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SUMMARY

1. INTRODUCTION
Methods for modelling non-rigid objects and
their motions are attracting considerable
attention in computer graphics. Deformable
models' are physically-based models of non-
rigid curves, surfaces and solids which are
finding many interesting applications. The
modelling and animation of cloth? saw the
first successful application of elastic surface
models."*-¢ Deformable ‘characters’ have
been animated in simulated physical worlds.”
Physically-based constraint methods have
been developed for controlling deformable
model animations.®? ‘Muscle’ actuators have
been incorporated into deformable models
to synthesize self-locomoting snakes and
worms,'? Inelastic models, a type of ‘compu-
tational modelling clay’, appear promising as
an intcractive medium for free-form shape
design in CAD/CAM."! Deformable models
are also applicable to the physically-based
simulation of facial tissue for real-time facial
animation.'?

A genceral formulation of deformable mod-

cls based on elasticity thcory was first
proposed in Reference 4 and was expanded
subsequently to include inclastic behaviours,
such as plasticity.®!" In this paper, we extend
deformable models further to include the
simulation of thermal phenomena. In the real
world, rigid and non-rigid objects absorb,
radiate and conduct heat. Heat causes solid
materials to soften and eventually melt into
fluids.

We construct thermoelastic models whose
shapes and dynamics are governed not only
by the Lagrange cquation of non-rigid motion
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Heating and Melting
Deformable Models

We develop physically-based graphics models of non-rigid objects capable of heat
conduction, thermoelasticity, melting and fluid-like behaviour in the molten state. These
deformable models feature non-rigid dynamics governed by Lagrangian equations of
motion and conductive heat transfer governed by the heat equation for non-homogencous,
non-isotropic media. In its solid state, the discretized model is an assembly of hexahedral
finite elements in which thermoelastic units interconnect particles situated in a lattice.
The stiffness of a thermoelastic unit decreases as its temperature increases, and the unit
fuses when its temperature exceeds the melting point. The molten state of the model
involves a molecular dynamics simulation in which ‘Buid’ particles that have broken free
from the lattice interact through long-range attraction forces and short-range repulsion
forces, We present a physically-based animation of a thermoelastic model in a simulated
physical world populated by hot constraint surfaces.
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that underlies our previous deformable mod-
els, but also by the heat equation, a partial
differential equation that describes a range
of diffusive phenomena. Our thermoelastic
models interact non-rigidly with their simu-
lated physical environment, as do prior
deformable models. As soon as they come
into contact with ‘hot’ graphics objects,
however, the new models %:gin to conduct
heat into their interiors. They exhibit thermo-
elastic effects—as their temperature rises,
they become softer and more pliable. When
the temperature exceeds the melting point,
the solid models melt into simyle molecular
fluids. Following Greenspan'’, we take a
molecular dynamics approach'* to simulating
the fluid state, in which pairs of fluid particles
interact through long-range attraction forces
and short-range repulsion forces.

The remainder of this paper is structured
as follows: Section 2 reviews the equations
of motion for elastically deformable solids,
and Section 3 reviews the equation that
governs conductive heat transfer in solids. In

the paper with some remarks and suggestions
for future work.

2. DEFORMABLE SOLIDS

A general formulation of deformable curve,
surface and solid models was proposed
in References 1 and 11. We review the
formulation of deformable solid models in
this section.

Let u = (uy,uzu3) be the material co-
ordinates of peints in the solid model's
material domain = [0,1]. Let the time-
varying positions of material points be

x(“»‘) = lxl(ult)v xl(url)» 'rJ(uJ)]T (1)

where subscripts 1, 2 and 3 denote the X, Y
and Z axes in space. The position x(u,
1), velocity ox/d1, and acceleration 8%/ a7
specify the model’s motion as a function of
u and time ¢,

The deformable model is governed by the

Scction 4 we incorporate both differential
equations to create a discrete heat-conducting
deformable model. Section 5 explains how
we simulate thermoelasticity and melting
effects. Section 6 describes the interaction
forces underlying our discrete fluid models.
Scction 7 explains how we impose constraints
and frictional forces to control and increase
the realism of our physically-based ani-
mations. Section 8 specifies the numcrical
time integration scheme that we  have
employed to create the simulation presented
in Section 9, which demonstrates constrained
non-rigid dynamics, friction, heating, melting
and fluid behaviour. Section 10 concludes

