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Abstract

Deterministic splines and stochastic fractals are complementary
techniques for generating free-form shapes. Splines are easily
constrained and well suited to modeling smooth, man-made ob-
jects. Fractals, while difficult to constrain, are suitable for gen-
erating various irregular shapes found in nature. This paper
develops constrained fractals, a hybrid of splines and fractals
which intimately combines their complementary features. This
novel shape synthesis technique stems from a formal connec-
tion between fractals and generalized energy-minimizing splines
which may be derived through Fourier analysis. A physical in-
terpretation of constrained fractal generation is to drive a spline
subject to constraints with modulated white noise, letting the
spline diffuse the noise into the desired fractal spectrum as it
settles into equilibrium. We use constrained fractals to synthe-
size realistic terrain models from sparse elevation data.

Keywords: Fractals, Splines, Constraints, Scattered Data In-
terpolation, Digital Terrain Models, Physically Based Model-
ing, Deformable Models

CR Categories: 1.3.5—Object .Modeling (Curve, surface,
solid, and object representations); 1.3.7—Three-Dimensional
Graphics and Realism; G.1.1—Interpolation (Spline interpo-
lation); G.1.2—Approximation (Spline approximation)

1 Introduction

Over the years, computer graphics researchers have devel-
oped numerous mathematical models capable of generat-
ing free-form shapes. Such models come in two varieties—
deterministic and stochastic. Spline models, which are de-
terministic, have established themselves as a convenient
and powerful technique for modeling smooth, man-made
shapes, such as teapots [2]. By contrast, fractal models
have become popular for recreating a wide variety of the
shapes found in nature [10]. Most fractal models feature
a stochastic component, making them well suited to gen-
erating nonsmooth, irregular shapes, such as mountainous
terrain [4]. In this paper, we develop a model of shape
which combines deterministic splines and stochastic frac-
tals to inherit their complementary features.
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1.1 Constraints versus Natural Detail

Splines typically offer precise shape control but they lack
natural looking detail. In this paper, we employ a class of
variational splines whose positions, slopes, and curvatures
are locally controllable though external shape constraints.
Furthermore, these variational models can become piece-
wise smooth, producing local discontinuities such as frac-
tures and creases. However, these splines provide no mech-
anism for modeling the fine-scale texture of many natural
shapes.

By contrast, stochastic fractals provide realistic detail
for modeling a wide variety of complex natural phenomena,
but they offer little control over shape. This deficiency is
most acute in the Fourier based methods [10] which can
produce shapes with true fractal distributions but cannot
be controlled locally. A common approach for obtaining
some control is to first triangulate a given set of points,
then add fractal texture by recursively subdividing and
randomly perturbing the subtriangles [4]. Unfortunately,
this approach produces annoying visual artifacts because
the spatial statistics are nonstationary across the original
triangle boundaries. Moreover, it makes difficult the im-
position of more complicated constraints.

Conventional free-form shape synthesis techniques are
therefore inadequate for many graphics applications—
splines provide insufficient detail, while fractals provide
insufficient shape control. This paper proposes constrained
fractals, a new shape modeling technique which simultane-
ously provides both detail and control.

1.2 Overview

Section 2 gives an intuitive explanation of the constrained
fractal technique, and discusses fractal terrain generation
which serves as our main application area. Section 3
presents the controlled-continuity splines which form the
deterministic component of constrained fractals. The main
text develops these variational splines in a single variable,
and multivariate extensions are relegated to an appendix.
We describe how to discretize the spline energy expres-
sions using finite elements, and present examples of spline
surfaces constrained by scattered data. Section 4 explains
how to associate a probability distribution with variational
splines through the Boltzmann distribution, and shows
that samples from this distribution have fractal statistics.
Section 5 introduces a multiresolution stochastic relaxation
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algorithm for sampling the Boltzmann distribution to ob-
tain constrained fractals. Because of length limitations, we
present a full description of our algorithm in a companion
paper [14]. In Section 6 we demonstrate the application of
this algorithm, showing how to include local control over
smoothness. Finally, Section 7 closes with some conclu-
sions about our work.

2 The Constrained Fractal Approach
2.1 Deterministic Component

A constrained fractal is a physically-based model which
makes use of the energy minimization principles underly-
ing variational splines [1].! These principles characterize
spline curves and surfaces as the “smoothest” shapes con-
sistent with the given constraints; this gives rise to an in-
teresting relationship connecting variational splines to spa-
tial smoothing filters (see [16,13,12]). What is surprising,
however, is that “spline smoothing filters” can provide the
spatial frequency characteristics of fractal fields [13].

