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ABSTRACT
We present a surveillance system, comprising wide field-of-view
(FOV) passive cameras and pan/tilt/zoom (PTZ) active cameras,
which automatically captures and labels high-resolution videos of
pedestrians as they move through a designated area. A wide-FOV
stationary camera can track multiple pedestrians, while any PTZ
active camera can capture high-quality videos of a single pedestrian
at a time. We propose a multi-camera control strategy that com-
bines information gathered by the wide-FOV cameras with weighted
round-robin scheduling to guide the available PTZ cameras, such
that each pedestrian is viewed by at least one active camera during
their stay in the designated area.

A distinctive centerpiece of our work is the exploitation of a vi-
sually and behaviorally realistic virtual environment simulator for
the development and testing of surveillance systems. Our research
would be more or less infeasible in the real world given the im-
pediments to deploying and experimenting with an appropriately
complex camera sensor network in a large public space the size
of, say, a train station. In particular, we demonstrate our surveil-
lance system in a virtual train station environment populated by
autonomous, lifelike virtual pedestrians, wherein easily reconfig-
urable virtual cameras generate synthetic video feeds that emu-
late those generated by real surveillance cameras monitoring richly
populated public spaces.

Categories and Subject Descriptors
I.4.8 [Image Processing and Computer Vision]: Scene Analy-
sis—Motion,Tracking; I.5.4 [Pattern Recognition]: Applications—
Computer Vision; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search—Scheduling
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1. INTRODUCTION
We regard the design of an autonomous visual sensor network

as a problem in resource allocation and scheduling, where the sen-
sors are treated as resources required to complete the required sens-
ing tasks. Imagine a situation where the camera network is asked
to capture high-resolution videos of every pedestrian that passes
through a region of interest.1 Passive cameras alone cannot satisfy
this requirement. Active pan/tilt/zoom (PTZ) cameras are needed
to capture high-quality videos of pedestrians. Often there will be
more pedestrians in the scene than the number of available cameras,
so the PTZ cameras must intelligently allocate their time among the
different pedestrians, and a resource management strategy can en-
able the cameras to decide autonomously how best to allocate their
time to viewing the various pedestrians in the scene. The dynamic
nature of the sensing task further complicates the decision making
process; e.g., the amount of time a pedestrians spends in the des-
ignated area can vary dramatically between different pedestrians,
an attempted video recording by a PTZ camera might fail due to
occlusion, etc.

1.1 The Virtual Vision Paradigm
Even if there were no legal obstacles to monitoring people in

public spaces for experimental purposes, the cost of deploying a
large-scale camera network in the real world and experimenting
with it can easily be prohibitive for computer vision researchers.
As was argued in [1], however, computer graphics and virtual real-
ity technologies are rapidly presenting viable alternatives to the real
world for developing computer vision systems. Legal impediments
and cost considerations aside, the use of a virtual environment can
also offer greater flexibility during the system design and evalua-
tion process. Terzopoulos [2] proposed a Virtual Vision approach
to designing surveillance systems using a virtual train station envi-
ronment populated by fully autonomous, lifelike virtual pedestrians
that perform various activities (Figure 1) [3]. Within this environ-
ment, virtual cameras generate synthetic video feeds (Figure 2).
The video streams emulate those generated by real surveillance
cameras, and low-level image processing mimics the performance
characteristics of a state-of-the-art surveillance video system. The
virtual vision approach to surveillance in sensor networks was de-
veloped further in our recent work [4].

1.2 The Virtual Sensor Network
Within the virtual vision paradigm, we propose a sensor network

consisting of wide field-of-view (FOV) stationary cameras and PTZ
cameras to capture automatically and label high-quality video for
every pedestrian that passes through a designated region. The net-

1The captured video can subsequently be used for further biometric
analysis, e.g., by a facial, gesture, or gait recognition routine.
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Figure 1: A large-scale virtual train station populated by self-animating virtual humans.

Figure 2: Virtual Vision. Synthetic video feeds from multiple
virtual surveillance cameras situated in the (empty) Penn Sta-
tion environment.

work described here is a special instance of the sensor network ar-
chitecture proposed in [4]. The network is capable of performing
common visual surveillance tasks through local decision making at
each node, as well as internode communication, without relying on
camera calibration, a detailed world model, or a central controller.

