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Figure 1: The biomechanical model in action. A motion controller drives the musculoskeletal system toward a sequence of target poses.

Abstract

We introduce a comprehensive biomechanical model of the human
upper body. Our model confronts the combined challenge of mod-
eling and controlling more or less all of the relevant articular bones
and muscles, as well as simulating the physics-based deformations
of the soft tissues. Its dynamic skeleton comprises 68 bones with
147 jointed degrees of freedom, including those of each vertebra
and most of the ribs. To be properly actuated and controlled, the
skeletal submodel requires comparable attention to detail with re-
spect to muscle modeling. We incorporate 814 muscles, each of
which is modeled as a piecewise uniaxial Hill-type force actuator.
To simulate biomechanically realistic flesh deformations, we aso
develop a coupled finite element model with the appropriate consti-
tutive behavior, in which are embedded the detailed 3D anatomical
geometries of the hard and soft tissues. Finally, we develop an asso-
ciated physics-based animation controller that computes the muscle
activation signals necessary to drive the elaborate muscul oskel etal
system in accordance with a sequence of target poses specified by
an animator.

CR Categories: 1.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—[Physically based modeling] 1.3.7
[Computer Graphics]: Three-Dimensional Graphicsand Realism—
[Animation]

Keywords: Human Modeling and Animation, Muscle-Based An-
imation, Soft Tissue Simulation, Biomechanics, Finite Elements,
Rigid/Deformable Dynamics and Control

1 Introduction

Readlistic anatomical modeling aimed at achieving high-fidelity hu-
man animation remains a major challenge in computer graphics.
Since the earliest work [Chadwick et al. 1989], researchers have
made significant progress in this domain by focusing their atten-
tion on biomechanically modeling various body parts, including
the face [Lee et al. 1995; Kéahler et al. 2002; Sifakis et al. 2005],
the neck [Lee and Terzopoul os 2006], the torso [Zordan et a. 2004;
DiLorenzo et a. 2008], the hand [Albrecht et al. 2003; Tsang et al.
2005; van Nierop et a. 2008; Suedaet a. 2008], and the leg [Dong
et al. 2002; Komura et a. 2000]. Because of its complexity, how-
ever, researchers have thus far shied away from undertaking a de-
tailed biomechanical modeling of the entire human body. In partic-
ular, the spine and torso have been drastically simplified in prior
work—either they were modeled in a strictly kinematic manner
[Monheit and Badler 1991] or the many articular vertebrae and
ribs were grouped and treated as compound rigid bodies even in
the most detailed dynamic models (e.g., [Nakamura et al. 2005;
DiLorenzo et a. 2008]).

In fact, most of the complexity of the human musculoskeletal sys-
tem is due to the head-neck-trunk complex, in which there are
approximately 57 articular bones and many more muscle actua-
tors. Furthermore, the ribs form closed kinematic loops, which
introduces additional complexities for biomechanical simulation.
Nonetheless, the comprehensive biomechanical modeling and con-
trol of the human upper body is the most principled approach to
simulating the full range of motions and deformations that it is ca
pable of producing, from pronounced motions such as flexing the
arms and spine to more subtle motions such as respiration and la-
ryngeal movements. We devel op a detailed biomechanical model of
the human upper body, comprising the head, neck, trunk, and arms,
for usein physics-based computer animation. Our model features a
muscul oskeletal system with afull complement of muscle actuators
and a coupled finite element simulation of soft tissue deformations.
We also develop an associated dynamic animation controller that
computes the muscle activation signals necessary to drive the mus-



culoskeletal system in accordance with a sequence of target poses
specified by an animator.

We confront the challenge of modeling more or less all of the rel-
evant articular bones, creating a physics-based skeletal model that
consists of 68 bones and 147 DOFs (degrees of freedom), with each
vertebra and most ribs having independent DOFs. To be properly
actuated and controlled, our jointed skeletal model requires acom-
parable level of detail with respect to muscle modeling. We incor-
porate 814 muscles, which are modeled as piecewise line segment
simplified Hill-type force actuators. Coupled to the muscul oskele-
tal system is a finite element simulation of the soft tissues, which
enhances the visual richness of our model consistent with adetailed
3D modeling of the musculature. A total of 354,000 tetrahedral fi-
nite elements (including those in the legs) are simulated to produce
realistic, physics-based flesh deformations.

Ours is the most detailed biomechanical model for computer ani-
mation developed to date. Its unprecedented complexity requires
special attention to making the simulation feasible, through the fol-
lowing features:

e A detailed modeling of the rib bones can introduce closed
loops, which would complicate the simulation of the skele-
ton. In order to exploit an efficient, linear-time dynamics al-
gorithm, we model the skeletal structure topologically as a
tree by connecting the ribs to the costal cartilages using soft
rather than hard constraints.

e The naive creation of a tetrahedral finite element mesh di-
rectly from the 3D surface representations of individual soft
tissue components would result in a prohibitive number of fi-
nite elements, often with poor aspect ratios. We achieve real-
istic, robust, and reasonably efficient ssmulation of soft tissue
deformation within the finite element framework by decou-
pling the visualization geometry from the simulation geome-
try. We further reduce the complexity of the simulation mesh
by allowing T-junctions in the mesh simplification process.

e Our volumetric simulation mesh does not resolve the bones,
but it overlaps with them, thus necessitating a special mechan-
ical coupling between the rigid-body and the nonrigid tissue
simulations in order to make the soft tissue deform accord-
ing to the movement of the skeleton. We achieve this using
soft constraints that produce coupling forces between sample
points on the surface of the bones and appropriate locationsin
the soft tissue model.

e The existence of bones that are not actuated by muscles (e.g.,
the sternum) prevents us from applying the recursive Newton-
Euler inverse dynamics algorithm. Hence, we performinverse
dynamics by employing a hybrid system dynamics algorithm.

The remainder of the paper is organized as follows. Section 2 dis-
cusses additional relevant prior work. Section 3 presents the details
of our upper-body model, including the skeleton (Section 3.1), the
muscle actuators (Section 3.2), and the soft-tissue simulation (Sec-
tion 3.3). Section 4 develops the control algorithms that we use to
animate our biomechanical model. Section 5 presents our exper-
iments and animation results. Section 6 concludes the paper and
discusses promising avenues for future work.

2 Related Work

Our work spans physical and biological modeling and simulation
in computer animation, as well as related fields such as anatomy,
biomechanics, and control.

Researchers have developed various techniques for anatomical
modeling, including muscles and other soft tissues. Scheepers et
a. [1997] and Wilhelms and Gelder [1997] modeled muscles ge-
ometrically, using primitives such as ellipsoids, and muscle defor-
mations were determined entirely by the configuration of the bones,
thus precluding the synthesis of muscle dynamics. Muscle defor-
mation is more accurately simulated biomechanically, by appropri-
ately modeling the stress-strain constitutive characteristics of mus-
cles. Chen and Zeltzer [1992] modeled individual muscles as large
finite elements and applied a Hill-type muscle force model to sim-
ulate the deformation of muscular soft tissues. Other interesting
muscle models include the B-spline solids developed by Ng-Thow-
Hing [2001] and the strand model developed by Pai et al. [2005].
Applying the latter, Sueda et al. [2008] created realistic skin defor-
mation of the hand due to the underlying tendons and muscles.

Leeet al. [1995] used volume-preserving, multi-layer mass-spring-
damper meshes with embedded muscle actuators to model the soft
tissues of the face for biomechanical facial expression synthesis.
Irving et al. [2004] enabled the robust simulation of soft tissue de-
formation by introducing invertible finite elements. Our soft tissue
model is based on the work of Sifakis et al. [2005], where the mus-
cles are embedded within flesh modeled using finite elements.

