
Geometry-Driven Photorealistic Facial
Expression Synthesis

Qingshan Zhang, Zicheng Liu, Senior Member, IEEE, Baining Guo, Senior Member, IEEE,

Demetri Terzopoulos, Fellow, IEEE, and Heung-Yeung Shum, Senior Member, IEEE

Abstract—Expression mapping (also called performance driven animation) has been a popular method for generating facial

animations. A shortcoming of this method is that it does not generate expression details such as the wrinkles due to skin deformations.

In this paper, we provide a solution to this problem. We have developed a geometry-driven facial expression synthesis system. Given

feature point positions (the geometry) of a facial expression, our system automatically synthesizes a corresponding expression image

that includes photorealistic and natural looking expression details. Due to the difficulty of point tracking, the number of feature points

required by the synthesis system is, in general, more than what is directly available from a performance sequence. We have developed

a technique to infer the missing feature point motions from the tracked subset by using an example-based approach. Another

application of our system is expression editing where the user drags feature points while the system interactively generates facial

expressions with skin deformation details.

Index Terms—Facial animation, expression mapping, expression details, facial expressions, performance-driven animation.

�

1 INTRODUCTION

REALISTIC facial expression synthesis has been one of the
most interesting yet difficult problems in computer

graphics. There has been much research in this area, and the
reader is referred to the book by Parke and Waters [21] for
an excellent survey.

Expression mapping (also called performance-driven
animation) [6], [15], [32], [21] has been a popular method
for generating facial animations. For example, this techni-
que was used to produce some of the facial animations in
the renowned film “Tony de Peltrie.” Given an image of a
subject’s neutral face and another image of this person’s
face with an expression, the positions of the facial features
(eyes, eye brows, mouth, etc.) on both images are located
either manually or through some automatic method. The
difference vector is then added to the feature positions of a
new face to generate the new expression for that face
through geometry-controlled image warping [2], [15]. A
shortcoming of this method, as pointed out in [16], is that it
does not produce expression details such as wrinkles
caused by skin deformations. The technique proposed by
Liu et al. [16] requires the expression ratio image from the
performer, which sometimes can be difficult to obtain.

In this paper, we propose a solution which does not
require ratio images from the performer. Instead, we

require a set of example expressions of the target face,

which can be obtained offline. We call our system a

geometry-driven facial expression synthesis system. Given

the feature point positions (the geometry) of a facial

expression, our system automatically synthesizes the

corresponding expression image with photorealistic and

natural looking expression details. Because the number of

feature points required by the synthesis system is, in

general, more than what is available from the performer

due to the difficulty of tracking, we have developed a

technique to infer the feature point motions from a subset of

tracked points through an example-based approach. An-

other application of our system is expression editing, where

the user drags the feature points while the system

interactively generates facial expressions with skin defor-

mation details.
An early version of this paper was presented elsewhere

[34]. Here, we extend the work mainly in three areas. First,

we study the performance of the motion propagation

algorithm when the number of input feature points is

small. Convergence measurement results are presented.

Furthermore, we show side-by-side comparisons of the

synthesized expressions by using a small versus a large

number of input feature points. Second, we extend the

previous system to allow head pose changes by the

performer. We have developed techniques to estimate

global motion and perform motion compensation before

expression mapping. Finally, we have developed algo-

rithms to estimate the 3D poses of the performer and map

them to the target model. We show a new example of

expression mapping from a live sequence with relatively

large head pose changes and automatically tracked feature

points. The accompanying video shows the results of the

enhanced expression mapping together with head pose

changes.

48 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1, JANUARY/FEBRUARY 2006

. Q. Zhang is with the Research and Innovation Center, Alcatel Shanghai
Bell Ltd., D301, Building 3, No. 388 Ningqiao Road, Pudong, Shanghai.
E-mail: Qingshan.ZHANG@alcatel-sbell.co.cn.

. Z. Liu is with Microsoft Research, One Microsoft Way, Redmond, WA
98052. E-mail: zliu@microsoft.com.

. B. Guo and H.-Y. Shum are with Microsoft Research Asia, 6/F Beijing
Sigma Center, No. 49 Zhichun Rd., Haidian District, Beijing, China
100080. E-mail: {bainguo, hshum}@microsoft.com.

. D. Terzopoulos is with the New York University Media Research Lab, 719
Broadway, 12th Floor, New York, NY 10003-6806. E-mail: dt@cs.nyu.edu.

Manuscript received 3 Sept. 2004; revised 3 May 2005; accepted 13 June 2005;
published online 9 Nov. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number TVCG-0100-0904.

1077-2626/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

The remainder of the paper is organized as follows: We
review related work in Section 2. From Section 3 through
Section 9, we describe our algorithm for both 2D and 3D. In
Section 10, we describe the feature point inference. The
enhanced expression mapping is described in Section 11.
Section 12 describes motion compensation for handling head
pose changes. In Section 13, we describe the expression
editing application. The results are shown in Section 14.
Section 15 discusses the limitations of our system. Finally, we
conclude in Section 16.

2 RELATED WORK

Facial animation has attracted considerable attention (e.g.,
[20], [25], [31], [18], [28], [2], [13], [22], [27], [5], [23]). In this
section, we will discuss prior research that is most closely
related to our work.

There has been a lot of success on speech driven facial
animation [5], [4], [9], [8]. Speech driven facial animation
systems are mainly concerned about the mouth region,
while our method is mainly concerned with facial expres-
sions. An interesting analogy is that speech driven anima-
tion systems use audio signals to derive mouth images,
while our system uses feature point motions to derive facial
images. It would be interesting to combine these two
techniques to generate speech-driven facial animations with
expressions.

Toelg and Poggio [29] proposed an example-based video
compression architecture. They divided the face into
subregions. For each subregion, they used image correlation
to find the best match in the example database and send the
index over the network to the receiver.

Guenter et al. [11] developed a system that uses digital
cameras to capture 3D facial animations. Noh and Neu-
mann [19] developed the expression cloning technique to
map the geometric motions of one person’s expression to a
different person.