Unlike [4], we assume in our current work that the wide-FOV
stationary cameras are calibrated,2 which enables the network to
estimate the 3D locations of the pedestrians through triangulation.
However, we do not require the PTZ cameras to be calibrated.
Rather, during a learning phase, the PTZ cameras learn a coarse
mapping between the 3D locations and the gaze-direction by ob-
serving a single pedestrian in the scene. A precise mapping is
unnecessary since we model each PTZ camera as an autonomous
agent that can invoke a search behavior to find the pedestrian using
only coarse hints about the pedestrian’s position in 3D. The net-
work uses a weighted round-robin strategy to assign PTZ cameras
to the various pedestrians. Each pedestrian creates a new sens-
ing request in the task queue. Initially, each sensing request is
assigned the same priority; however, the decision making process
uses domain-specific heuristics, such as the distance of the pedes-
trian from a camera or the heading of the pedestrian, to evaluate

2This assumption is justifiable given the success of numerous au-
tomatic static camera calibration schemes [5, 6].

continuously the priorities of the sensing requests. The PTZ cam-
eras handle each task in priority sequence. A warning is issued
when a sensing request cannot be met.

1.3 The Virtual World Simulator
Our visual sensor network is deployed and tested within the vir-

tual train station simulator that was developed in [3]. The simu-
lator incorporates a large-scale environmental model (of the orig-
inal Pennsylvania Station in New York City) with a sophisticated
pedestrian animation system that combines behavioral, perceptual,
and cognitive human simulation algorithms. The simulator can ef-
ficiently synthesize well over 1000 self-animating pedestrians per-
forming a rich variety of activities in the large-scale indoor urban
environment. Like real humans, the synthetic pedestrians are fully
autonomous. They perceive the virtual environment around them,
analyze environmental situations, make decisions and behave nat-
urally within the train station. They can enter the station, avoid-
ing collisions when proceeding though portals and congested ar-
eas, queue in lines as necessary, purchase train tickets at the ticket
booths in the main waiting room, sit on benches when they are
tired, purchase food/drinks from vending machines when they are
hungry/thirsty, etc., and eventually proceed downstairs in the con-
course area to the train tracks. Standard computer graphics tech-
niques enable a photorealistic rendering of the busy urban scene
with considerable geometric and photometric detail (Figure 1).

1.4 Contributions and Overview
The contributions of the research reported herein are as follows:

First, we demonstrate the advantages of implementing, experiment-
ing with, and evaluating our sensor network system within the vir-
tual vision paradigm. Furthermore, we develop new gaze-direction
controllers for active PTZ cameras. Next, we propose a sensor
management scheme that appears well suited to the challenges of
designing camera networks for surveillance applications capable
of fully automatic operation. Finally, we also demonstrate how our
system can be used for semantic labeling (or thematic grouping) of
the recorded video.

The remainder of the paper is organized as follows: Section 2
covers relevant prior work. We explain the low-level vision emula-
tion in Section 3. In Section 4, we describe PTZ active camera con-
trollers and propose a scheme for learning the mapping between 3D
locations and gaze directions. Section 5 introduces our scheduling
strategy. We present our initial results in Section 6 and our conclu-
sions and future research directions in Section 7.



Figure 3: Pedestrian segmentation and tracking. (1) Multiple
pedestrians are grouped together due to poor segmentation. (2)
Noisy pedestrian segmentation results in a tracking failure. (3)
Pedestrian segmentation and tracking failure due to occlusion.

2. RELATED WORK
Previous work on multi-camera systems has dealt with issues re-

lated to low and medium-level computer vision, namely identifi-
cation, recognition, and tracking of moving objects [7, 8, 9, 10,
11]. The emphasis has been on tracking and on model transference
from one camera to another, which is required for object identifica-
tion across multiple cameras [12]. Numerous researchers have pro-
posed camera network calibration to achieve robust object identifi-
cation and classification from multiple viewpoints, and automatic
camera network calibration strategies have been proposed for both
stationary and actively controlled camera nodes [5, 6].

Little attention has been paid, however, to the problem of con-
trolling or scheduling active cameras when there are more objects
to be monitored in the scene than there are active cameras. Some
researchers employ a stationary wide-FOV camera to control an
active tilt-zoom camera [13, 14]. The cameras are assumed to be
calibrated and the total coverage of the cameras is restricted to the
FOV of the stationary camera. Zhou et al. [14] track a single per-
son using an active camera. When multiple people are present in
the scene, the person who is closest to the last tracked person is cho-
sen. The work of Hampapur et al. [15] is perhaps closest to ours
in that it deals with the issues of deciding how cameras should be
assigned to various people present in the scene. Costello et al. [16]
evaluates various strategies for scheduling a single active camera to
acquire biometric imagery of the people present in the scene.