In contrast to facial animation where muscle models have been used
for over two decadesto generate expressions [Waters 1987], PD ser-
vos have traditionally been used to produce articulated skeletal an-
imation [Hodgins et al. 1995; Faloutsos et a. 2001]. Recently, Ko-
muraet al. [1997; 2000] incorporated Hill-type muscle models into
space-time optimization and motion retargeting to achieve dynam-
ically and physiologically feasible motions. Zordan and colleagues
[Zordan et a. 2004; DiLorenzo et al. 2008] developed a detailed
torso model and simulated breathing and laughing. They used a
Hill-type muscle model to actuate the thorax, but also used PD-
servosto control the lumbar vertebrae. Lee and Terzopoul os [2006]
biomechanically modeled the human neck-head-face complex and
developed atwo-layer neuromuscular controller comprising trained
neural networks. The head-neck portion of our upper-body model
includes the 7 cervical vertebrae present in their model, plus the
hyoid bone and the thyroid cartilages modeled as rigid bodies, with
atotal of 300 muscles, far exceeding the 72 muscles in the earlier
model.

The biomechanics community has ongoing effortsto create detailed
human musculoskeletal models. Although state of the art models
such as the Full-Body SIMM model (www.muscul ographics.com)
and the AnyBody model (www.anybodytech.com) provide accu-
rate muscle parameters, they unfortunately do not provide the
data needed to control a very detailed model like ours, notably
lacking data for muscles in the trunk. Another problem with
these biomechanics models from the point of view of computer
animation is that they do not specify the detalled geometries
of muscles. In our model, we employ detailed muscle geome-
try data from the commercially available Ultimate Human model
(www.cgcharacter.com). However, this model lacks information
regarding the force generating properties of the muscles. We es-
timate muscle parameters—e.g., attachment points and physiologi-
cal cross sectiona areas—by analyzing the muscle geometry data,
as detailed in Section 3.2.

There exists a large biomechanics literature on human motor con-
trol mechanisms. Traditionally, biomechanics researchers have at-
tempted to interpret motor control strategy as an optimization pro-
cess and have devoted effort to understanding the optimality cri-
teria [Crowninshield 1978; Pandy et al. 1990]. Recently, some
researchers have adopted robot control theories for human motor
control. Sapio et a. [2005] proposed a task-level feedback con-
trol framework in the simulation of goal-directed human motion.
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Figure 2: Ventral (a), lateral (b), and dorsal (c) views of the modeled skeleton of the body. Most of the articular bones are individually
modeled. Thereis a total of 68 bones articulated by 147 DOFs, of which 133 DOFs are in the head-neck-trunk region. Neighboring bones
with the same color are treated as a single rigid body. The parameters of the skeleton are given in [ Lee 2008] .

Thelen et al. [2003] used static optimization along with feedfor-
ward and feedback controls to drive the kinematic trgjectory of a
musculoskeletal leg model toward a set of desired kinematics, and
reported that the muscle excitations computed by their method were
similar to measured electromyographic patterns. Similarly, our mo-
tion controller computes muscle activation levelsin the feedforward
controller, but with a novel method for computing the feedforward
signal.

We model amost al the relevant articular joints, including joints
that cannot be controlled by muscles (i.e., the sternum and the
costal cartilages). This prevents us from using the popular, recur-
sive Newton-Euler inverse dynamics algorithm. Instead, we ap-
ply a hybrid system dynamics algorithm introduced by Feather-
stone [1987]. When input torques are given to some joints and de-
sired accelerations are specified for other joints, the hybrid system
dynamics agorithm computes the resulting accelerations for the
torque-specified joints and the required torques for the accel eration-
specified jointsin linear time for open loop systems.! Kokkevisand
Metaxas [1998] introduced a similar control agorithm, but it has
O(nm-+ m?) complexity, where n is the number of DOFs and mis
the number of acceleration-specified joints.

3 Modeling

This section presents each of the major components of our biome-
chanical model of the human upper body, namely the skeleton, the

1In robotics, the hybrid system dynamics algorithm has been applied
to mechanisms with a (zero-torque) free-floating root and acceleration-
specified joints, such as robotic animals [Albro et a. 2000; Hu et a. 2005].
We present an inverse dynamics technique for the hybrid system, partic-
ularly when simulated using an implicit time-integration scheme. Note
that our agorithm differs from other so-called “hybrid” control approaches,
which are mostly concerned with switching between kinematic and dynamic
simulation [Shapiro et a. 2003; Zordan and Hodgins 2002].

muscle-based actuation model, and the soft tissue modeling and
simulation.

3.1 Skeletal Model

The skeleton is modeled as an articulated, multi-body dynamic sys-
tem. Asshown in Fig. 2, we individually modeled most of the ar-
ticular bonesin human upper body (the hands remain kinematically
articulated). The system has a total of 68 bones with 147 DOFs.
Among these, 133 DOFs are associated with the head-neck-trunk
region. In particular, all the vertebrae in the lumbar, thoracic, and
cervical regions are modeled as individual rigid bodies intercon-
nected with 3-DOF joints. The first 10 ribs are able to rotate in-
dependently from the spine along axes running through costotrans-
verse and costovertebral joints [Kapandji 1974] while the floating
ribs (the 11th and 12th ribs) arerigidly attached to their parent ver-
tebrae. Although costal cartilages are flexible bodies, we model
them asrigid bodies, and the flexibility of the cartilagesis emulated
by 3-DOF joints connecting to the sternum and springs connecting
to theribs. By not modeling the joints between the costal cartilages
and ribs, we maintained the skeleton as an open-loop system so that
we can use afast method for simulating articulated body dynamics.
The hyoid bone and the thyroid cartilages are also modeled asrigid
bodies. Even though the actual bones are not jointed to vertebrae,
we modeled them for simplicity as child links of nearby vertebrae,
with rotational joints positioned about 5cm posterior to the parent
bones.

Since we are less concerned about highly coordinated motions of
the clavicle, scapula, and humerus, we simplified the model of the
shoulder; the clavicle has2 DOFsand the scapulaisrigidly attached
to the clavicle. Nevertheless, this allows plausible movement for a
modest range of upper arm motions.

The inertial properties of the skeleton are approximated from the
dense volumetric mesh of the surrounding soft tissues. We associ-
ated the inertial parameters of each volumetric element to the near-



Figure 3: Source geometry data of the modeled muscles. The superficial muscles are shown on the right side of the body, while deeper
muscles are revealed on the | eft side.

Figure 4: The lines-of-action of the uniaxial muscle actuators in the body. A total of 814 actuators are modeled. Table 1 lists the modeled
muscles.
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Figure 5: (a) Broad muscles such as the Latissimus dorsi are modeled using multiple line segments. Yellow spheres indicate the position
of via points. (b) When a deep muscle spans many vertebrae, one in every two or three vertebrae is assigned a fixation point (blue sphere)
to conform the muscle to the movement of the vertebrae. (c) The via points of muscles that have a large range of motion are determined
subjectively such that the resulting PLS muscle model deforms convincingly as the skeleton moves.