An effective approach to generate photorealistic facial
expressions with details is the morph-based approach [2],
[27], [5], [23]. In particular, Pighin et al. [23] used convex
combinations of the geometries and textures of example
face models to generate photorealistic facial expressions.
Their system can perform both expression mapping and
expression editing. For expression mapping, their system
maps one person’s expression to another person by
transferring the convex combination coefficients. A differ-
ence between our method and theirs is that we do not
require example expressions from the performer. For
expression editing, their system provides a set of easy-to-
use tools and interfaces to allow a user to design facial
expressions interactively. Their system was mainly de-
signed for offline authoring and it requires a user to specify
blending weights manually in order to obtain a desired
expression. By contrast, our system automatically computes
the blending weights. Furthermore, we have developed a
technique to infer the feature point motions from a subset.
By combining these two techniques, we can enhance the
traditional expression mapping system with expression
details. In another paper, Pighin et al. [24] used the
expression morphing model to reconstruct 3D expressions
from a video sequence. Their system did not try to map the
facial expressions to a different face model.

Liu et al. [16] proposed a technique, called the expression
ratio image, to map one person’s expression details to a
different person’s face. In addition to feature point motions,
their method requires an expression ratio image from the
performer. In contrast, our method requires only the motions
of feature points from the performer. In situations where the
feature point positions of an expression are given, but no
expression ratio images are available for this geometry, our
method is more useful. For example, when manipulating the
facial feature points in expression editing applications, the
user is unlikely to find an image of a different person with
exactly the same expression. In expression mapping applica-
tions, if the performer has markers on his/her face or if there
are lighting variations due to head pose changes, the ratio
images may be difficult to create.

Joshi et al. [12] developed a data-driven approach to
segment a face into subregions thus providing local control
to the user. A difference between their work and ours is that
we automatically propagate motion to different levels of
detail, while their technique requires the user to specify
explicitly the segmentation threshold which determines the
level of control. When applied to expression mapping,
automatic motion propagation is critical.

Pyun et al. [26] proposed a different expression mapping
approach where both source and target expressions are
parameterized based on examples, and the expression
mapping is performed by transferring the parameters of the
source expressions. Compared to their technique, our
approach does not require example expressions from the
source.

Blanz et al. [3] developed a system to create 3D animations
from a single face image or a video. Their system auto-
matically estimates the 3D face mesh, pose, and lighting
parameters from a single image. It then transfers a 3D facial
expression of a different person to the reconstructed face
model by mapping the geometric difference vectors.

3 GEOMETRY-DRIVEN EXPRESSION SYNTHESIS

Given the feature point positions of a facial expression, one
possibility to compute the corresponding expression image
would be to use some mechanism, such as physical
simulation [13], to determine the geometric deformations
for each point on the face and, then, render the resulting
surface. The problem is that it is difficult to model detailed
skin deformations such as expression wrinkles, and it is also
difficult to render a face model so that it looks photo-
realistic. We instead take an example-based approach.

Pighin et al. [23] demonstrated that one can generate
photorealistic facial expressions through a convex combina-
tion of example expressions. Let Ei ¼ ðGi; IiÞ, i ¼ 0; . . . ;m,
denote a set of example expressions where Gi represents the
geometry and Ii is the texture image. We assume that all the
texture images Ii are pixel aligned. Let HðE0; E1; . . . ; EmÞ be
the space of all possible convex combinations of these
examples, i.e.,

HðE0; E1; . . . ; EmÞ

¼
Xm
i¼0

ciGi;
Xm
i¼0

ciIi

 !
j
Xm
i¼0

ci ¼ 1; c0; . . . ; cm � 0

()
:
ð1Þ

ZHANG ET AL.: GEOMETRY-DRIVEN PHOTOREALISTIC FACIAL EXPRESSION SYNTHESIS 49

Note that each expression in HðE0; E1; . . . ; EmÞ has a
geometric component G ¼

Pm
i¼0 ciGi and a texture compo-

nent I ¼
Pm

i¼0 ciIi. Since the geometric component is much
easier to obtain than the texture component, we propose
using the geometric component to infer the texture
component. One simple idea is to first project a geometric
component G to the convex hull spanned by G0; . . . ; Gm

and, then, to use the resulting coefficients to composite the
example images and obtain the desired texture image.

A problem with this approach is that the space of
HðE0; E1; . . . ; EmÞ is very limited. A person can have
expression wrinkles in different facial regions, and the
combinatorics become intractable. So, we subdivide the face
into a number of subregions. For each subregion, we use the
associated geometry to compute the subregion’s texture
image. The subregion images are then seamlessly blended
together to produce the final expression image.

We first describe our algorithm for 2D cases where the
geometry of an expression comprises the facial feature
points projected on the image plane. In Section 9, we extend
the algorithm to 3D.

4 SYSTEM OVERVIEW

Fig. 1 presents an overview of our system. It consists of an
offline processing unit and a runtime unit. The example
images are processed offline only once. At runtime, the
system takes as input the feature point positions of a new
expression and produces the final expression image. In the
following sections, we describe each of the function blocks
in more detail.

5 OFFLINE PROCESSING OF THE EXAMPLE IMAGES

5.1 Feature Points

Fig. 2a shows the feature points that we use in our system.
At the bottom left corner are the feature points of the teeth
area when the mouth is open. There are 134 feature points
in total. Given a face image, it is possible to compute face
features automatically [14] since the number of example
images is small in our system (10 to 15 examples per
person). We choose to mark the feature points of the
example images manually.

5.2 Image Alignment

After we obtain the markers of the feature points, we align

all the example images with a standard image which is

shown in Fig. 3a. The reason to create this standard image is

that we need to have the mouth open so that we can obtain

the texture for the teeth. The alignment is done by using a

simple triangulation-based image warping, although more

advanced techniques [2], [15] may be used to obtain better

image quality.

5.3 Face Region Subdivision

We divide the face region into 14 subregions. Fig. 2b shows

the subdivision, which is designed manually. At the lower

left corner of the figure is the teeth subregion when the

mouth is open. The guideline of our subdivision scheme is

that we would like the subregions to be small while

avoiding expression wrinkles crossing the subregion

boundaries. Since we have already aligned all the example

images with the standard image, we only need to subdivide

the standard image. We create an image mask to store the

50 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1, JANUARY/FEBRUARY 2006

Fig. 1. An overview of the geometry-driven expression synthesis system.

Fig. 2. (a) Feature points. (b) Face region subdivision.