The problem of online scheduling has been studied extensively
in the context of scheduling jobs on a multitasking computer [17,
18] as well as for packet routing in networks [19, 20].

3. LOCAL VISION ROUTINES
As we described in [4], each camera has its own suite of vi-

sual routines for pedestrian recognition, identification, and track-
ing, to which we refer as Local Vision Routines (LVRs). The LVRs
are computer vision algorithms that directly operate upon the syn-
thetic video generated by virtual cameras and the information read-
ily available from the 3D virtual world. The virtual world affords
us the benefit of fine tuning the performance of the recognition and
tracking modules by taking into consideration the readily available
ground truth. Our imaging model emulates camera jitter and im-
perfect color response; however, it does not yet account for such
imaging artifacts as depth-of-field and image vignetting. More so-
phisticated rendering schemes would address this limitation.

We employ appearance-based models to track pedestrians. Pedes-
trians are segmented to construct unique and robust color-based

pedestrian signatures, which are then matched across the subse-
quent frames. Pedestrian segmentation is carried out using 3D ge-
ometric information as well as background modeling and subtrac-
tion. The quality of the segmentation depends upon the amount
of noise introduced into the process, and the noise is drawn from
Gaussian distributions with appropriate means and variances. Color-
based signatures, in particular, have found widespread use in track-
ing applications [21]. Unfortunately, color-based signatures are
sensitive to illumination changes; however, this shortcoming can
be mitigated by operating in HSV space instead of RGB space.

The tracking module mimics the performance of a state-of-the-
art tracking system (Figure 3). For example, it can lose track due
to occlusions, poor segmentation, or bad lighting. Tracking some-
times locks onto the wrong pedestrian, especially if the scene con-
tains multiple pedestrians with similar visual appearance; i.e., wear-
ing similar clothes. Tracking also fails in group settings when the
pedestrian cannot be segmented properly.

For the purposes of this paper, we assume that the scene is viewed
by more than one calibrated wide-FOV passive camera plus at least
one PTZ active camera. Multiple calibrated static cameras allow
the system to use triangulation to compute the location of a pedes-
trian in 3D, when the pedestrian is simultaneously visible in two or
more cameras. For PTZ cameras, zooming can drastically change
the appearance of a pedestrian, thereby confounding conventional
appearance-based schemes, such as color histogram signatures. We
tackle this problem by maintaining HSV color histograms for sev-
eral camera zoom settings for each pedestrian. Thus, a distinctive
characteristic of our pedestrian tracking routine is its ability to op-
erate over a range of camera zoom settings.

4. PTZ ACTIVE CAMERA CONTROLLER
We implement each PTZ active camera as a behavior-based au-

tonomous agent [4]. The overall behavior of the camera is deter-
mined by the LVR and the current task. The camera controller is
modeled as an augmented finite state machine. At the highest level,
the camera can be in one of the following states: free, tracking,
searching, and lost (Figure 4). When a camera is free, it selects
the next sensing request in the task pipeline. The sensing requests
are of the form, “look at the pedestrian i at location (x, y, z) for
t seconds.” When performing the new sensing request, the cam-
era selects its widest FOV setting and chooses an appropriate gaze
direction using the estimated 3D location of the pedestrian. Upon
the successful identification of the pedestrian in question within
the FOV, the camera uses image-driven fixation and zooming algo-
rithms to follow the subject.

Figure 4: Top-level camera controller.

Each camera can fixate on and zoom in on an object of interest.
Fixation and zooming routines are image driven and do not require
any 3D information, such as camera calibration or a global frame



Figure 5: Dual-state controller for fixation and zooming.

of reference. We discovered that traditional proportional derivative
(PD) controllers generate unsteady control signals resulting in jit-
tery camera motion. The noisy nature of tracking forces the PD
controller to strive to minimize the error metric continually without
ever succeeding, so the camera keeps servoing. Hence, we model
the fixation and zooming routines as dual-state controllers. The
states are used to activate/deactivate the PD controllers. In the act
state the PD controller tries to minimize the error signal; whereas,
in the maintain state the PD controller ignores the error signal alto-
gether and does nothing (Figure 5).