Head/Neck muscles (300)

Iliocostalis thoracis (2), Interspinalis (12), Intertransversi (28),
Rotatores (10), Semispinalis thoracics (4), Trapezius (4), Masseter (2),
Iliocostalis cervicis (10), Longissimus capitis (16), Longissimus cervicis (10),
Semispinalis cervicis (12), Splenius capitis (10), Semispinalis capitis (18),
Longus capitis (8), Geniohyoid (2), Longus colli (14), Obliquus capitis (4),
Omohyoid (2), Rectus capitis posterior (4), Rectus capitis anterior (2),
Scalenes (50), Sternocleidomastoid (4), Sternohyoid (2), Sternothyroid (2),
Stylohyoid (2), Rectus capitis lateralis (2), Levator scapulae (16),
Multifidus (36), mylohyoid (2), Splenius cervicis (8), Rhomboid minor (2)
Trunk muscles (432)

External/Internal obliques (22), Rectus abdominis (6), Iliocostalis lumborum (24),
Iliocostalis thoracis (18), Interspinalis (14), Intertransversi (34),
Multifidus (116), Rotatores (30), Semispinalis thoracics (8),

Spinalis thoracis (16), Trapezius (10), External intercostal (20),
Pectoralis minor (6), Serratus anterior (16), Rhomboid major (2),
Quadratus lumborum (10), Subclavius (2), lliocostalis cervicis (2),
Longissimus thoracis (48), Serratus posterior inferior (8), Internal intercostal (20)
Arm muscles (41)

Pectoralis major (6), Latissimus dorsi (7), Biceps brachii (2), Brachioradialis (1),
Brachialis (1), Coracobrachialis (1), Triceps Brachii (3), Infraspinatus (1),
Deltoid (3), Supraspinatus (1), Teres mgjor (1), Extensor carpi radialis brevis (1),
Extensor carpi radialis longus (1), Extensor carpi ulnaris (1), Supinator (1),
Flexor carpi ulnaris (1), Flexor digitorum superficialis (4), PAmarislongus (1),
Pronator quadratus (1), Pronator teres (2), Extensor pollicislongus (1)

Table 1: A total of 814 muscles are modeled. The numbers in
parentheses indicate the number of muscle actuators of each kind.

est bone so that each bone's inertial tensor is augmented by the
inertial parameters of the associated soft tissues. The parameters
of the skeleton, among them the inertial properties and the location
and axis of the joints, are provided in [Lee 2008].

3.2 Muscle Actuation Model

Ideally, to compute the correct activation levels of individual mus-
cles, the parameters of al the muscles of the skeleton should be
known. Since many muscles are highly correlated, assigning in-
exact parameter values to one muscle prevents the computation of
the correct activation level of other muscles. Furthermore, if cer-
tain muscles are omitted, other muscles should be activated more
highly in order to compensate for the missing muscles. These con-
siderations present a challenge. Unfortunately, although the biome-
chanics literature provides accurate parameters for many muscles
(e.g., [Holzbaur et al. 2005]), no available model provides afull set
of parameter values for al the muscles in the upper body. Notably
absent are the parameters of many of the spinal muscles that are
important for maintaining the stability of the upper body.

As an dternative, we use the comprehensive muscle geometry in-
formation from the Ultimate Human model. Fig. 3 shows the de-
tailed source geometry of the muscles. However, the model pro-
vides no information regarding the force generating properties of
muscles, making it necessary to estimate these properties from the
muscle geometry.

We model most of the skeletal muscles available in the source
data—a total of 814 muscles, modeled using piecewise line seg-
ment (PLS) models (Fig. 4). Table 1 lists the modeled muscles. It
may at first seem that we model more muscles than necessary, but
given the large number of DOFs of our skeletal model, thisis only
about 2.8 times the minimum number of musclesrequired to actuate
the system with one agonist/antagonist muscle pair per DOF.

We model broad muscles such as the trapezius and latissimus dorsi
using multiple PLS models (Fig. 5(8)). Although the externa
obliques and internal obliques are abdominal muscles organized in
different layers, we construct PLS models of the left (right) external
obliques and right (left) internal obliques asif they were connected.

With regard to the deep muscles, we can determine the viapointsfor
the PLS model without much difficulty, because deep muscles are
positioned close to bones and the distance from a muscle to neigh-
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Figure 6: The PCSA of a muscleis calculated asits volume divided
by its mean fiber length. Blue lines indicate the fiber direction of
the biceps brachii.

boring bones does not change much as the bones move. When a
deep muscle spans many vertebrae, via points are set only to some
of the bones for computational efficiency (Fig. 5(b)). It is more
difficult to model the superficial muscles using PLS models, since
these muscles are rather far from bones, making it harder to deter-
mine via points, and because their positions relative to the bones
vary significantly as the bones move. For superficial muscles, we
subjectively selected a few (typicaly 2 to 4) via points, making
sure that the resulting PLS muscle model deforms convincingly as
the skeleton moves (Fig. 5(a),(c)).

We did not model the diaphragm as a grid of PLS muscles, but it is
not important for pose control. As a result, respiratory movement
is accomplished mainly by the intercostal muscles. We also omit-
ted the transversus abdominis muscles to avoid the complication of
modeling them as parallel PLS models.

The force generating characteristic of the PLS muscleismodeled as
a linearized Hill-type model [Lee and Terzopoulos 2006]. Assum-
ing that the length of the tendon is constant, we model a muscle
force as the sum of the forces from a contractile element (CE) and
aparalel element (PE).

The PE force is modeled as an unidirectional exponential spring;
ie,

fip = max(0, ke(exp(kee) — 1) + k), @)

where ks, ke, and ky are elastic and damping coefficients, e = (I —
lo)/lo isthe strain of the muscle, with | and lg its length and slack
length, respectively, and é=1/Ig isthe strain rate.

The CE force is expressed as
fc = aR (R, 2

where 0 < a < 1 is the activation level of the muscle. The force-
length relation is /(1) = max(0, kmax (I — Im)), where kmax is the
maximum stiffness of a fully activated muscle and I, is the min-
imum length at which the muscle can produce force, and FRy(l) =
max(0, 1+ min(l,0)/vm), where vi(> 0) is the maximum contrac-
tion velocity under no load. We set Iy = 0.3lg, vim = 8lg sec™ 1,
and ke = 6 for all the muscles. The coefficients ks, Ky, and Kmax
for each muscle are scaled by the physiological cross sectional
area (PCSA) of the muscle. We used ks = 0.8A, kg = 0.1k, and
kmax = A/ (I —Im), where A is the PCSA of amuscle, whichis cal-
culated by dividing its geometric volume by its mean fiber length
(Fig. 6). The parameters of each muscle, such as the PCSA, rest
length, and the attachment points are listed in [Lee 2008].

Itisimportant to note that even if we had faithfully modeled the ma-
jority of the skeletal muscles, the sternum and the costal cartilages
cannot be controlled by muscles. This is natural because they are
in fact moved only passively by the motion of the neighboring ribs;
hence, we dub them passive joints. This does not pose any prob-
lem in forward dynamics simulation, but it does complicate inverse

dynamics; i.e., computing the muscle forces needed to generate de-
sired accelerations. We will address this problem in Section 4.3.

Even though some muscles exert forces on passive joints, we as-
sume that such forces contribute negligibly to the accelerations of
the passive joints compared to the forces exerted by the connect-
ing tissues. Consequently, the equations of motion of the skeletal
system are as follows:

v@ [§] coma = PGC[em @

where g = [/, qp]" is the state vector with g the generalized
coordinates of the muscle-driven joints and qp those of the passive
joints, M isthe mass matrix, and ¢ accountsfor the forcesfrom con-
necting tissues and muscle parallel elements (fp) aswell as gravity,
Coriolis forces, and centrifugal forces. The Jacobian matrix J(q)
transforms the applied external force fe into joint torques. The mo-
ment arm matrix P transforms the muscle force fc to the joint space
torque and is defined as PT = dl/dq, where | is the vector of the
lengths of each muscle. The agorithm to compute P is detailed in
[Delp and Loan 1995].