Fig. 3. (a) The standard image. (b) The weight map for blending along

the subregion boundaries.

subdivision information, where the subregion index for

each pixel is stored in its color channel.

6 SUBREGION EXPRESSION SYNTHESIS

For each subregion R and example expression Ei, let GR
i

denote the vector of Ei’s feature point positions that are

within or on the boundary of R. Let GR denote the new

expression’s feature point positions that are within or on the

boundary of R.
Given GR, we want to project it into the convex hull of

GR
0 ; . . . ; GR

m. In other words, we want to find the closest

point in the convex hull. This can be formulated as an

optimization problem:

Minimize : GR �
Xm
i¼0

ciG
R
i

 !T

GR �
Xm
i¼0

ciG
R
i

 !
;

Subject to :
Xm
i¼0

ci ¼ 1; ci � 0 for i ¼ 0; 1; . . . ;m;

ð2Þ

where c0; c1; . . . ; cm are the convex combination coefficients

for which we must solve. Let

G ¼ ðGR
0 ; G

R
1 ; . . . ; GR

mÞ ð3Þ

and

C ¼ ðc0; c1; . . . ; cmÞT : ð4Þ

Then, the objective function becomes

CTGTGC � 2GRTGC þGRTGR: ð5Þ

This is a quadratic programming problem where the

objective function is a positive semidefinite quadratic form

and the constraints are linear. Since the GR
i are, in general,

linearly independent, the objective function is, in general,

positive definite.
There are several ways to solve a quadratic program-

ming problem [17], [33]. In the past decade, a lot of progress

has been made on interior-point methods both in theory

and in practice [33]. Interior-point methods have become

very popular for solving many practical quadratic program-

ming problems. This is the approach that we take. An

interior point method works by iterating in the interior of

the domain which is constrained by the inequality con-

straints. At each iteration, it uses an extension of Newton’s

method to find the next feasible point which is closer to the

optimum. Compared to traditional approaches, interior

point methods have a faster convergence rate both

theoretically and in practice, and they are numerically

stable. Even though an interior point method usually does

not produce an optimal solution (it yields an interior point),

the solution is, in general, very close to the optimum. In our

experiments, we find that it works very well for our

purpose.
After we obtain the coefficients ci, we compute the

subregion image IR by compositing the example images

together:

IR ¼
Xm
i¼0

ciI
R
i : ð6Þ

Note that, since the example images have already been
aligned, this step is simply pixel-wise color blending.

7 BLENDING ALONG THE SUBREGION BOUNDARIES

To avoid image discontinuities along the subregion bound-
aries, we do a fade-in-fade-out blending along the subregion
boundaries. In our implementation, we use a weight map to
facilitate the blending. Fig. 3b shows the weight map, which is
aligned with the standard image (Fig. 3a). The thick red-black
curves are the blending regions along the boundary curves.
The intensity of the R-channel stores the blending weight. We
use the G and B channels to store the indices of the two
neighboring subregions, respectively. Given a pixel in the
blending region, let r denote the value in the R-channel, and
let i1 and i2 be the indices of the two subregions. Then, the
pixel’s blended intensity is

I ¼ r

255
� Ii1 þ ð1� r

255
Þ � Ii2 : ð7Þ

Note that we do not perform blending along some of the
boundaries where there is a natural color discontinuity,
such as the boundary of the eyes and the outer boundary of
the lips.

After blending, we obtain an image which is aligned
with the standard image. We then warp the image back so
that its feature point positions match the input feature point
positions, thus obtaining the final expression image.

8 TEETH

Since the teeth region is special, we use a separate set of
examples for the teeth region (see Fig. 8). In our current
system, only a small set of examples for the teeth region are
used since we are not focusing on speech animations where
there are a lot of variations in mouth shapes.

9 EXPRESSION SYNTHESIS IN 3D

It is straightforward to extend the algorithm to 3D where
the feature points are 3D positions and the expressions are
3D meshes with or without texture maps. To compute the
subregion blending coefficients, we use (3) in the same
manner as before except that G and Gi are 3n-dimensional
vectors. We use the same interior point method to solve the
quadratic programming problem. The subregion mesh
compositing and blending along subregion boundaries are
similar to the 2D case, except that we blend the 3D vertex
positions instead of the images.

10 INFERRING FEATURE POINT MOTIONS FROM A

SUBSET

In practice, it is difficult to obtain all the feature points
shown in Fig. 2. For example, most of the algorithms for
tracking facial features only track a limited number of
features along the eyebrows, eyes, mouth, and nose. In the
enhanced expression mapping example that we will discuss

ZHANG ET AL.: GEOMETRY-DRIVEN PHOTOREALISTIC FACIAL EXPRESSION SYNTHESIS 51

later in the paper, we only extract 40 feature points from the
performer. For the expression editing application that will
be discussed in Section 13, each time a user moves a feature
point, we need to determine the most likely movement for
the remaining feature points.

In this section, we explain how to infer the motions for all
the feature points from a subset. We take an example-based
approach. The basic idea is to learn how the rest of the
feature points move from the examples. In order to have
fine-grain control, which is particularly important if the
motions of only a very small number of feature points are
available such as in expression editing, we divide the face
feature points into hierarchies and perform hierarchical
principal components analysis (PCA) on the example
expressions.

There are, in total, 21 feature point sets, with a single
feature point set in hierarchy 0, four sets in hierarchy 1, and
16 sets in hierarchy 2 (see Fig. 4 for descriptions of all the
feature point sets).

The single feature point set at hierarchy 0 controls the
global movement of the entire face. The feature point sets at
hierarchy 1 control the local movement of facial feature
regions (left eye region, right eye region, nose region, and
mouth region). Each feature point set at hierarchy 2 controls
details of the face regions, such as eyelid shape, lip line shape,
etc. Some facial feature points belong to several sets at
different hierarchies, and they are used as bridges between
the global and local movement of the face so that we can
propagate vertex movements from one hierarchy to another.

For each feature point set, we compute the displacement
of all the vertices belonging to this feature set for each
example expression. We then perform principal compo-
nents analysis on the vertex displacement vectors corre-
sponding to the example expressions and generate a lower-
dimensional vector space.