The fixate routine brings the region of interest—e.g., the bound-
ing box of a pedestrian—into the center of the image by tilting the
camera about its local X and Y axes (Figure 6, Row 1). The zoom
routine controls the FOV of the camera such that the region of in-
terest occupies the desired percentage of the image. This is useful
in situations where, for example, the operator desires a closer look
at a suspicious pedestrian (Figure 6, Row 2).

4.1 Gaze Direction Computation
Computing an appropriate gaze direction in order to bring the

desired pedestrian within the FOV of a camera requires a map-
ping between the 3D locations in the world and the internal gaze-
direction parameters (i.e., the pan-tilt settings) of the camera. This
mapping is established automatically by tracking and following a
single pedestrian in the scene during an initial learning phase.

During learning, a pedestrian is directed to move around in the
scene. The pedestrian is tracked by the calibrated stationary cam-
eras and 3D location of the pedestrian is estimated continuously
through triangulation. The PTZ cameras are instructed to track and
follow the pedestrian and a lookup table is computed for each PTZ
camera, which associates the 3D (x, y, z) location of the pedestrian
with the corresponding internal pan-tilt settings of the camera. This
yields n tuples of the form (x, y, z, α, β), where α and β are the
camera pan and tilt angles.

Subsequent to the learning phase, given any new 3D point �p,
the system can estimate the values for α and β of any camera that
can observe the point by using the nearest neighbor approximation.
This process provides only a coarse mapping between the 3D points
and the camera pan-tilt settings; however, in practice the mapping
is accurate enough to bring the pedestrian within the field of view
of the camera.

The distance of �p from the nearest (x, y, z) in the lookup table
is a good indicator of the accuracy of the computed angles. If this
distance is large, the PTZ camera invokes a search behavior to lo-
cate the pedestrian. In order to minimize the reliance on the initial
learning phase, the lookup table is continuously updated when the
PTZ camera is following a pedestrian whose 3D location is known.

Figure 6: Row 1: A fixate sequence. Row 2: A zoom sequence.
Row 3: Camera returns to its default settings upon losing the
pedestrian; it is now ready for another task.

5. CAMERA SCHEDULING
The sensor network maintains an internal world model that re-

flects the current state of the world. The internal world model stores
information about the pedestrians present in the scene, including
their arrival times and the most current estimates of their positions
and headings. The world model is available to the scheduling rou-
tine which assigns cameras to the various pedestrians present in the
scene. The cameras use the 3D information stored in the world
model to choose an appropriate gaze direction when viewing a par-
ticular pedestrian.

Following the reasoning presented in [16], the camera schedul-
ing problem shares many characteristics with the network packet
routing problem. Network packet routing is an online scheduling
problem where the arrival times of the packets are not known a
priori and where each packet must be served for a finite duration
before a deadline, when it is dropped by the router. Similarly, in
our case, the arrival times of pedestrians entering the scene is not
known beforehand and a pedestrian must be observed for some
minimal amount of time by one of the PTZ cameras before (s)he
leaves the scene. That time serves as the deadline.

However, the problem addressed here differs from the packet
routing problem in several significant ways. First, continuing with
network terminology, we have multiple routers (one for every PTZ
camera) instead of just one. This aspect of our problem is better
modeled using scheduling policies for assigning jobs to different
processors. Second, we typically must deal with additional sources
of uncertainty: 1) it is difficult to estimate when a pedestrian might
leave the scene and 2) the amount of time for which a PTZ camera
should track and follow a pedestrian to record high-quality video
that is suitable for further biometric analysis can vary depending
upon multiple factors, e.g., a pedestrian suddenly turning away
from the camera, a tracking failure, an occlusion, etc.

The scheduling algorithm must find a compromise between two
competing ends: 1) to capture high-quality video for as many as



possible, preferably all, of pedestrians in the scene and 2) to view
each pedestrian for as long or as many times as possible. The sec-
ond goal is supported by the observation that the chances of iden-
tifying a pedestrian are directly proportional to the amount of data
collected for that pedestrian. At one extreme, the camera can follow
a pedestrian for their entire stay in the scene, essentially ignoring all
other pedestrians, whereas, at the other extreme, the camera would
repeatedly observe every pedestrian in turn for a single video frame,
thus spending most of the time transitioning between different pan,
tilt, and zoom settings.