Lagrange equation of motion

*x . ax
uatz- + Y, + 8,¢ = f. (2)

This hyperbolic-parabolic partial differential
equation dynamically balances the net extes-
nal forces f(u,/) against (i) the inertial force
due to the mass density p(u) of the model,
(ii) the velocity-dependent damping force
with damping density y(u), and (iii) the
model’s internal clastic force 8,€ which
attempts to restore a deformed clastic model
to its patural, undeformed shape.
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The elastic force is expressed as a. vari-

It is always possible to dctermme locally

non-negative deformation energy function
¢(x). For non-homogeneous, non-isotropic
deformable solids, we proposed the functional

ww =[] 16~

where || Hw is a we)ghted matrix norm, i.e.
[All% = 2, wyaF, where a; are the entries of
matrix A and w;(u) are non- neganve weight-
ing functions. Here G and G° denote the
metric tensor of the solid in its deformed
and undeformed state, respectively. G is a
3 X 3 symmetric matrix with entries'*

G°||2 duyduadu; (3)

ox 9x
6u, ou;

Gy(x) =

4

The functional € is designed to be invariant
with respect to rigid-body motions of the
model in space, since such motions impart
no deformation. € is zero for the model in
its natural shape and grows with increasing
deformation away from the natural shape.
The weighting functions w; control the rate
of growth of the deformation energy and,
hence, the stréngth of the elastic restoring
forces.

Animating the deformable solid model
amounts to solving an initial-boundary-value
problem for (2) with (3), given appropriate
conditions for x on the boundary 4} of the
material domain, and given the initial position
x(u,0) and velocity 9x/ 4, 0.

3. CONDUCTIVE HEAT
TRANSFER

Heat is thermal energy. The associated
potential function is temperature 9. The
basic (macroscopic) conductive heat transfer
phenomena are:

1. The amount. of heat required to raise
the temperature of a small material
sample A8 degrees is proportional to
A8 and the mass of the sample, The
proportionality factor ¢ is called the
specific heat and is a property of the
material.

2. Heat is conducted from high tempera-
ture to low temperature, More specifi-
cally, the rate of heat conduction per
unit area is inversely proportional to
the gradient of the temperature. The
proportionality factor ¢, known as the
thermal conductivity, is another property
of the material.

3.1 The heat equation

The heat equation describes the diffusion of
heat in materials. In the case of solids, the
equation governs the temperature distribution
8(u,?). Assuming mass density w(u) and
specific heat o, and introducing the gradient
operator in matenal co-ordinates V = [9/0u),
3/ dug, o/ du3]7, we can write the general heat
equation as

Luo®) -V (CT) =g ()

(n !) is the rate of heat generation

er unit volume in the solid and
C(u) is a 3 X 3 symmetric matrix, known as
the thermal conductivity matrix.

becomes a dlagona] matrix with the three
principal thermal conductivities ¢;(u), c(u),
¢3(u) along the main diagonal. If the principal
axes happen to coincide globally with the
material co-ordinates, the heat equation sim-

plifies to
i} a0 d g6
ot oo (o) + s‘*(s‘“)
d L]
+ 0 (ﬁg;;) =q (6

For a homogeneous and isotropic material,
C(u) = du)l, where I is the identity matrix,
and the heat equation reduces to jts most
familiar form

2wo6) + V%0 = g @

where V¢ = 9%/du}
the Laplacian.

+ 9%/0u% + 9%/aud is

3.2. Boundary conditions

The heat equation is a parabolic partial
differential equation. Its solution in the
material domain Q of a deformable solid
requires conditions on the domain’s boundary
a{). Through boundary conditions we can
describe the gain (loss) of heat by our model

from (to) the outside world. The following

boundary conditions are useful:

1. Dirichlet condition, i.e. specified tem-
perature;

=9, onoQ (8)

where 0 is the given boundary tempera-
ture function.

2. Newton condition, i.e. specified normal
component of heat flow n = —~ (CVo)-A
and radiative heat loss on the boundary:

~ (CVOyA — p8 = m,ond  (9)

where fi is the unit normal function on
the boundary, 7 is the specified normal
component of flow, and p is a specified
(non-negative) radiation coefficient. We
obtain the Newmann condition for the
special case p = 0.