10.1 Motion Propagation

In this section, we describe how to use the result of
hierarchical principal components analysis to propagate
facial motions, so that, from the motions of a subset of the
facial feature points, we can infer reasonable movements for

the remainder of the feature points. The basic idea is to
learn from examples how to estimate the unknown feature
point motions. To this end, we use the subspace generated
by the principal components, which spans the most
“common” feature point motions. Given the motions of a
subset of the feature points, we first make a trivial guess
about the motions of the remaining feature points (for
example, by setting them to zero). We then find the closest
point to this approximation in the subspace generated by
the principal components. This will provide a better
estimate for the motion of the remaining feature points.
We iterate this process to improve the approximation. A
more detailed description follows.

Let v1; v2; . . . ; vn denote all the feature points on the face.
Let �V denote the displacement vector of all the feature
points. For any given �V and a feature point set F (the set of
indices of the feature points belonging to this feature point
set), we use �V ðF Þ to denote the subvector of those vertices
that belong to F . Let Projð�V ; F Þ denote the projection of
�V ðF Þ into the subspace spanned by the principal compo-
nents corresponding to F . In other words, Projð�V ; F Þ is the
best approximation of �V ðF Þ in the expression subspace.
Given �V and Projð�V ; F Þ, we say �V is updated by
Projð�V ; F Þ if, for each vertex that belongs to F , we replace
its displacement in �V with its corresponding value in
Projð�V ; F Þ.

The motion propagation algorithm takes as input the
displacement vector for a subset of the feature points, say,
�vi1 ;�vi2 ; . . . ;�vik . Let T be the set of feature point indices,
that is, T ¼ fi1; i2; . . . ; ikg. The motion propagation algo-
rithm is as follows:

MotionPropagation

Begin

Set �V ¼ 0

While (stop criterion is not met) Do
For each ik 2 T , set �V ðikÞ ¼ �vik
For all Feature point sets F , set

hasBeenProcessedðF Þ to be false

Find the feature point set F in the lowest

hierarchy such that F \ T 6¼ ;
MotionPropagationFeaturePointSetðF Þ

End

End

where the function MotionPropagationFeaturePointSet is
defined as follows:

MotionPropagationFeaturePointSetðF �Þ
Begin

Set h to be the hierarchy of F �

If hasBeenProcessedðF �Þ is true, return

Compute Projð�V ; F �Þ
Update �V with Projð�V ; F �Þ
Set hasBeenProcessedðF �Þ to true

For each feature set F belonging to hierarchy h� 1

such that F \ F � 6¼ ;
MotionPropagationFeaturePointSetðF Þ

For each feature set F belonging to hierarchy hþ 1

such that F \ F � 6¼ ;
MotionPropagationFeaturePointSetðF Þ

End

52 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1, JANUARY/FEBRUARY 2006

Fig. 4. Feature point sets.

The algorithm first initializes�V to a zero vector. At the first
iteration, it first sets �V ðikÞ to be equal to the input
displacement vector for vertex vik . It then finds the feature
point set in the lowest hierarchy that intersects with the input
feature point set T and invokes MotionPropagation

FeaturePointSet. The function first uses PCA to infer the
motions for the rest of the vertices in this feature point set. It
then recursively calls MotionPropagationFeaturePointSet

on other feature point sets. To make sure that the function
MotionPropagationFeaturePointSet is applied to each fea-
ture point set at most once, we maintain a flag named
hasBeenProcessed. This flag is initialized to “false” for all the
featurepoint setsat the beginningof the iteration.At the endof
the first iteration, �V contains the inferred displacement
vectors for all the feature points. Note that, for the vertex inT ,
its inferred displacement vector may be different from the
input displacement vector because of the PCA projection. At
the second iteration, we reset �V ðikÞ to be equal to the input
displacement vector for all ik 2 T . For the remaining feature
points that are not in T , we use their displacement vectors
resulting from the previous iteration. We then repeat the
process. The result is a new �V where the displacement
vectors for the vertices in T are closer to the input displace-
ment vectors. This process continues until the stop criterion is
satisfied. In our implementation, we use the progress on the
resulting displacement vectors inT as the stop criterion. If the
average progress on two consecutive iterations is less than a
user-specified threshold, the algorithm stops.

11 ENHANCED EXPRESSION MAPPING

As we mentioned earlier, the traditional expression map-

ping technique has the drawback that the resulting facial

expressions may not look convincing due to the lack of

expression details. Our technique provides a solution to this

problem in the case where we can obtain example images

for the new subject. The example images may be acquired

offline or designed by an artist. At runtime, we first use the

geometric difference vector to obtain the desired geometry

for the new subject as in the traditional expression mapping

system. Because of the difficulty of face tracking, the

number of available feature points is in general much

smaller than the number of feature points needed by the

synthesis system. So, we use the technique of Section 10 to

infer the motions for all the feature points used by the

synthesis system. We then apply our synthesis technique to

generate the texture image based on the geometry. The end

result is more convincing and realistic facial expressions.

12 MOTION COMPENSATION

When the performer talks or makes expressions, in addition

to the nonrigid skin deformations, there is a global rigid

motion of the head. If we directly compute the vertex

differences between the expression face and the neutral

face, the resulting vertex motions include both the skin

deformations and the global head motion. The global head

motion is undesirable because it may result in unnatural

expression details when input to the expression synthesis

system. In this section, we describe techniques to remove

the global head motions.
Our approach is first to estimate the motion and then

to perform motion compensation in order to undo the

global motion. Since the examples we are working with

do not contain large out-of-plane rotations, we choose to

use a 2D similarity motion model. In our experiments, we

find that it is more stable than the 2D affine transforma-

tion model. We have also implemented a 3D motion

estimation algorithm, which we will describe in the next

section. Due to a limited amount of information on the

3D structure and the nonrigid motion of the feature

points, the estimated 3D motions are not as accurate as

the 2D motions. Therefore, we only use the 3D motions to

synthesize the head motion for the target face model.

Techniques for 2D similarity motion estimation can be

found in the literature, such as the one in [7], which we

briefly describe next. A 2D similarity transformation

T ða; b; tx; tyÞ consists of a translation, rotation, and scaling.