We propose a weighted round-robin scheduling scheme with a
static First Come, First Serve (FCFS+) priority policy that strikes
a balance between these two goals. The weighted round-robin
scheduling scheme is a variant of the round-robin scheduling scheme
used for assigning jobs to multiple processors with different load
capacities. Each processor is assigned a weight indicating its pro-
cessing capacity and more jobs are assigned to the processors with
higher weights. We model each PTZ camera as a processor whose
weights are adjusted dynamically. The weights quantify the suit-
ability of a camera with respect to viewing a pedestrian. They are
determined by two factors: 1) the amount of adjustments the cam-
era needs to make in the PTZ coordinates to look at the pedestrian
and 2) the distance separating the pedestrian from the camera.

A camera that requires small adjustments in the PTZ coordinates
to look in the direction of a pedestrian usually needs less lead time
(the total time required by a PTZ camera to locate and fixate on
a pedestrian and initiate the video recording) than a camera that
needs to turn more drastically in order to bring the pedestrian into
view. Consequently, we assign a higher weight to a camera that
needs the least amount of redirection to observe the pedestrian in
question. On the other hand, a camera that is closer to a pedestrian
is more suitable for observing this pedestrian, as such an arrange-
ment can potentially avoid occlusions, tracking loss, and subse-
quent re-initialization, by reducing the chance of another pedestrian
coming in-between the camera and the subject being recorded.

A danger of using weighted round-robin scheduling is that there
is a possibility that a majority of the jobs will be assigned to the
processor with the highest weight. We avoid this situation by sort-
ing the PTZ cameras according to their weights with respect to a
given pedestrian and assigning the free PTZ camera with the high-
est weight to that pedestrian. The FCFS+ policy breaks ties by se-
lecting the pedestrian who entered the scene first. The arrival times
of the pedestrians are maintained by the network and are made
available to the PTZ cameras. We did not choose other possible
tie breaking options—e.g., Earliest Deadline First (EDF+)—since
they require an estimate of the exit times of the pedestrians from
the scene, which are difficult to predict.

The amount of time a PTZ camera spends viewing a pedestrian
depends upon the number of pedestrians in the scene; however, we
have specified a minimum length of time that a PTZ camera must
spend looking at a pedestrian. This is determined by the minimum
length of the video sequence required by the biometric routines
that perform further evaluation plus the average time it takes a PTZ
camera to lock onto and zoom in on a pedestrian.

6. RESULTS
We populated the train station with up to twenty autonomous

pedestrians, entering, wandering, and leaving the waiting room of
their own volition. We tested our scheduling strategy in various
scenarios using anywhere from 1 to 18 PTZ active cameras. For
example, Figure 7 shows our prototype surveillance system consist-
ing of five wide-FOV stationary cameras situated within the waiting
room of the virtual train station. The system behaved as expected

(a)

(b)

(c)

(d)

(e)

Figure 7: (a)-(d) Wide-FOV stationary cameras situated at the
4 corners of the main waiting room in the train station. (e)
A fish-eye camera mounted at the ceiling of the waiting room.
These cameras are calibrated and the 3D position of a pedestri-
ans is estimated through triangulation.
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Figure 8: Pedestrians are assigned unique identifiers based on
their entry times; e.g., Pedestrian 1 always enters the scene at
the same time or before the arrival of Pedestrian 2. (a)–(c)
Twenty pedestrians are present in the scene. (a) The scheduling
policy for one camera: Camera 1 successfully recorded pedes-
trians 1, 2, 4, 7, 9, 10, 13, and 16. (b)–(c) Adding more cam-
eras improves the chances of viewing more pedestrians. Only
pedestrians 12, 17, 18, 19, and 20 go unnoticed when two cam-
eras are handy; whereas, with four cameras all pedestrians are
observed.

and it correctly scheduled the available cameras using a weighted
round-robin scheduling with an FCFS+ priority policy for all cases.

When only one PTZ camera is available, pedestrians 1, 2, 4, 7,
9, 10, 13, and 16 are recorded (Figure 8(a)); however, pedestrians
3, 5, 6, 8, 11, 12, 14, 15, 17, 18, 19, and 20 go unnoticed, because
they left the scene before the camera had an opportunity to observe
them. Figure 8(b) and (c) shows the results from the same run with
two and four active cameras, respectively. In the two-camera case,
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(b)

Figure 9: (a) The scene is populated with only three pedestri-
ans. (b) Twenty pedestrians, who tend to stick around, are sim-
ulated. The chances of a given set of cameras to view the pedes-
trians present in the scene increase (a) when there are fewer
pedestrians or (b) when pedestrians tend to linger longer in the
area.

even though the performance has improved significantly from the
addition of a camera, pedestrians 12, 17, 18, 19, and 20 still go
unnoticed. With four active cameras, the system is now able to
observe every pedestrian. These results support the intuitive expec-
tation that the chances of viewing multiple pedestrians improve as
more cameras become available.