3. Mixed conditions, Dirichlet, Neumann or
Newton conditions may be applied on
different portions of a().

4. THE DISCRETE MODEL

Uiy whereas the off»dlagona] terms, G,,, i+ j,

Wlthm an mﬁmtes:mal matenal volume
d’u1du2du3, the integrand in (3) aims to
restore the distances and angles to their
reference values, as measured by GY The
magnitude of the w,; (u) within the volume
determine the strength of the restoring forces.

We assemble finite-length, non-linear
spring units along the twelve edges and
diagonally across the six faces of the hexa-
hedral element in order to restore the
distances and angles expressed in G (Figure
1). Spring / will have its own natural length
L, set according to G to determine the
natural shape of the element, as well as
stiffness K;, dictated by the w;, to determine
its deformation properties.

spring

mass
point

Figure 1. A hexahedral assembly of particles and
springs

Next, we assemble the hexahedral elements
to cover (), such that adjacent elements share
nodes and springs on common faces. We
index the nodes in the resulting 3D lattice
by k. The nodal position variables x, specify
the 3-space locations of the particles, and
the variables v, their velocities.

We also associate a temperature variable
8, with each node. The nodal temperature
variables are governed by the heat equation
for the case of a non-homogeneous, non-
isotropic conductive medium. A convenient
approach to discretizing the partial derivatives
with respect to #; in the V-(CV6) term in
(5), given our finite-clement model, is to
associate a particular value of heat resistance
R, per unit length to each spring. Assuming
that spring / connects node i to node j
its conductance is C; = (R/jx; —x;{|)7".
conducting spring will tend to equalize the
temperatures of the two nodes it connects.
The finite-element assembly approximates

The Lagrange equation (2) together with the
heat equation (5) govern the continuous
deformable model. To simulate the equations
in the material domain, we must discretize ().
We can apply local discretization techniques,
such as the finite-element or finite-difference
methods.'®

We divide the domain into finite-element
subdomains. A convenient approach is to
tessellate Q0 into hexahedra whose vertices
are occupied by nodes which represent point
masses or particles. The deformation of
each hexahedron is dictated by a discrete
approximation to the deformation potential

energy I'Z\
SLCTRY \v)

Accordmg to (4), the diagonal terms of the
metric tensor, G,/ = 1,2,3, dictate lengths
in the solid along the co-ordinate directions

the general heat equation (5) over the discrete
lattice.

If we permit heat conduction only along
the material co-ordinate axes (by zeroing
the conductivities of the springs running
diagonally across element faces), then the
finite-element assembly will approximate
equation (6). In this case, one can show that
the resulting discrete equations consist of
central finite difference expressions for the
terms involving partial derivatives with respect
to material co-ordinates in (6).

5. THERMOQEIAS

MELTING
Real materials typically soften when heated,
a phenomenon known as thermoelasticity.
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spring

where 8’ is a non-negative repulsion strength,
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thermoelasticity 0
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conduction element

Figure 2. A thermoelastic unit

Eventually, materials melt as the temperature
increases. It is straightforward to simulate
thermoelasticity and melting in our heat-
conducting deformable models—we establish
a relationship between the temperature vari-
ables 8, and the stiffnesses K| of the spring
units in the discrete model (Figure 2).

To simulate softening, we make a thermo-
elastic unit whose stiffness varies inversely
with the temperature averaged over the
two nodes it connects: 8* = (0;196,)/2. The
variation may be non-linear, e.g. we can
initiate thermoelastic behaviour when 6°
exceeds a specified threshold €°.

To simulate melting, we fuse the thermoel-
astic unit whose average temperature exceeds
the melting point 6™, by setting its stiffness
K 10 zero.

We incorporate the following thermoelas-
ticity/melting law:

iKY ,ifer=e
K ={K? — v(0°—0%) , if0° < 6> < o™
0 ,ifer=0" (10

where K is the zero-degree stiffness and v
is a positive constant. The second case in
(10) defines the thermoelastic region, which
states that the elastic force will be linearly
related to the displacement minus a compon-
ent which is proportional to the temperature.
This is known as the Duhamel-Neumann
law of thermoelasticity.!”

6. A DISCRETE FLUID MODEL

When all the thermoelastic units that bond
a particle to other particles in the lattice have
fused, the particle breaks free from the
deformable solid. It can then interact freely

Figure 3. Fluid particles both attract and repel
each other

Following Reference 13, we choose a force
which has a component of attraction that
behaves like ad ™ and a com})onent of
repulsion that behaves like Bd™°, where 4
and b are non-negative parameters with
0 = a = b (Figure 3).