To simulate the skeletal dynamics, we use the implicit Euler time-
integration method with linearized equations of motion. The equa-
tions of motion (3) can be written as

4=¢(a,9,7). (4)

Rather than computing ¢ from (3), we perform forward dynamics.
Then the implicit Euler method computes ¢(t + h) by solving

q(t+h)—a(t) =he(a(t+h),q(t+h),7), ©)

which requires the use of iterative root-finding methods. We sim-
plify the problem by using the first-order approximation

AG=h [¢(q(t>7q<t>7r>+‘3—2Aq+§—2Aq} ®)

B . 20 . N
—h[mq(t),q(t),ma—qh<q<t>+Aq>+&—qu}, ™

where Aq = g(t+h) —q(t). Weuseasimulationtimesteph~ 7ms.
3.3 Soft Tissue Model

In our human body model, the muscle activation parameters are
computed using a PLS idealization of the musculature. Driven by
these muscle actions, a companion volumetric, finite element sim-
ulation of the musculoskeletal structure introduces the visual rich-
ness of more detailed, 3D musculature models (Fig. 7).

3.3.1 Skin surface model creation

The first step in the construction of our physics-based soft tissue
model is the creation of a high quality skin surface geometry. The
initial high-resolution skin surface mesh that serves as our proto-
type is created by subdividing the origina mesh of the Ultimate
Human model. Although richin geometric detail, it does not clearly
define the volumetric boundary of the body, since it is not a closed,
intersection-free surface due to openings at the eye sockets, spuri-
ous intersections near the ears, etc. Additionally, the mesh is rather
poorly conditioned for the purposes of a volumetric physics-based
simulation, with elements exhibiting aspect ratios as high as 60:1,
while the ratio of the longest to the shortest edge in the mesh is
in excess of 1000:1. Thiswould hinder the time integration of the
resulting physics-based model and collision processing. We ame-
liorate these shortcomings as follows:



(8) Skin Visualization Geometry

(b) Anatomical Bone and Soft Tissue Geometry

(c) Simulation Mesh

Figure 7: Our volumetric human body model incorporates (a) de-
tailed aspects of skin geometry and (b) active muscle tissues, pas-
sive soft tissues, and skeletal substructure. The skin surface is
discretized into a 300K-triangle mesh. Resolving this surface de-
tail with a fully tetrahedralized mesh through the bounded volume
would make any form of finite element simulation impractical. To
overcome this difficulty, we decouple the visualization geometry
from the simulation geometry by creating an embedded model. To
this end, an adaptive, BCC tetrahedralized mesh is superimposed
on the soft tissue volume (c). This mesh embeds the high-resolution
surface representation by means of barycentric interpolation of the
surface nodes from the nodes of the tetrahedral simulation mesh.

e Holesin the skin mesh (e.g. eyes) were procedurally closed.

e The closed skin mesh is rasterized into a level set implicit
surface [Osher and Fedkiw 2002]. A grid size of 1.5mm is
used for most of the body, while certain areas with thin fea-
tures, such as the ears, are additionally rasterized into local
level sets with a grid size of 0.5mm. Thisimplicit surface is
dlightly dilated (by 1mm) and smoothed to eliminate exces-
sively thin flesh features (some of which were present in the
ears) and artifacts caused by spurious self-intersection of the
original surface. These subtle corrections are hardly notice-
able, even upon close inspection.

e The meshing algorithm of [Molino et al. 2003] is utilized to
convert the level set implicit model of the flesh geometry into
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Figure 8: Detail from the chest of the anatomical model. The Ulti-
mate Human model skin surface, riddled with sliver el ements when
subdivided for smoothness (a), compared to our well-conditioned
surface mesh (b).

a well-conditioned tetrahedralized volumetric mesh. We cre-
ate a moderately adaptive tetrahedral mesh with element di-
ameters ranging from 1mm to 10mm, resolving the surface
geometry at an average resolution of 3-5mm. The result-
ing mesh has an overwhelming 6.2 million tetrahedral ele-
ments; however, instead of directly using this model for sim-
ulation, we keep only the triangulated surface of this tetrahe-
dralized volume (i.e., itstopological boundary), which we use
in the context of an “embedded simulation” framework de-
scribed below. The interior structure of this tetrahedral mesh
is discarded. Constructing the surface mesh as the topolog-
ical boundary of a well-conditioned tetrahedralized volume
imposes even more stringent mesh quality standards; e.g., we
penalize bad dihedral angles and narrow parts in the volume
enclosed by the computed surface, in addition to enforcing
good conditioning along the surface itself. Although this con-
struction may be more conservative than it strictly needsto be,
thisis atolerable, one-time modeling cost. Alternative tetra-
hedral meshing schemes (e.g., [Labelle and Shewchuk 2007])
or mesh optimization schemes (e.g., [Hoppe et al. 1993]) can
be used for this task, as long as they are tuned to produce a
high-quality result.
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Figure 9: (a) Triangulated skin geometry. (b) Background BCC-tetrahedralized material volume. (c) After cutting along the skin surface, the
material volume has been separated into an embedded volumetric body model, and an outer mold of unused material (sliced and peeled open

for illustration purposes).

The resulting triangulated skin geometry has 302K triangles, with
an average diameter of 4-5mm and amaximum aspect ratio of 3.8:1
(Fig. 8). Thiswell-conditioned mesh provides an excellent starting
point for physics-based flesh modeling and greatly helps collision
handling.

3.3.2 Generation of the embedded simulation mesh

Having created a high-quality surface representation, our next goal
isto generate a volumetric simulation mesh on which the governing
equations of the soft tissue will be defined. One possibility would
be simply to create atetrahedral mesh directly from theimplicit sur-
face representation of the flesh volume that was previously created.
In fact, we have already described the creation of such atetrahedral
mesh with the purpose of using its boundary triangle mesh as the
skin surface representation. However, there are problems with us-
ing such amesh for simulation. The mesh resolves the skin surface
at aresolution of 3-5mm, with an interior element size of 10mm.
At this resolution, the mesh comprises 6.2 million tetrahedra, im-
practically many for afull nonlinear finite element flesh simulation.
One possible remedy would be a more aggressive adaptivity; in-
creasing the maximum element size to 20-30mm could lead to 8 to
27 times fewer interior elements. Unfortunately, at the given level
of surface resolution, as many as 1.0-1.5 million tetrahedra would
be incident to the surface where high refinement would be neces-
sary. In practice, we found that even with very aggressive adaptivity
in the interior of the flesh, the minimum mesh size attainable with-
out coarsening near the surface would be approximately 2 million
tetrahedra. Finaly, even if we tolerated a lower surface resolution
for most of the skin surface, there are certain regions that need to
be adequately resolved due to high-curvature features (e.g., fingers,
face) or to facilitate collision handling (e.g., inner thighs, elbow,
armpit).

Our goal is to reduce the size of our smulation model to a few
hundred thousand tetrahedral elements. This represents a reduc-
tion of the number of simulation elements by roughly an order of
magnitude from the af orementioned approaches, but our experience

indicates that the coarser resolution can require two or three orders
of magnitude less computation time. This is attributable to the de-
creased number of solver iterations—both for the outer Newton it-
eration for the solution of the nonlinear problem, as well as for the
conjugate gradients solver of thelinearized problem at each Newton
step—as a result of using fewer, larger tetrahedral elements. Note
that the computational cost of every conjugate gradients iteration
scales faster than linearly in practice as the state variable storage
requirements of million-element models begin to outgrow the size
of processor cache, further impeding performance due to memory
bandwidth limitations.