In Figure 9(a), we have populated the virtual train station with
only three autonomous pedestrians, leaving all other parameters
unchanged. Given that there are now only three pedestrians in the
scene, even a single camera successfully observes them. Next, we
ran the simulation with twenty pedestrians (Figure 9(b)). This time,
however, we changed the behavior settings of the pedestrians, so
the pedestrians tend to linger in the waiting room. Here too, a sin-
gle camera successfully observed each of the twenty pedestrians.
We conclude that even a small number of cameras can perform sat-
isfactorily when there are either few pedestrians in the scene or
when the pedestrians tend to spend considerable time in the area.

In Figure 11, we compare the scheduling scheme that treats all
cameras equally with the weighted scheduling scheme that takes
into account the suitability of any camera in observing a pedestrian.
As expected, the weighted scheduling scheme outperforms its non-
weighted counterpart. The weighted scheduling scheme has higher
success rates, which is defined as the fraction of pedestrians suc-
cessfully recorded, and lower average lead time, processing time
(the time spent recording the video of a pedestrian), and wait time
(the time elapsed between the entry of a pedestrian and when the
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Figure 10: A sampling of close-up images captured by the PTZ cameras.
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Figure 11: A comparison of Weighted and Non-weighted scheduling schemes. The weighted scheduling strategy, which takes into
account the suitability of a camera for recording a particular pedestrian, outperforms its non-weighted counterpart as evident from
its higher success rates (a) and shorter lead (b), processing (c), and wait (d) times. The displayed results are averaged over several
runs of each trial scenario. Trials 1–6 comprise 5 pedestrians and 1, 2, 3, 4, 5, and 6 cameras, respectively. Trials 7–12 comprise 10
pedestrians and 3, 4, 5, 6, 7, and 8 cameras, respectively. Trials 13-18 comprise of 15 pedestrians and 5, 6, 9, 10, 11, and 12 cameras,
respectively. Trials 19–24 comprise of 20 pedestrians with 5, 8, 10, 13, 15, and 18 cameras, respectively.
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Figure 12: Scheduling results for Trials 19 and 21. Blue lines represent the entry and exit times, the blue triangles represent the lead
times, the Green rectangles represent the processing times, and the Red crossed rectangles represent an aborted attempt at capturing
the video of a pedestrian.

camera begins fixating on the pedestrian). The lower average lead
and processing times are a direct consequence of how we compute
the suitability of a camera for recording a pedestrian. An interest-
ing observation is that the average wait times do not necessarily
decrease as we increase the number of cameras. Figure 12 shows
detailed results for two scenarios, one with 20 pedestrians and 5
available cameras and the other with 20 pedestrians and 10 cam-
eras.

7. CONCLUSION
We envision future surveillance systems to be networks of sta-

tionary and active cameras capable of providing perceptive cover-
age of extended environments with minimal reliance on a human
operator. Such systems will require not only robust, low-level vi-
sion routines, but also novel sensor network methodologies. The
work presented in this paper is a step toward the realization of these
new sensor networks, as was our work in [4].

We have presented a scheduling strategy for intelligently manag-
ing multiple PTZ cameras in order to satisfy the challenging task
of capturing without human assistance close-up biometric videos

of pedestrians present in a scene. We assume that the stationary
cameras are calibrated, but that the PTZ cameras are uncalibrated.
At present, predicting pedestrian behaviors is at best an inexact sci-
ence, so we have intentionally avoided scheduling policies that de-
pend on predictions about the future, as the results will degrade
when predictions are poor. Instead, we have found the FCFS+ tie
breaking policy to be the most suitable one for our purposes.

We have demonstrated our prototype surveillance system in a
virtual train station environment populated by autonomous, lifelike
pedestrians. This simulator facilitates our ability to design large-
scale sensor networks and experiment with them on commodity
personal computers. The future of such advanced simulation-based
approaches appears promising for the purposes of low-cost design
and experimentation.

In future work, we intend to evaluate our scheduling policy more
rigorously. Also, since scalability is an issue when dealing with nu-
merous active cameras spread over a large area, we hope to tackle
the scalability issue by investigating distributed scheduling strate-
gies.
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