It is defined as follows:

T
x
y

� �
¼ a �b

b a

� �
x
y

� �
þ tx

ty

� �
: ð8Þ

Suppose there are n feature points. Let G ¼ ðx1; y1; x2;

y2; . . . ; xn; ynÞT be the vector of all the feature point positions

on the neutral face image and G0 ¼ ðx01; y01; x02; y02; . . . ; x0n; y
0
nÞ
T

be the vector of all the feature point positions on an expression

image. The goal is to find the quantities a, b, tx, and ty that

minimize

Xn
i¼1

T
xi
yi

� �
� x0i

y0i

� �����
����2

: ð9Þ

We refer the reader to [7] for the solution of this problem.

After motion estimation, we apply the inverse of T to the

feature points on the expression face x0i
y0i

� �
to remove the

global motion, and we input the displacement vector

T�1 x0i
y0i

� �
� xi

yi

� �

to the expression synthesis system.

12.1 3D Head Pose Estimation

Facial animation with a fixed head pose does not look natural.

One way to generate natural looking head motion is to map

the performer’s head motions to the target model. In this

section, we describe our technique for estimating 3D head

poses from the tracked 2D feature points in the performer’s

video sequence. We pursue a model-based approach. We use

a generic face model, as shown in Fig. 5, as an approximation

of the performer’s neutral face. First, let us describe how to

estimate the head pose under the assumption that there are no

facial deformations.
Let mi ¼ ðui; viÞT be the feature points on an expressive

face image. Let pi ¼ ðxi; yi; ziÞT be the corresponding

3D points on the generic face model (Fig. 5). Let ~mmi ¼
ðui; vi; 1ÞT denote the homogeneous coordinates of mi, and
~ppi denote the homogeneous coordinates of pi. Assuming a

ZHANG ET AL.: GEOMETRY-DRIVEN PHOTOREALISTIC FACIAL EXPRESSION SYNTHESIS 53

pinhole camera model, the 3D point pi and its 2D image

point mi are related by

�i ~mmi ¼ AP�~ppi; ð10Þ

where �i is a scale, and A, P, and � are given by

A ¼
� � u0

0 � v0

0 0 1

0
@

1
A;P ¼ 1 0 0 0

0 1 0 0
0 0 1 0

0
@

1
A;� ¼ R t

0T 1

� �
:

The elements of matrix A are the intrinsic parameters of the

camera. Matrix P is the perspective projection matrix.

Matrix � is the 3D head pose (with rotation R and

translation t).

The intrinsic parameters can be obtained by using a

simple camera calibration procedure [35]. For each point,

(10) contains two constraints for �. We use a technique

described in [10] to solve for �.
When there are facial deformations, the motion of each

point contains both the rigid transformation and the local

deformation. In our experiment, we select a subset of the

feature points which do not have large local deformations

including the five points on the boundary between the

forehead and the hair, and the two eye corner points which

are close to the nose bridge (see Fig. 16). Only these points

are used in (10) to solve for the head pose �.

13 EXPRESSION EDITING

Another interesting application of our technique is inter-

active expression editing. A common approach for design-

ing facial expressions is to allow a user to modify control

point positions or muscle forces interactively. The images

are then warped accordingly. Our technique can be used to

enhance such systems to generate expression details

interactively.

We have developed a system that allows a user to drag a

facial feature point, and the system interactively displays

the resulting image with expression details. Fig. 6 is a

snapshot of the expression editing interface, where the red

dots are the feature points upon which the user can click

and drag using the mouse.

The first stage of the system is a geometry generator. When

the user drags a feature point, the geometry generator infers

the “most likely” positions for all the feature points by using

the algorithm described in Section 10. For example, if a user

drags the feature point on the tip of the nose, the entire nose

region will move instead of just this single point.

We typically use 30-40 example expressions for feature

point inference in both the expression editing and expres-

sion mapping applications.

14 RESULTS

We now show some experimental results for two faces: a

male subject and a female subject. For each subject, we

capture about 30-40 images of whatever expressions they

can make. We then select the example images (see Figs. 7

and 9) based on the intuitive criteria that the example

expressions should be sufficiently different from each other

while covering all the expressions in the captured images.

The rest of the images are used as ground truth for

validating our system. For motion propagation (Section 10),

we use all the captured images (30-40 images) to perform

hierarchical PCA. For each feature point set, we typically

keep 5-10 principal components.

Fig. 7 shows the selected example images for the male

subject. The teeth examples are shown in Fig. 8. Fig. 10 is a

side-by-side comparison, where the images on the left

column are ground truth while the images on the right are

the synthesized results. Note that, although each of the

expressions in Fig. 10 is different from the expressions in

the examples, the results from our system closely match the

ground truth images. There is slight blurriness in the

synthesized images because of the pixel misalignment

resulting from the image warping process.

Fig. 9 shows the selected example images of the female

subject. Fig. 11 is the side-by-side comparison for the female

subject where the ground truth images are on the left while

the synthesized images are on the right. Again, the

synthesized results match very well with the ground truth

images.
To test the performance of our motion propagation

algorithm, we chose 25 different expressions from the male

54 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1, JANUARY/FEBRUARY 2006

Fig. 5. The generic face model used for 3D pose estimation.

Fig. 6. The expression editing interface. The red dots are the feature

points upon which a user can click and drag.

actor and selected only 17 feature points from the original

134 marked points as the input of the motion propagation

algorithm to infer the motions for all of the 134 feature

points (which are required by the expression synthesis

system). Fig. 12 shows the convergence of the algorithm.

The horizontal axis indicates the number of iterations. The

vertical axis indicates the average error in pixels for the

17 feature points and all 25 expressions. We can see that the

error decreases quickly, closely approaching its optimum

after 50 iterations.
Fig. 13 compares the expression synthesis results with

only 17 points (right) and the results with all the 134 points

(left). The results are very close. The main difference is in

the mouth region where we do not have enough examples

to cover the space of all possible mouth shapes.

14.1 Results of Enhanced Expression Mapping

In this section, we show the results of expression mapping
enhanced with our facial expression synthesis system.
Fig. 14 shows examples of mapping the female subject’s

expressions to the male subject. The female’s expressions
are the real data. The male’s images on the right result from
the enhanced expression mapping. We can see that the
synthesized images have natural looking expression details.

To test the frame-to-frame coherence of our expression
synthesis system, we have experimented with both syn-
thetic image sequences and live image sequences. In the
accompanying video, we show an expression sequence
where the geometry of each frame is a linear interpolation
of a few key expressions. For each frame, we independently
synthesize the expression image from the geometry of that
frame. We can see that the resulting expression sequence is
very smooth from frame to frame.