We address these issues with a hybrid simulation technique, adapt-
ing the framework of [Sifakis et a. 2007b] to our soft tissue sim-
ulation task. We use an embedded simulation scheme which de-
couples the geometric representation of the skin surface from the
volumetric simulation mesh. Thus, we can benefit from the higher
resolution of the triangulated skin surface mesh for rendering and
collision handling, while simulating the elastic flesh deformation
on a coarser adaptive tetrahedral mesh in which the detailed skin
surface is embedded.

We start by generating a Body-Centered-Cubic (BCC) tetrahedral
lattice (see [Molino et al. 2003] for the details), which completely
covers the volume bounded by the human body (Fig. 9(a)), as
shown in Fig. 9(b). We use a uniform size of 7mm for the tetra-
hedral elements at this step. Subsequently, we use the algorithm of
[Sifakis et a. 2007a] to cut this background tetrahedral along the
triangulated surface of the skin into two separate parts—the frag-
ment interior to the skin surface, which corresponds to the human
body volume, and the exterior part, which forms a negative “mold”
enclosing the body, as shown in Fig. 9(c). We discard this exterior
volume as it is irrelevant to our simulation. The interior volume
comprises the soft tissue model that we wish to simulate. The cut-
ting algorithm of [Sifakis et al. 2007a] provides the subset of the
original tetrahedral mesh that intersects this volume (Fig. 10(b))
plus an embedded skin surface geometry in terms of atriangle mesh
whose vertices are barycentrically embedded into the tetrahedra of
the embedding volume.
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Figure 10: (a) Visual reference. (b) Uniform embedding mesh at a resolution of 7mm. (c) The embedding mesh after 2 steps of adaptive
coarsening, down to an element resolution of 28mm. T-junctions are visible at the boundaries between refinement levels.

Our decision to create the embedding geometry using the cutting
method of [Sifakis et al. 2007a] is influenced by the ability of this
algorithm to create new degrees of freedom to better resolve parts
of the embedded material exhibiting branching or narrow separa-
tion. For example, in the vicinity of the fingers, a single embedding
tetrahedron from our background BCC mesh will often touch two
neighboring fingers. A naive strategy that simply embeds every part
of the surface into the tetrahedron in which it lies would effectively
“join” these otherwise separate parts of flesh, whereas the use of
the aforementioned cutting method automatically introduces new
degrees of freedom to separate the parts and to better resolve the
topology of the embedded material.

Since the embedding mesh thus created originates from a uniform
resolution lattice, its total number of elements (3.8 million) is still
prohibitively high. Leveraging the highly regular structure of the
underlying BCC lattice, we proceed to coarsen this mesh adaptively
by reversing the process of ared refinement as defined in [Molino
et a. 2003]. The inverse of this process, red coarsening, collapses
eight child tetrahedra into one, similar to each of the child tetrahe-
drawith an edgeratio of 2:1. The criterion for coarsening isthat all
eight child tetrahedra must be present in the embedding mesh and
that none of them has been duplicated by the cutting algorithm of
[Sifakis et al. 2007a]. After recursively coarsening for a maximum
of two levels (i.e., a tetrahedron size of 28mm), we obtain the fi-
nal simulation mesh consisting of 354,000 tetrahedra (Fig. 10(c)).
Due to the nature of our refinement process, T-junctions are present
at the boundaries between different levels of refinement. These
specia points are simulated in a straightforward fashion using the
framework of [Sifakis et al. 2007b].

The individual challenges presented by our biomechanical simula-
tion can be addressed by a number of techniques documented in
the literature. For example, adaptivity and T-junctions are accom-
modated in approaches such as [Grinspun et al. 2002; Wicke et al.
2007], large nonlinear deformation and element inversion istreated
in[lrving et a. 2004] while the work of [Bridson et al. 2002] can be
used for robust treatment of collisions. In our work, we opted for
the hybrid simulation framework of Sifakis et al. [2007b], which
provides a simple, unified infrastructure for accommodating em-
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Figure 11: (a) Randomly scattered point samples in a simulation
element are classified as belonging to active muscles (red and or-
ange points, with their associated fiber directions) or passive flesh
(blue paints). (b) A rigid bone (the area between the brown out-
lines) is sampled on its surface (blue points). These sample points
are connected with zero length springsto barycentrically embedded
locations (green points) in the simulation mesh.

bedding, adaptivity, and complex boundary conditions, in combi-
nation with established robust techniques for large, nonlinear de-
formation and collision processing.

3.3.3 Modeling musculature and skeletal structure

The tetrahedral simulation mesh created in the previous step does
not strictly conform to the geometry of muscles or bones. In anal-
ogy to the treatment of the high-resolution skin surface, these geo-
metric features are embedded into the simulation mesh. As afirst
step, we use the geometry of the muscles to modulate the mate-
rial properties assigned to each simulation element. A number
of randomly generated sample points (we used between 10° and
10* points, depending on element size) are uniformly distributed in
each tetrahedron of the simulation mesh. We check whether each
of these sample points, indicated as colored dots in Fig. 11(a), is



located inside any muscle volume, in which case the direction of
the muscle fiber field at the given location is associated with the
sample point. In the figure, these samples are depicted as red and
orange vector fields corresponding to the two distinct musclesinter-
secting the simulation element. Points outside any muscle volume,
displayed asblue dotsin the figure, are regarded aslocations of pas-
sive flesh or fatty tissue. Using these sample points, we compute a
muscle density dm € [0, 1], denoting the fraction of the simulation
element covered by muscle m, while d, denotes the fraction of the
simulation element covered by passive flesh outside any muscle.
Consequently, these densities satisfy dy + > ,,0m = 1. Finaly, we
average the fiber directions of the sample points inside muscle m
and normalize the result to unit length to obtain a representative
fiber direction fy, for this muscle with respect to the simulation ele-
ment in question.

We describe the constitutive model of each simulation tetrahedron
in terms of the strain energy density W(F), which is defined at each
point as a function of the deformation gradient F = d¢ /dX. Here,
¢ isthe deformation function that maps a point X in the undeformed
configuration of the body to its deformed position x = ¢(X). The
total strain energy E is obtained by integrating the energy density
W(F) over the entire deformable body. Subsequently, this energy
can be used to compute nodal forces by taking the negative gradient
f=—dE/dx of the strain energy with respect to the nodal position
X. Refer to [Bonet and Wood 1997] for a detailed discussion of
hyperelastic constitutive models and methods for their numerical
discretization, and [Teran et al. 2005b] for a specialized exposition
in the context of musculoskeletal simulation.