Specifically, let particle  have mass m; and
be located at x{¢) at time . Let particle
have mass m; and be located at x;() at time
t. Let d;() = ||x;—x;|| be the separation of
the two particles. Then we define the force
on particle { exerted by particle j as

« B
gi(t) = mim(x;i—x;) (~ + —-~)
@+ 0y (dy)
(I
where a and B are non-negative parameters
that determine the strength of the attraction
and repulsion components of the force, and
[ is a positive measure of how close the
particles are allowed to be.
To model inter-particle collisions, we can
define

L]
particle ¢, and

_{=0 , whend,;<r,
p—-{ 0 , otherwise (13)
is the collison exponent, whose effect is to
increase the repulsion force during collision.

The total force on particle 7 due to all
other particles is

g =2, gy

Ji

(14)

Then, the discrete version of the Lagrange
equation (2) gives the equations of motion
for the ensemble of particles

%x; Ix;
m; —— -+ ‘y,-

a{Z ‘a‘l“f'g,':ﬂ,tzl,..

o N
(15)

7. CONSTRAINTS AND FRICTION
The various parameters of our physically-
based model afford control over its animation,
as do the initial conditions of the simulation.
Moreover, it is possible to control the
animation through physically-based con-
straints. We have applied several constraint
mechanisms to our non-rigid models, just as
Barzel and Barr®® have done for the animation
of rigid and articulated models.

We use reaction constraints®? to expel the
particles of an evolving solid or fluid model
out of any impenetrable obstacles in the
scene (Figure 4). Reaction constraints cancel
force components normal to the surface of
an obstacle that would take particles into an
obstacle, and substitute forces which induce
critically damped motion that converts pen-
ctration into mere contact.

It is simple to express reaction constraints
for objects constructed of planar polygenal
patches. Let P(x) = ax+by+a+d be the
plane equation of a polygon and let
O(v) = av,+bv,+cv,. If a particle with mass
m; has penetrated the obstacle through a
patch, then the reaction force on the point
acts normal to the polygon and is proportional
to

fr = m; ({D%) + 3%(9):1 (16)

T

where 7 is the time constant of the critically
damped motion and where fi = [q,b,¢])/
lla,byc| is the unit inward normal. In the
absence of friction, the component. of force

with other particles, as do molecules in a
fluid at the microscopic level.!®
Greenspan'® investigated various N-body
systems of this sort as discrete models of
solid, liquid and gaseous media. Recent
computer animations of ‘fluids’, due to Miller,
are apparently based on similar ideas.!® Over
the years, much attention has been given in
the physics and chemistry literature to the
development of discrete fluid models involv-
ing aggregate molecular dynamics in which
the molecules are subject to various interac-
tion potentials.’* A basic technique is to
model long-range attraction and short-range
repulsion forces between pairs of particles
according to potentials of the Lennard—Jones
type, which lead to forces involving inverse
powers of particle separation distance 4.'®

tangent to the polygon remains unchanged.

F

"

path of point

F

Figure 4. Reaction constraints expel particles from impenetrable obstacles



rricaon efrecis iena a greater degree of

scenano 1s to drop a thermoelastic solid into
4 ’ 2

on _the floor. For demonstration purposcs,
by

models:> A simplc treatment of friction
involves adding 2 force which opposes the
velocity of a particle. More realistically,
however, a particle will stick to a surface
until the force on the particle exceeds a
threshold known as the static friction.

We use a standard friction model (see also
Reference 9). Consider a particle in contact
with a polgon and experiencing a net force f
(before modification by reaction constraints).
The normal force is fy = (f-A)A. The
tangential force prior to applying friction is

fr=f- fn (17)

If the tangential force is less than the static
friction, then the particle begins to stick
and quickly comes to a halt (vy = f; = 0),
otherwise a kinetic frictional force acts tan-
gentially to the surface to retard sliding. The
static and kinetic frictions are proportional
to the magnitude of the normal force into
the surface. The coefficient of static friction
£ is always larger than the coefficient of kinetic
friction k. The tangential force modified by
friction is therefore

i el < £l ]
(18)

-— :;VT
j‘r =t

fr — «||fi|lvr, otherwise

where v =v — (vii) is the tangential
velocity, and 1 is the time constant for halting
the motion in the static fricton case.