We have captured a few live sequences for the male
subject. For each live sequence, we manually extract about
40 feature points in each of the frames. For each frame, we
infer the positions for the remaining feature points and then
use our expression synthesis system to produce the
expression image. The accompanying video (which can be
found at http://www.computer.org/tvcg/archives.htm)
shows both the real sequences and the synthesis results.

The accompanying video also shows the results of
mapping the live sequences of the male subject to the
female subject. Again, 40 feature points are used.

We have captured a 3D face model of the male subject by
using a laser scanner. We then use the feature point motions of
the male subject to drive the vertex movement of the 3D mesh.
This is done by using a simple triangulation-based interpola-
tion. For each frame, we use the synthesized expression image
as the texture map for the 3D mesh. Since there are almost no
head motions in the captured video, we manually add head
rotations through simple keyframing. The accompanying
video shows the results.

In the final example of expression mapping, we map a
live sequence of a different male subject’s expression
sequence to the first male actor. This sequence has relatively
large head pose motions, and its feature points are tracked
automatically by using a correlation-based tracking techni-
que [1]. Due to the difficulty of automatic tracking, we
tracked only 27 interior feature points. Fig. 16 shows all the
tracked points. The accompanying video shows the live
sequence together with the tracked points. We can see that
the tracking result is very noisy, so we first smooth each
feature point trajectory by using a Gaussian kernel. Because

ZHANG ET AL.: GEOMETRY-DRIVEN PHOTOREALISTIC FACIAL EXPRESSION SYNTHESIS 55

Fig. 7. The example images of the male subject.

Fig. 8. The example images of the male subject’s teeth.

Fig. 9. The example images of the female subject.

of the large head pose changes, we must apply the motion

compensation algorithm to undo the head motion before

performing expression mapping. After motion compensa-

tion, we first apply traditional expression mapping (directly

mapping the vertex displacement) to map his motion to the
first male actor’s face (Fig. 7). From the result, which is

shown in the accompanying video, we can see that there are

many artifacts due to the limited number of feature points

and the inaccuracy of tracking. We then apply our motion

propagation algorithm to infer the motions for all 134 fea-

ture points and input them to our expression synthesis

system. The accompanying video shows the synthesized

result, which has photorealistic expression details. Finally,

we estimate the 3D head poses from the input sequence and

apply both the synthesized expressions and the 3D head

56 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1, JANUARY/FEBRUARY 2006

Fig. 10. Side-by-side comparison with ground truth for the male subject.

In each image pair, the left image is the ground truth and the right image

is the synthesis result.

Fig. 11. Side-by-side comparison with the ground truth of the female
subject. In each image pair, the left image is the ground truth and the
right image is the synthesis result.

poses to the male actor’s 3D model. The accompanying
video shows the final result.

14.2 Results of Expression Editing

Fig. 15 shows some of the expressions generated by our
expression editing system. Note that each of these expres-
sions has a different geometry than any of the example
images. Our system is able to produce photorealistic and
convincing facial expressions.

We have also tested our system with 3D expression
synthesis. We asked an artist to create a set of 3D facial
expressions as shown in Fig. 17. Fig. 18 shows some of the
synthesized expressions in different poses.

Finally, the accompanying video shows expression
editing in action. The sizes of the images used in our
experiments are 600� 800 pixels. Our current system
achieves a frame rate of two-four frames per second on a
2GHz PC. Because the frame rate is not high enough, we do
not perform synthesis until the mouse stops moving. When
the mouse stops moving, we sample five frames between
the previous mouse position and the current mouse
position, and synthesize the expression images for each
frame, and display them on the large window on the left. At
the same time, we update the image in the small window.
The main computation cost is the image compositing.
Currently, the image compositing is done in software and,
for every pixel, we perform the compositing operation for
all the example images, even though some of the example
images have coefficients close to zero. One way to increase
the frame rate is not to composite those example images
whose coefficients are close to zero. Another way is to use
hardware acceleration. We plan to explore both approaches
toward improving the performance.

15 LIMITATIONS

A limitation of our system is the lack of extrapolation. For
each subregion, the texture images that our system can

potentially generate are limited to the convex hull of the
example images. If the example expressions are not very
expressive, the generated expressions will be commensu-
rately unexpressive. For example, in the data we captured, the
expressions of the female subject are not as expressive as
those of the male subject. As shown in the accompanying
video, when we map the male subject’s video sequence to the
female subject, the resulting video for the female is less
expressive than that of the male. Extrapolation in the texture
space is a difficult problem. One possibility is to estimate a
normal map as in [30] and extrapolate the normal.

Sometimes the artifacts due to image blending and pixel
misalignment make the animation look unnatural. For
example, if we zoom in on the eyebrow area of the female
subject’s morphing sequence, it appears that the pixels are
crawling and the skin movement has a look of stretching
rubber. One possibility is to refine the pixel alignment
through image matching such as by applying the optical
flow technique. We can improve the image blending by
using the band-pass decomposition technique as in [12].

Another limitation is that our system does not handle out-
of-plane head rotations (i.e., when the head rotates from one
side to the other) because we use only a 2D motion model.
With a 2D motion model, the out-of-plane rotations are
partially accounted for by the scaling transformations. The
unaccounted motions become local deformations resulting in
unnatural expressions. On the other hand, the 3D head pose
estimation technique described in Section 12.1 is not accurate
enough for motion compensation. There are more sophisti-
cated techniques in computer vision for more accurate head

ZHANG ET AL.: GEOMETRY-DRIVEN PHOTOREALISTIC FACIAL EXPRESSION SYNTHESIS 57

Fig. 12. The convergence of the motion propagation algorithm with only
17 points as the input while the total number of feature points is 134. The
horizontal axis indicates the number of iterations of the motion
propagation algorithm. The vertical axis indicates the average error in
pixels. The image size is 750� 1; 000 pixels.

Fig. 13. The left image of each pair shows synthesized expressions
resulting from all the feature points input directly to the expression
synthesis system. The right image of each pair shows synthesized
expressions resulting from only 17 feature points input to the motion
propagation algorithm in order to infer the motions of all the feature
points, which are then input to the expression synthesis system.

motion estimation. We would like to develop such a system
and integrate it with our expression synthesis system.