Our constitutive model is defined as a weighted average of the con-
stitutive models for passive flesh and active muscles, using the pre-
viously computed muscle densities dny, as follows:

W(F) = dp¥p(F) + X dm¥m(F). ®

The passive flesh is modeled as an isotropic, quasi-incompressible
Mooney-Rivlin material [Bonet and Wood 1997], leading to thefol-
lowing formulafor its strain energy density ¥p:

¥p = ugo(trC —3) + %um[(tré)z ~C:C—6)+ %K‘|OQZJ, )

where J = det F isthe volume changeratio and € = FT F isthe devi-
atoric Cauchy strain tensor with F = J~1/3F the deviatoric compo-
nent of the deformation gradient. We use the values rp; = 0.06MPa
and 10 = 0.02MPa for the elasticity moduli, and the bulk modu-
lus (a measure of incompressibility of the tissue) kK = 10MPa. The
constitutive model for active muscles is the sum of the isotropic
contribution ¥ and an anisotropic muscle term Wpy:

where Am = ||Ffiy|| isthe along-fiber contraction ratio of muscle m
in the smulation element, and the function ¥y, is defined via its
first derivative:

9¥m(A) _ O
A om

where omax = 0.3MPais the peak isometric stress of skeletal mus-
cle, Aopt = 1.4 isthe optimal fiber contraction ratio for force genera-
tion, and fiot s the normalized force-length function for the passive
and active component. We define fiot in accordance with a stan-
dard Hill-type model [Zajac 1989]. We refer the interested reader
to [Blemker 2004; Teran et al. 2005b; Sifakis 2007] for a further
discussion of the constitutive model used in our system, aternative

frot(A), (11)

models offering even higher biomechanical accuracy, and detailson
the numerical discretization and implementation of these models.

Next, we address the issue of integrating the rigid skeleton with
our soft tissue simulation model. Our volumetric simulation mesh
does not resolve the rigid bones; in fact, the simulation mesh over-
laps with the skeleton, requiring special treatment of the interface
between the hard and soft tissues. One possibility would be to con-
strain any node of the simulation mesh that lies inside or near a
bone to a fixed position within the local coordinate frame of that
bone. However, this approach leads to issues with (a) simulation
nodesthat are near more than one bone, (b) boneslocated very close
to the skin surface |eading to odd-looking patches of skin that move
rigidly with the bones underneath, and (c) thin bones (e.g., ribs) lo-
cated deeper inside the flesh where the simulation mesh is coarser,
which may be inadequately constrained unless an unnaturally large
constraint radius is used.

We circumvent these problems by using soft constraints and ap-
plying them to embedded locations rather than true nodes of the
simulation mesh, as follows: A set of pointsis uniformly sampled
on the surface of each bone. These samples, displayed as blue dots
in Fig. 11(b), move with the bone. We then duplicate each of these
samples with the locations that they have in the undeformed config-
uration of the soft tissue. The duplicated samples, illustrated with a
dlight displacement as green dots in Fig. 11(b), are barycentrically
embedded into the simulation element with which they overlap. Fi-
nally, the samples attached to a bone are connected with their dupli-
cate embedded counterparts using zero rest-length elastic springs,
which apply traction forces on the surrounding soft tissue as the
bone moves, thusinducing an appropriate soft tissue movement and
deformation. This embedded treatment of skeletal attachments al-
lows us to decouple the resolution of the simulation mesh from the
resolution of the skeletal geometry and define the attachment re-
gions as arbitrarily point-sampled surfaces.

3.3.4 Numerical simulation and time-integration

Our musculoskeletal simulation model contains features such as
T-junctions, hybrid descriptions using embedded collision geome-
tries, and embedded point sets for skeletal attachments, as well as
soft constraints implemented as zero-length elastic springs. We
use the hybrid simulation framework of [Sifakis et al. 2007b],
which accommodates such simulation elements in the context of
either explicit or implicit time-integration schemes. In particular,
T-junctions and points embedded in the simulation mesh are natu-
rally handled without compromising the symmetry or definiteness
of the linear systems arising from the finite element discretization
of the simulation mesh. Additionaly, the elastic springs used to
enforce soft constraints are handled fully implicitly in the context
of Newmark-type time-integration schemes, alleviating timestep re-
strictions that could arise from stiff constraint springs. For the ex-
amplesillustrated later in this paper, we used the quasi-static time-
integration scheme of [Teran et al. 2005c], which provides the ro-
bust handling of extreme deformation and element inversion, both
of which are frequent occurrences in our application. Depending
mostly on the rate of change of muscle activation and the velocity
of the skeleton, we obtained simulation times of 1-4 minutes per
frame using asingle core of a3.0Ghz Intel Xeon CPU workstation.

4 Control

To animate our model, we take a computed muscle force control
approach; i.e., we first employ the equations of motion (3) of the
musculoskeletal system to compute the muscle forces necessary to
produce some desired motion—say, a sequence of target key poses
set by an animator or from motion capture data specifying the de-
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Figure 12: Overview of the motion controller.

sired joint angles over time—subject to externa forces, and then
we apply the computed muscle forces to produce the final forward
dynamics simulation. To this end, we develop a physics-based an-
imation controller that computes accelerations to drive the muscu-
loskeletal system toward the sequence of target poses, and then
computes the required activation signal for each muscle through
inverse dynamics.

4.1 Overview

Fig. 12 shows a schematic of our motion controller. The inputs to
the controller are the target pose and muscle coactivation of agonist
and antagonist muscles of the body. Although the pose/coactivation
inputs can be dense time series, such as motion capture data, we will
use sparse key frames, at an approximate rate of 1 frame/sec, asin-
puts in our experiments. Given the inputs and the current state, the
motion controller determines the desired acceleration of the joints,
and then computes the required muscle activation levelsin order to
achieve the desired accelerations and target coactivation. Then the
articulated-body dynamics of the skeletal system are simulated us-
ing the implicit Euler method, and the joint angles and muscle acti-
vation levels are made availabl e to the soft tissue simulator. Finally,
given the position of the bones and the activation level of each mus-
cle, the soft tissue is displaced and deformed by the elastic spring
traction forces coupling the soft tissue to the bones, as well as the
muscle forces along the fiber directions, as was described in the
previous section.

4.2 Computing the Desired Accelerations

Given target positions and orientations of the head and chest (the
T1 bone) as well as target joint angles of the arms and legs, the
motion controller first performsinverse kinematics to determine the
desired angles of the joints. Specifically, we iteratively update the
joint angles in a gradient-descent manner such that the differences
between the current and target poses of the head and T1 bone are
minimized.

At each animation time step, the controller determines the desired
acceleration to reach the target pose, using feedback information
about the joint angle and velocity. In our experiments, we compute
the desired accelerations §* as follows:

4" =kp(q" —a)+ k(G —q), (12)

where g* and g* are the desired joint angles and angular veloci-
ties, respectively, and kp and ky determine the characteristics of the
acceleration given the differences between the desired and actual
values.

4.3 Generalized Force Computation

Prior to computing the muscle activation levels, it is convenient
to compute the equivalent generalized forces; i.e., to solve the in-
verse dynamics problem in the joint space. The efficient, recursive

Newton-Euler inverse dynamics method is predominantly used for
open-loop systems, but we cannot use this method because some
joints (the sternum and costal cartilages) cannot be controlled by
muscles. In other words, even if we compute generalized forces
for these joints, no muscle can generate the generalized force. Ac-
tualy, it would be unnatural to specify a desired motion for these
passive joints as they are articulated passively by connected bones,
while we compute the muscle forces required to achieve the speci-
fied accelerations of the muscle-driven joints.

The hybrid dynamics algorithm [Featherstone 1987] is an efficient
algorithm that serves this purpose. Using this algorithm, we pro-
vide desired accelerations for acceleration-specified joints and in-
put torquesfor torque-specified jointsand, in linear time compl exity
in the number of joints, we can compute the required joint torques
for the former and the resulting accel erations of the latter.

To perform inverse dynamics, we set the passivejointsto be torque-
specified joints with zero generalized forces, and set the muscle-
driven joints to be accel eration-specified joints with the desired ac-
celerations. Then, the hybrid dynamics algorithm computes the re-
quired generalized forces for the muscle-driven joints and the re-
sulting acceleration of the passive joints. Mathematically, the algo-
rithm solves for 7* and g in

5] -m@ [§] +owa o (13

where §;, is the desired accelerations of the muscle-driven joints.