8. NUMERICAL TIME-
INTEGRATION

To simulate the dynamics of our models we
provide the initia}l positions x! and velocities
v? of particle 7 for i=1,...,N. At each
subsequent time step, Af2Al ..., 4t +
At . . ., we evaluate the current accelerations,
new velocities, and new positions using the
explicit Euler time-integration procedure:

H

4

a;, =
m;

vi'AM =yl + Ara)

xi('& = x[ + Am' Y

19

The quantity f; is the total force acting on
particle i. This includes a sum of the damping
force —vyyvi, the elastic forces from the
(discretized) third term in (2), the fluid
interaction forces from the third term in (15),

soften the solid, then to melt it until it
dribbles onto the hot floor underneath. The
model simulated in Figure 5 consists of only
250 particles. Although large enough to yield
an interesting animation, this model is much
100 coarse to match the accuracy of sophisti-
cated physical models intended for the analy-
sis of specific real-world solids and fluids.
We therefore refer affectionately to our overly
coarse simulated solids as ‘goop’ and the
simulated fluids into which they melt as
‘glop’. By using more particles in our models
(at increased computational cost), however,
we may achieve increasingly accurate approxi-
mations to real-world solids and fluids under
certain physical conditions.

Figure 5(a) is a bird’s eyc view of three
planes in a funnel-like arrangement over a
ground plane. The planes present obstacles
to the deformable models, and contact with
their surfaces produces friction. We applied
the techniques described in Section 7 to
produce these planar, physically-based con-
straints. The bluish-green colour of the
planes indicates that they are cold {0°).

Figure 5(b) is a frame early in the
simulation which shows a frontal view of a
white picce of goop dropping, due to gravity,
into the mouth of the funnel. The goop is a
heat-conducting deformable model discret-
ized on a 5 X5 X 10 lattice of nodes,
The nodes in the model were rendered as
‘blobbies’.?* The blobby rendering technique
associates an exponential potential function
with each node and efficiently ray traces an
isopotential surface of the resulting field. We
chose an exponential decay rate such that
neighbouring nedes of the model fuse tog-
ether into a plump, continuous form.

Figures 5(c) and (d) show the goop
colliding first with the left surface, and finally
coming to rest in the funnel. We used
significant static friction to make the walls of
the funnel quite sticky, as indicated by the
deformation in Figure 5(a). Up to the
simulation time of Figure 5(¢), the goop was
cold (0°).

Next, the funnel surfaces were heated to
a temperature of 5° (Figure 5(e)). Figures
5(e) and (f) show the goop conducting heat.
The temperature begins to rise at the corners
of the goop where it comes in contact with
the hot surfaces, then spreads throughout the
interior. The heat diffuses into the solid
through Dirichlet boundary conditions
(Scction 3.2) which are automatically intro-
duced at nodes in contact with the funnel.
To visualize the temperature distribution, the
larger 8,, the morc intensely red we colour
the surrounding blobby.

the cxternal forces on the right-hand sides
of these cquations, as well as all modifications
made to these forces in order to apply
constraints and friction as was described in
the previous section.

9. A GOOP-TO-GIL.OP*
SIMULATION

Iigure 5 presents a selection of frames from
an animation involving the physically-based
technigques developed in this paper. The

“Gaap: a Sofl, sticky solid. Glop: a thick, giuey
liyuid. —With apologies to Webster's New World
Dictionary.

Next;-in-Tigure-5(g);-the-temperatureof
the funnel has been set to 7°, entering the
thermocelastic regime of the goop (8° = 6° in
(10)). We sce the goop softening and sagging
deeper into the funnel under its own weight.

Figures 5(h)-(1) show what happens after
we have set the temperature of the surfaces
to 10°, exceeding the goop’s melting point
(0" = 8 in equation (10)). I'irst the goop
collapses (Figure 5(h)), then melts into glop
as the thermocelastic units connecting nodes
near hot surfaces begin to fuse (Figure 5()).
As more and more of the goop melts,
‘gloplets” dribble through the funnel opening
onta the hot floor below. In our first simul-
ation attempt using the above temperatures,
a semi-liguid mixture of goop and glop fell
through the funnel opening and accumulated

from the funnel. We therefore incorporated
into the second simulation an additional step
which automatically melts all the springs
connected to nodes that have flowed through
the funnel opening. Figures 5(i)-(1) show the
result.