In order to generate speech animations, we need a lot
more example images of mouth shapes. It would be tedious
to select example images of mouth shapes manually,
because the amount of captured data will likely be quite
large compared to the expression data. One solution is to
use the technique presented in [9] to select example images
automatically.

16 CONCLUSION

We have presented a geometry-driven facial expression
synthesis system. Our contributions include: 1) a frame-
work for synthesizing facial expression textures from facial
feature point motions, and 2) a motion propagation
algorithm to infer facial feature point motions from a small
subset of tracked points. The combination of these two
techniques allows us to enhance traditional expression
mapping to generate facial expression details. We also
demonstrated expression editing, where the user can
interactively manipulate the geometric positions of the
feature points and see the resulting realistic looking facial
expressions. We showed that the technique works for both
2D and 3D face models.

ACKNOWLEDGMENTS

The authors thank Ying Song, who implemented the
geometric deformation system for the scanned 3D head
model. They are grateful to Yangzhou Du for implementing
the motion estimation algorithms and generating some of
the expression mapping results. They would also like to
thank Bo Zhang for helping with the video editing,
Jianghong Li and Stephen Dahl for helping with the data

58 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1, JANUARY/FEBRUARY 2006

Fig. 14. Results of enhanced expression mapping. The expressions of

the female subject are mapped to the male subject.

Fig. 15. Expressions generated by the expression editing system.

collection, and Steve Lin for proofreading the paper. They

appreciate the helpful suggestions for improving the paper

that were provided by the anonymous referees. Many

thanks to Professor Guoliang Chen for his support during

the course of this work.

REFERENCES

[1] D. Ballard and C. Brown, Computer Vision. Englewood Cliffs, N.J.:
Prentice-Hall, 1982.

[2] T. Beier and S. Neely, “Feature-Based Image Metamorphosis,”
Computer Graphics, pp. 35-42, July 1992.

[3] V. Blanz, C. Basso, T. Poggio, and T. Vetter, “Reanimating Faces in
Images and Video,” Proc. Eurographics Conf., 2003.

[4] M. Brand, “Voice Puppetry,” Computer Graphics, Proc. Ann. Conf.
Series, pp. 22-28, Aug. 1999.

[5] C. Bregler, M. Covell, and M. Slaney, “Video Rewrite: Driving
Visual Speech with Audio,” Computer Graphics, pp. 353-360, Aug.
1997.

[6] S.E. Brennan, “Caricature Generator,” MS Visual Studies, Dept. of
Architecture, Massachusetts Inst. of Technology, Cambridge,
Mass., Sept. 1982.

[7] T.F. Cootes and C.J. Taylor, “Statistical Models of Appearance for
Computer Vision,” http://www.isbe.man.ac.uk/bim/Models/
app_models.pdf, 2001.

[8] Y. Du and X. Lin, “Realistic Mouth Synthesis Based on Shape
Appearance Dependence Mapping,” Pattern Recognition Letters,
vol. 23, no. 14, pp. 1875-1885, 2002.

[9] T. Ezzat, G. Geiger, and T. Poggio, “Trainable Videorealistic
Speech Animation,” Computer Graphics, Proc. Ann. Conf. Series,
pp. 388-398, Aug. 2002.

[10] O. Faugeras, Three-Dimensional Computer Vision: A Geometric
Viewpoint. MIT Press, 1993.

[11] B. Guenter, C. Grimm, D. Wood, H. Malvar, and F. Pighin,
“Making Faces,” Computer Graphics, Proc. Ann. Conf. Series, pp. 55-
66, July 1998.

[12] P. Joshi, W.C. Tien, M. Desbrun, and F. Pighin, “Learning Controls
for Blend Shape Based Realistic Facial Animation,” Proc. Symp.
Computer Animation (SCA ’03), pp. 187-192, July 2003.

[13] Y. Lee, D. Terzopoulos, and K. Waters, “Realistic Modeling for
Facial Animation,” Computer Graphics, pp. 55-62, Aug. 1995.

[14] S.Z. Li and L. Gu, “Real-Time Multi-View Face Detection,
Tracking, Pose Estimation, Alignment, and Recognition,” Proc.
IEEE Conf. Computer Vision and Pattern Recognition, Demo Summary,
2001.

[15] P. Litwinowicz and L. Williams, “Animating Images with
Drawings,” Computer Graphics, pp. 235-242, Aug. 1990.

[16] Z. Liu, Y. Shan, and Z. Zhang, “Expressive Expression Mapping
with Ratio Images,” Computer Graphics, Proc. Ann. Conf. Series,
pp. 271-276, Aug. 2001.

[17] D.G. Luenberger, Linear and Nonlinear Programming. Addison-
Wesley, 1984.

[18] N. Magneneat-Thalmann, N.E. Primeau, and D. Thalmann,
“Abstract Muscle Actions Procedures for Human Face Anima-
tion,” The Visual Computer, vol. 3, no. 5, pp. 290-297, 1988.

[19] J.-Y. Noh and U. Neumann, “Expression Cloning,” Computer
Graphics, Proc. Ann. Conf. Series, pp. 277-288, Aug. 2001.

[20] F.I. Parke, “Computer Generated Animation of Faces,” Proc. ACM
Ann. Conf., Aug. 1972.

[21] F.I. Parke and K. Waters, Computer Facial Animation. Wellesley,
Mass.: AK Peters, 1996.

[22] K. Perlin and A. Goldberg, “Improv: A System for Scripting
Interactive Actors in Virtual Worlds,” Computer Graphics, Proc.
Ann. Conf. Series, pp. 205-216, Aug. 1996.

[23] F. Pighin, J. Hecker, D. Lischinski, R. Szeliski, and D.H. Salesin,
“Synthesizing Realistic Facial Expressions from Photographs,”
Computer Graphics, Proc. Ann. Conf. Series, pp. 75-84, July 1998.

[24] F. Pighin, R. Szeliski, and D.H. Salesin, “Resynthesizing Facial
Animation through 3D Model-Based Tracking,” Proc. Int’l Conf.
Computer Vision (ICCV ’99), 1999.

[25] S. Platt and N. Badler, “Animating Facial Expression,” Computer
Graphics, vol. 15, no. 3, pp. 245-252, 1981.