When applying the implicit time-integration scheme with rather
large time steps, evolving the system using the computed torque
from (13) creates a large error and the system can fail to achieve
the desired motion. This is because the implicit time-integration
method effectively uses (5) as the equations of motion, in which
the system state is described with respect to the next time step. The
solution is to perform inverse dynamics at the next time step, ac-
cording to the following procedure:

1. Set the muscle-driven joints as acceleration-specified joints,
while the passive joints remain torque-specified joints.

2. Set the desired accelerations for the muscle-driven joints.

3. Run the hybrid dynamics algorithm to compute the resulting
acceleration of the passive joints.

4: Advance to the next time step with the forward Euler method
using the accel erations computed above.

5. Run the hybrid dynamics algorithm to compute the required
torques for the muscle-driven joints.

6. Return to the state of the current time step.

7. Reset the muscle-driven joints to torque-specified joints.

We can employ this scheme with reasonably large time-steps even
if we use equation (7), which isthe linearization of (5).

4.4 Computation of the Muscle Activation Levels

Next, we will determine the muscle activation levels required to
generate the generalized forces. One of the most distinguishing
features of muscles is that their stiffness varies according to the
activation level. In addition to controlling pose, humans readily
control the stiffness of their bodies by exploiting the redundancy of
their muscle actuators. Stiffness is an important aspect of stylistic
motions, such as dance.

We introduce a new method to compute the muscle activation lev-
els. Our method achieves the desired stiffness by explicitly comput-
ing agonist and antagonist muscle activations. The agonist muscle
activation level ag is determined by solving the following optimiza-



tion problem:

1
ag = argmin Y (wa)? suchthat Pfc=1*,a>0, (14)
a i

wherew; isthe muscle weight.2 We did not enforce an upper bound
inequality constraint, i.e., a < 1, because muscles should not reach
their maximum state in normal situations. We define the antagonist
muscle activation as generating an opposing force; i.e., we perform
the optimization only to change the sign of the generalized force:

an = argmin%Z(wia@)2 suchthat Pfc=—1*,a>0. (15)
A _

Naturally, the total muscle activation level ag+ an generates zero
net generalized force, but it increases the stiffness of the system.
Using a non-negative coactivation parameter y, we determine the
activation level as

a= (1+ Y)ag+yan. (16)

For computational efficiency, we divide the muscles into four
groups and perform separate optimizations for the muscles in each
of the two arms, the head-neck complex, and the torso. First, we
optimize the activation levels of the arm and head-neck muscles.
Naturally, muscles that cross the torso to other parts of the body
apply torques on joints in the torso. Therefore, we determine the
activation level of the torso muscles so that the net torque is the
same as the desired torque. In this way, the coactivation parameter
can also be specified on a per body part basis.

Lee and Terzopoul os [2006] also solved two optimization problems
in order to control both pose and stiffness, but their optimization
problems are different—one computes agonist muscle activation
similarly to ours, while the other finds a vector in the null-space
of the moment arm matrix. In contrast, our method solves the
same optimization problem twice, but with different equality con-
straints. Our new method promises to be better for implementing
alearning machine (say, neura networks) that can determine mus-
cle activation levels, potentially enabling a single trained machine
to determine both agonist and antagonist muscle activation levels.
Additionaly, in our method the stiffness is determined by the de-
sired acceleration as well as the state of the system, while in [Lee
and Terzopoulos 2006] the maximum stiffness signal is determined
solely from the pose.

4.5 Sensor Modeling

Since we impose exact control, the resulting motion follows the
target motion very well. However, this is not always desirable in
the context of computer animation. Since this method computes the
required control input to create the desired motion under any given
external force, the resulting body motion can easily lack its natural
response to rapidly varying external forces, making the movement
appear too stiff. For example, when aball unexpectedly impactsthe
character, the body motion would not be affected, since our method
comgutes the control inputs that nullify the external force from the
ball.

2The muscle weights serve to regularize the muscle activation levels.
When solving (14), if the activation level for some muscle i exceeds 1, we
increase w; in order to reduce the activation level, which will commensu-
rately increase the activation levels of the associated synergistic muscles.

3The computed muscle force approach can also lead to implausible re-
sults when excessively large muscle forces are computed in order for the
system to achieve unnatural target poses as a result of external forces. We
do not consider this possibility, assuming instead that the animator provides
realistically achievable target poses.

Sensor modeling can avoid this problem by discriminating between
the external force input to the controller and the actual applied ex-
ternal force. The response time delay of biological control systems
yields a natural response to the external forces. We use the follow-
ing simple delay model which produces plausible reactive motion:

—fo=0(fe—To), (17)

where fe is the sensed external force that is used to compute the
muscle force and o is the time lag coefficient. To apply the sen-
sor model, we replace fe in (13) with fe computed above. While
simplistic, our sensor model does enable intuitive control of the
character’s response.

5 Experiments and Results

Our experiments with our biomechanical upper-body model range
from simulating dumbbell curls to creating respiratory movement.
We have produced several simulations demonstrating that our mus-
cle control algorithms can readily actuate the elaborate muscu-
loskeletal system in a controlled manner in order to track various
input key-pose sequences, such as arm flexing motions with dumb-
bell loads (Fig. 1). We also demonstrate an autonomous breathing
animation in which plausible respiratory movement is produced by
the intercostal muscles. Finally, we created a“ pectoral dance” ani-
mation in which the activation signals to the pectoralis muscles are
modulated through time to make them bulge rhythmically.

Fig. 13 shows asamplestill frame from one of our animation exper-
iments. As the figure shows, the soft tissue exhibits natural defor-
mations due to the activation of the muscles and the motion of the
skeleton. The embedded volumetric muscles also demonstrate cred-
ible, volume-preserving bulging, which suggests that our embedded
model approach isa Eromisi ng technique for accurately estimating
muscle deformation.

Fig. 14 shows a close-up of the shoulder region with different coac-
tivations of agonist/antagonist muscle pairs. Naturaly, high coac-
tivation produces more muscle bulging, asis clear from the defor-
mations of the skin surface.

A “dumbbell curl” animation illustrated in Fig. 15 demonstrates
sensor modeling in the controller. When the mass of the dumbbells
suddenly increases, the biomechanical character exhibits transient
pose control failure before recovering the target pose. Without sen-
sor modeling, the target pose would have been perfectly maintained
in an unnatural manner, despite the unexpected change in the exter-
nal load.

Figure 16 shows snapshots of an autonomous breathing animation
in which plausible respiratory movement is produced by the inter-
costal muscles. For the purposes of this demonstration, we have
specified a simple periodic function p = pmax(1— cos0)/2, where
0 isthe phase angle, and set qj = cjp astarget joint angles for the
ribs. Here, c; linearly increases until the fifth rib and stays constant
for the remaining ribs.

5.1 Sensitivity Analysis

We have measured the sensitivity of our method to various muscle
modeling parameters. Fig. 17(a)—(b) show the effect of the PCSA

4Since we use static optimization to compute muscle activation lev-
els, their temporal smoothness is not guaranteed. Therefore, athough in
most cases the optimal muscle activation levels change smoothly to produce
smooth target motions, we observe occasional muscle twitchesin our exper-
iment. Had we used a full dynamic simulation of the soft tissue rather than
quasi-static simulation, these discontinuities would have been smoothed out.
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Figure 13: The soft tissue simulator produces realistic deformations of the visualization geometry (a) and embedded volumetric muscles (b).
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of muscles on the computation of muscle activation levels. In each
test, we randomly perturbed the PCSAs of every muscle by up to
+5% and measured the change of activation levels for 6 different
poses. We executed a total of 10 tests and Fig. 17(a) shows a his-
togram of the mean change of activation levels of each muscle. We
excluded non-activated muscles from the histograms. Thefigurein-
dicates that more than 90% of the muscles show an average activa-
tion level change of less than 0.03. Fig. 17(b) shows the histogram

(b)
Figure 14: Compared to zero muscle coactivation (a), higher coactivation (b) results in greater muscle bulging and stiffness in the shoulder.

of maximum change of activation levels of each muscle throughout
the test.

