematically.

The Encyclopedia of Code remains an ongoing effort. We aim
to improve its features, foster a community for 3D graphics on the
web, add interactive tutorials and documentation, and crowd-source
new educational articles presented as an open wiki.

For the benefit of engineering students and enthusiasts every-
where, we will advocate the expansion of our examples into an
Encyclopedia of Visual Computing that covers a variety of con-
cepts outside the traditional scope of computer graphics. Existing
student-driven efforts to expand our tutorials will hopefully give
way to outsider-led demos of creations on the Encyclopedia. Any-
one can help create a growing repository of useful code along with
beautiful, educational graphics demos.

Web3D ’19, July 26–28, 2019, Los Angeles, CA, USA Ridge and Terzopoulos

REFERENCES
Edward Angel. 2017. The Case for Teaching Computer Graphics withWebGL: A 25-Year

Perspective. IEEE Computer Graphics and Applications 37, 2 (2017), 106–112.
Edward Angel and Eric Haines. 2017. An interactive introduction to WebGL and

three.js. In ACM SIGGRAPH 2017 Courses. ACM, 17.
Edward Angel and Dave Shreiner. 2014. Interactive Computer Graphics with WebGL.

Addison-Wesley Professional.
Edward Angel and Dave Shreiner. 2016. An introduction to graphics programming

using WebGL. In ACM SIGGRAPH 2016 Courses. ACM, 5.
Jean-Jacques Bourdin. 2016. MOOCs in computer graphics. Proc. Eurograph-

ics:Education Papers (2016), 49–52.
Laura Dabbish, Colleen Stuart, Jason Tsay, and Jim Herbsleb. 2012. Social coding

in GitHub: transparency and collaboration in an open software repository. In
Proceedings of the ACM 2012 Conference on Computer Supported Cooperative Work.
ACM, 1277–1286.

David Davidovi’c. 2014. The End of Fixed-Function Rendering Pipelines
(and How to Move On). https://gamedevelopment.tutsplus.com/articles/
the-end-of-fixed-function-rendering-pipelines-and-how-to-move-on--cms-21469.
Accessed: 2018-05-25.

Jos Dirksen. 2013. Learning Three.js: the JavaScript 3D library for WebGL. Packt
Publishing Ltd.

Andrew T Duchowski, Edward Angel, Bruce Gooch, and David Luebke. 2017. CGEMS:
Computer graphics educational material. In ACM SIGGRAPH 2017 Panels. ACM, 3.

Glenn Fiedler. 2004. Fix Your Timestep! How to step your physics simulation forward.
https://gafferongames.com/post/fix_your_timestep/. Accessed: 2018-08-30.

Shalini Govil-Pai. 2006. Principles of Computer Graphics: Theory and Practice Using
OpenGL and Maya®. Vol. 190. Springer Science & Business Media.

Björn Hartmann, Leslie Wu, Kevin Collins, and Scott R Klemmer. 2007. Programming
by a sample: rapidly creating web applications with d. mix. In Proceedings of the
20th Annual ACM Symposium on User Interface Software and Technology. ACM,
241–250.

Filiz Kalelioğlu. 2015. A new way of teaching programming skills to K-12 students:
Code. org. Computers in Human Behavior 52 (2015), 200–210.

Donald Ervin Knuth. 1984. Literate programming. Comput. J. 27, 2 (1984), 97–111.
Lauren McCarthy, Casey Reas, and Ben Fry. 2015. Getting Started with P5.js: Making

Interactive Graphics in JavaScript and Processing. Maker Media, Inc.
Fernando Perez and Brian E Granger. 2015. Project Jupyter: Computational narratives

as the engine of collaborative data science. Retrieved September 11 (2015), 207.
Neil Selwyn and Stephen Gorard. 2016. Students’ use of Wikipedia as an academic

resource—Patterns of use and perceptions of usefulness. The Internet and Higher
Education 28 (2016), 28–34.

Cameron Wilson. 2014. Hour of code: We can solve the diversity problem in computer
science. ACM Inroads 5, 4 (2014), 22–22.

Igor Zubrycki and Grzegorz Granosik. 2017. Teaching Robotics with Cloud Tools. In
International Conference on Robotics and Education RiE 2017. Springer, 301–310.

https://gamedevelopment.tutsplus.com/articles/the-end-of-fixed-function-rendering-pipelines-and-how-to-move-on--cms-21469
https://gamedevelopment.tutsplus.com/articles/the-end-of-fixed-function-rendering-pipelines-and-how-to-move-on--cms-21469
https://gafferongames.com/post/fix_your_timestep/

	Abstract
	1 Introduction
	1.1 Contributions

	2 Related Work
	3 Motivation
	4 The tiny-graphics.js Library
	4.1 Improvements
	4.2 Active Textbooks

	5 The Encyclopedia of Code
	5.1 Innovation
	5.2 Example Pages in the Encyclopedia of Code

	6 User Study and Outcomes
	7 Conclusions and Prospects
	References