We used a=2, b=4, a=10 and
B =10x 10" in (11) (and p =0 in (12)),
which makes the gloplets spread viscously on
the hot floor (Figure 5(1)). Increasing a would
thicken the consistency of the fluid, whereas
increasing B would increase its incompress-
ibility.

10. DISCUSSION AND
EXTENSIONS

This paper developed deformable models
that conduct heat, exhibit thermoelastic
phenomena and melt into molecular fluids.
We conclude by placing our approach into
perspective and suggesting possible exten-
sions and variations.

Greenspan'? suggests discrete solid models
which are based on molecular dynamics that
are conceptually similar to his fluid models,
Instead of incorporating the heat equation, a
macroscopic law involving the thermodynamic
quantity temperature, his models regress to
the microscopic level, treating heat as the
kinetic energy of random molecular vibration
of particles and temperature as the tme-
average of this kinetic energy. A different
class of discrete models are the cellular
automaton fluids proposed by Wolfram.>
These are discrete analogues of molecular
dynamics, in which ensembles of particles
with discrete velocities populate the links of
a fixed array of sites that subdivide the space
occupied by the fluid. Greenspan’s approach
is a discrete version of the Lagrange formu-
lation of fluid dynamics, whereas Wolfram’s is
a discrete version of the Euler formulation.'®

Our model is a convenient blend of
elasticity and heat transfer in solids and the
molecular dynamics of fluids. Because of the
lattice infrastructure, the elastic forces in a
solid model are computable in O(N) time,
where N is the number of nodes. Haowever,
computing the fluid forces brute-force takes
O(NE) time. It is fairly casy to reduce this to
O(Nlog by clustering particles hier-
archically. ** The problem of further reducing
the complexity of force computations in N-
body systems has recently attracted attention
with the development of O(N) al§orithms for
Coulombic field interactions.?*2° It remains
to be seen whether this linear-time approach
generalizes to non-Coulombic fields of the
type used in our fluid model.

The workinthis paper can be exterided
in various interesting directions. By incorpor-
ating the heat equation into the inelastic
madels described in References 1, 8 and
11, we may straightforwardly generalize our
technigues to include inelastic behaviour,
such as thermoplasticity. The incorporation
of these idcas within an interactive modelling
environment would allow users to heat or
cool simulated modelling materials during a
sculpting scssion in order to modify their
malleabilities. '

Another straightforward extension to our
models would be o simulate heat generation
through deformation, a phenomenon evident
in many real-world materials (c.g. a quickly
stretched rubber band becomes warm). In
the heat equation (5), g(u,/) represents the
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Figure 5. Selevted frames from s goop-to-glop
animation:
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(h) goop falls in graving
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(h) tunnel wemperature at melting point; goop
collapses:

(1) goop beging mehiing into glop,

(i), (k) gloplets drihble 1w hot floor;

(1) glop spread out on hot floor (note gloplet
stiching ty back funnel wally



rate of internal heat generation. In our 3. €. R. Feynman, ‘Modeling the appearance . 15. J. D). Faux and M. [. Prant, Computational

ign—to—each—nod

heat-generation nodal variable g,{f) whose
value depends on the average deformation
rate of the thermoelastic units connected to
that node. The heat equation will diffuse the
deformation-induced heat through the model,
along with any heat transferred from the
outside world through boundary conditions,
This paper treated contact with hot objects,
but another obvious extension is to transfer
into a thermoelastic model the heat generated
by friction as it slides against other objects.

If we introduce a boiling point, a mechan-
ism for modelling evaporation into a gaseous
state would be virtually in place. When the
specified boiling point is exceeded by a fluid
particle, we can alter the parameters of its
interaction force to model a gas particle, i.c.
in (11) we make o« = 0 and increase B, so
that the particles will tend to fill the available
space like a gas. Such a molecular gas may
be used directly to model the convection of
heat from the surfaces of hot models.

The modelling of radiative heat transfer
would be another natural extension to the
work presented in this paper. We can apply
the Newton boundary condition given in
Section 3.2 and treat the emitted heat as
infrared radiation. The amount of heat
which would be transmitted to nearby heat-
conducting models is specified by the render-
ing eguation.?” Efficient radiosity algor-
ithms?® would come in handy for such
computations.
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