We performed the same experiment with respect to the via points
of muscles. In this case, we randomly perturbed the position of
every viapoint by up to 3% of their rest length while the origin and
insertion points remain fixed. Fig. 17(c) shows the average change
of muscle activation levels due to the perturbation of via points and



Figure 15: When the mass of the dumbbells increases suddenly, the arms show a natural failure to maintain the pose and are lowered for an
instant (center). Soon, they return to the desired, original pose (right). The horizontal lines highlight the displacement.

Figure 16: Normal breathing. The ribsin inspiration (right) are elevated relative to those in expiration (left). The horizontal lines highlight

the displacement.

Fig. 17(d) shows the histogram of maximum change of activation
level of each muscle throughout the test.

Fig. 17(b) and (d) reveal that the resulting muscle activation level
can vary considerably due to changes in the muscle parameters.
Actually, it has been known in the biomechanics community that
the estimated muscle force from optimization is highly sensitive to
modeling parameters such as the PCSA and the moment arm as
well as with respect to the optimization method employed [Nuss-
baum et a. 1995; Raikova and Prilutsky 2001]. This stresses the
importance of employing more accurate modeling parameters and
better criteria for computing muscle forces, which remains an ac-
tive research areain biomechanics. It isworth noting, however, that
the muscle force patterns are not as sensitive to the muscle mod-
eling parameters as are the muscle force magnitudes [Raikova and
Prilutsky 2001].

6 Conclusion and Future Work

We have introduced a highly-detailed, biomechanical model of the
human upper body that comprises a dynamic, articulated skeleton,

numerous Hill-type muscle actuators, and a redlistic finite element
simulation of soft tissues. \We were able to achieve reasonably fast
performance in soft tissue simulation by decoupling the visualiza-
tion geometry from the simulation geometry, using an embedded
model. To tackle the complexity of controlling the skeletal model
in the presence of both active and passive joints, we developed an
inverse dynamics algorithm for this hybrid system in conjunction
with an implicit time-integration scheme. Additionally, we pre-
sented an improved method to compute muscle activation levels by
explicitly computing agonist and antagonist muscle forces in order
to control the stiffness of the body.

Despite the rich history of biomechanical modeling and control re-
search, we have yet to see a truly integrated muscle-controlled hu-
man animation system (except perhaps in the case of facial anima-
tion), where volume-preserving 3D soft-tissue muscles actuate hard
tissues (bones) and deform the surrounding skin. Our detailed mus-
culoskeletal and soft tissue model represents an important stride
toward this challenging long-term objective. Since our soft tissue
model approximates the actual deformation of each muscle, rather
than approximating muscle forces using simple line segment mod-
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Figure 17: The sensitivity of muscle activation levels to muscle modeling parameters. Histogram (a) shows the mean and (b) the maximum
change of activation levels when the PCSAs of the muscles are randomly perturbed by up to +5%. Histogram (c) shows the mean and (d) the
maximum change of activation levels when the via points of muscles are randomly perturbed by up to 3% of their rest lengths (origins and
insertion points remain unchanged). Non-activated muscles are excluded from the histograms.

els, we can directly compute the moment arm of each muscle from
the soft tissue simulator. Moreover, by avoiding the urge to lump
all theinertial properties of the surrounding tissues into the bones,
the soft tissues can retain their inertial properties, enabling a more
accurate dynamics simulation.

The embedding technique that we employed for soft tissue mod-
eling enables the robust and efficient simulation of soft tissue de-
formation within the finite element framework. An important ben-
efit of this embedding approach is the avoidance of small or ill-
conditioned elements that might be necessary to resolve intricate
anatomical detail (e.g., tendons and connective tissue) in the sim-
ulation mesh. We do, however, incur the compromise that such
anatomical features are only represented at the resolution of the
simulation mesh. Our treatment effectively computes a weighted
average of the material properties of the tissues contained in every
simulation element, without any subsequent attention to their rela-
tive placement. Thisis a source of inaccuracy that we necessarily
tolerate at present, and that we expect will vanish with refinement.
Another aspect missing from our current embedded model is the
ability for muscles in contact to slide along one another and rela-
tive to the passive tissue surrounding them. Thisisin contrast with
systems such as [Sueda et al. 2008] and [Teran et a. 2005a] that
modeled muscles individually. In fact, the embedded simulation of
individual muscles is an option (as demonstrated in [Teran et al.
2005a]) that we would like to investigate in the future, even at the
cost of requiring explicit handling of collision and contact between
individual muscles and tissue [Pai et a. 2005].

For some applications, it would be necessary to model not only ad-
ditional individual muscles, but also the ligaments and disks (carti-
lage filled with a gelatinous substance) that deform to cushion the
vertebrae. A more complete model would enable us to simulate
cervical injuries such as whiplash and other injuries of the spinal
column.

Regarding the modeling of joints, since we modeled the scapula as
rigidly attached to the clavicle, the shoulder complex is restricted
to a moderate range of motion, which aso limits the richness of
the resulting soft tissue deformation. In future work we will aim to
improve the modeling of this region using the spline joint modeling
technique proposed in [Lee and Terzopoul os 2008].

Our animations employed a quasi-static time-integration scheme
for soft tissue simulation, which lacks the proper resolution of in-
ertial motion effects. This was a choice motivated by the lower
computational cost of a quasi-static simulation. Nevertheless, the
use of an implicit backward Euler scheme or a semi-implicit New-
mark integrator is readily supported within our framework. In our
future work, we expect to leverage the performance offered by par-
alel and multi-core platforms to compensate for the higher overall
cost of dynamic integration schemes.

In our work to date, we have treated each muscle force as an in-
dependent actuator when computing activation levels. However,
muscles show highly correlated patterns of activity during normal
human movements. We have applied principal componentsanalysis
(PCA) to a set of sample activation levels of the 422 torso muscles



and satisfied ourselves that only 50 to 100 basis vectors can ap-
proximate the sample activations reasonably well. An opportunity
for future work would be to develop a more efficient muscle con-
troller for the entire body that utilizes a lower-dimensional control
space through dimensionality reduction and, ultimately, a machine
learning approach which generalizes the one already demonstrated
for the neck [Lee and Terzopoul os 2006].

Another important future effort would be to extend our modeling
framework to include afull biomechanical model of the hands and,
indeed, to encompass the entire human body (see [Lee 2008]). As
far as the skeletal and soft tissue modeling are concerned, a full-
body model would not introduce substantial new difficulties. In-
deed, our current model aready includes finite element soft tissue
simulation in the lower body, albeit no muscle actuation. How-
ever, it would surely be a significant control challenge to enable
such a comprehensive biomechanical model to, say, locomote au-
tonomously while maintaining dynamic balance in gravity.

Additional interesting venues of future work would be to develop
associated algorithms for creating person-specific biomechanical
models for use in, say, surgery simulation, as well as to adapt and
extend our framework to the modeling of nonhuman primates and
other lower animals.
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