[26] H. Pyun, Y. Kim, W. Chae, H.W. Kang, and S.Y. Shin, “An
Example-Based Approach for Facial Expression Cloning,” Proc.
Symp. Computer Animation (SCA ’03), pp. 167-176, July 2003.

ZHANG ET AL.: GEOMETRY-DRIVEN PHOTOREALISTIC FACIAL EXPRESSION SYNTHESIS 59

Fig. 16. A snapshot from the live sequence of a different male subject,

where the feature points shown in green are tracked automatically.

Fig. 17. The examples used for 3D expression synthesis.

Fig. 18. The results of 3D expression synthesis.

[27] S.M. Seitz and C.R. Dyer, “View Morphing,” Computer Graphics,
pp. 21-30, Aug. 1996.

[28] D. Terzopoulos and K. Waters, “Analysis and Synthesis of Facial
Image Sequences Using Physical and Anatomical Models,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 15, no. 6,
pp. 569-579, June 1993.

[29] S. Toelg and T. Poggio, “Towards an Example-Based Image
Compression Architecture for Video-Conferencing,” Technical
Report 1494, MIT, 1994.

[30] P.-H. Tu, I.-C. Lin, J.-S. Yeh, R.-H. Liang, and M. Ouhyoung,
“Expression Detail Mapping for Realistic Facial Animation,” Proc.
Eighth Int’l Conf. CAD/Graphics, pp. 20-25, Oct. 2003.

[31] K. Waters, “A Muscle Model for Animating Three-Dimensional
Facial Expression,” Computer Graphics, vol. 22, no. 4, pp. 17-24,
1987.

[32] L. Williams, “Performance-Driven Facial Animation,” Computer
Graphics, pp. 235-242, Aug. 1990.

[33] Y. Ye, Interior Point Algorithms: Theory and Analysis. John Wiley,
1997.

[34] Q. Zhang, Z. Liu, B. Guo, and H. Shum, “Geometry-Driven
Photorealistic Facial Expression Synthesis,” Proc. Symp. Computer
Animation (SCA ’03), pp. 177-186, July 2003.

[35] Z. Zhang, “Flexible Camera Calibration by Viewing a Plane from
Unknown Orientations,” Proc. Int’l Conf. Computer Vision (ICCV
’99), pp. 666-673, 1999.

Qingshan Zhang received the PhD degree in
computer science from the University of Science
and Technology of China in 2003. He worked on
face modeling and animation in Microsoft Re-
search Asia from 2001 to 2003. He is now a
researcher at the Research and Innovation
Center of Alcatel Shanghai Bell Ltd. and his
research topics are network and telecommuni-
cation technologies.

Zicheng Liu received the PhD degree in
computer science from Princeton University, the
MS degree in operational research from the
Institute of Applied Mathematics, Chinese Acad-
emy of Sciences, Beijing, China, and the BS
degree in mathematics from Huazhong Normal
University, Wuhan, China. He is currently a
researcher at Microsoft Research. Before joining
Microsoft, he worked as a member of technical
staff at Silicon Graphics focusing on trimmed

NURBS tessellation for CAD model visualization. His research interests
include 3D face modeling and facial animation, linked figure animation,
multisensory speech enhancement, and multimedia signal processing.
He was the cochair of the IEEE International Workshop on Multimedia
Technologies in E-Learning and Collaboration in 2003. He is a senior
member of the IEEE.

Baining Guo received the PhD and MS degrees
from Cornell University and the BS degree from
Beijing University. He is a senior researcher and
the research manager of the graphics group at
Microsoft Research Asia (formerly Microsoft
Research China). Before joining Microsoft, Bain-
ing was a senior staff researcher in Microcom-
puter Research Labs at Intel Corporation in
Santa Clara, California, where he worked on
graphics architecture. He holds more than

30 granted and pending US patents. He is a senior member of the IEEE.

Demetri Terzopoulos received the BEng and
MEng degrees in electrical engineering from
McGill University, Montreal, Canada, in 1978
and 1980, respectively, and the PhD degree in
EECS (artificial intelligence) from the Massachu-
setts Institute of Technology (MIT), Cambridge,
Massachusetts, in 1984. He holds the Lucy and
Henry Moses Professorship in Science at New
York University (NYU) and is a professor of
computer science and mathematics at NYU’s

Courant Institute. Terzopoulos has been a Killam Fellow of the Canada
Council for the Arts, a Steacie Fellow of the Natural Sciences and
Engineering Research Council (NSERC) of Canada, an AI/Robotics
Fellow of the Canadian Institute for Advanced Research, and a senior
visiting fellow at UCLA’s Institute for Pure and Applied Mathematics. He is
a member of the European Academy of Sciences and Sigma Xi. His
published work comprises hundreds of research papers and several
volumes, primarily in computer graphics and computer vision, as well as
in medical imaging, computer-aided design, and artificial life/intelligence.
His research has received numerous honors, including computer
graphics awards from Ars Electronica, NICOGRAPH, Computers and
Graphics, and the International Digital Media Foundation, and computer
vision awards from the IEEE, the American Association for Artificial
Intelligence, the International Medical Informatics Association, and the
Canadian Image Processing & Pattern Recognition Society. He has been
a conference or program chair of IEEE CVPR, Pacific Graphics, and the
SIGGRAPH/EG Symposium on Computer Animation. He has been a
founding editorial board member of journals spanning computer vision,
computer graphics, medical imaging, and applied mathematics. He is a
fellow of the IEEE.

Heung-Yeung Shum received the PhD degree
in robotics from the School of Computer Science,
Carnegie Mellon University, in 1996. He worked
as a researcher for three years in the vision
technology group at Microsoft Research Red-
mond. In 1999, he moved to Microsoft Research
Asia where he is currently the managing director.
His research interests include computer vision,
computer graphics, human computer interaction,
pattern recognition, statistical learning, and

robotics. He is on the editorial boards for IEEE Transactions on Pattern
Analysis and Machine Intelligence (PAMI), International Journal of
Computer Vision (IJCV), and Graphical Models. He is the general cochair
of the 10th International Conference on Computer Vision (ICCV 2005
Beijing). He is a senior member of the IEEE.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

60 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 1, JANUARY/FEBRUARY 2006