To exploit the filtering property of variational splines
in generating constrained fractals, we employ a gen-
eral class of multivariate spline models called controlled-
continuity splines [16]. These splines allow us to create the
desired shape by applying local constraints (say, on posi-
tion and/or orientation) at arbitrary points. Physically,
the constraints are interpretable as external forces which
shape the spline [15]. Controlled-continuity splines also
afford local control over smoothness, which permits us to
introduce jump or crease discontinuities at arbitrary points
on the spline to yield a piecewise smooth shape.

2.2 Stochastic Component

To introduce fractal detail into the shape, we go one step
further. As it minimizes its deformation energy under the
influence of constraint forces, we subject the controlled-
continuity spline to white noise. Visualize this physically
as continually bombarding the spline shape with point
masses impacting at random velocities. The impulses im-
parted by these projectiles randomly perturb the spline
as it “relaxes” into a stochastic equilibrium (characterized
by minimal time-averaged energy under the random per-
turbations). During relaxation the spline diffuses the ef-
fects of the perturbations spatially, eventually shaping the
flat spectrum of the perturbations into the desired fractal
spectrum.?

2.3 Bayesian Interpretation

We can also motivate our approach by making use of an-
other interesting relationship, first developed in statistical
mechanics, which connects energy functionals to random

! Variational splines are simple instances of “deformable models”
(see [18,17]); hence, the constrained fractal technique extends to this
general class of physically-based models as well.

2As Lewis [9] has argued, the spectrum of the random process
need not be truly fractal in order to provide realistic detail. We use
the term ‘“fractal” to describe a random function whose spectrum we
can control.
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fields via the Boltzmann probability distribution [7]. The
relaxing controlled-continuity spline can therefore be inter-
preted as a “Gibbs Sampler” which draws sample shapes
from a Boltzmann distributed ensemble that has fractal
statistics due to the spline’s internal energy [13]. The con-
strained fractal is thus a typical sample from the posterior
distribution, i.e., a random fractal sample consistent with
the observations which are provided by the constraints.

2.4 Algorithmic Features

The stochastic equilibrium of the spline is computable by
a stochastic relaxation algorithm implemented as a local,
iterative, numerical process. We obtain such an algo-
rithm by locally discretizing the continuous spline energy
functionals using regular finite difference or finite element
grids.3

Each relaxation step replaces the values of nodal vari-
ables on the grid by a noise-perturbed weighted combina-
tion of neighboring variable values, thereby propagating
information from node to node across the grid. Because of
the local nature of the communication, a large number of
iterations.may be necessary for the stochastic relaxation
process to converge on large, fine grids. If the variational
spline problem is discretized on a sequence of successively
coarser grids, however, the convergence rates improve dra-
matically [15]. In this paper we propose a multiresolution
stochastic relaxation process which computes the interpo-
lated fractal shape efficiently. The multiresolution process
is readily parallelizable, and is therefore suitable for mas-
sively parallel computers.

2.5 Fractal Terrain Generation

As an application of our constrained fractal technique, we
concentrate on the problem of terrain generation for the
synthesis of realistic outdoor scenes.

Fractal terrain generation [10] has traditionally been
approached using a variety of stochastic subdivision tech-
niques. Fournier et al. [4] employ a technique called ran-
dom midpoint displacement which creates a tessellated sur-
face by recursively subdividing triangles. The height of
each newly created interior point is randomly perturbed
away from its original interpolated value, and the mag-
nitude of each perturbation is related to the level of the
subdivision. Varying this relationship results in fractals of
arbitrary degree. Voss [19] uses successive random addi-
tions, which differs in that all of the points are randomly
perturbed at each subdivision step (not just the newly cre-

3Regular (“fine-grained”) grids are independent of the spatial or-
ganization of the data and lead to algorithms that are readily im-
plementable on massively parallel computational structures. These
properties account for the prevalent use of regular grids in the com-
puter vision community, as does the massive parallelism of the early
human visual system [8]. Out use of regular grids stands in contrast
to conventional techniques for interpolating sparse data in computer
graphics applications. The latter usually involve irregularly triangu-
lating the domain in a data dependent fashion (5] (techniques have
also been developed for the simpler case of interpolating “gridded”
data [3]).
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ated ones). Lewis [9] proposes generalized stochastic sub-
division, a refinement of random midpoint displacement.
Instead of displacing each midpoint independently, he adds
correlated Gaussian noise, which alleviates the artifacts
due to spatially nonstationary statistics across triangles
that are sometimes evident with the preceeding methods.

Unlike the above methods, our multiresolution
stochastic relaxation algorithm can easily accommodate
arbitrary constraints as additional terms in its energy min-
imization principle. The solution is guaranteed to have
spatially stationary statistics, so long as we perform a suf-
ficient number of iterations on the fine level (in practice,
this number proves to be quite low).

To apply our constrained fractal technique to terrain
modeling, we may begin either with synthetic elevation
landmarks selected by a user or with true elevation data ac-
quired in surveys or through aerial photogrammetry. The
first step is to create the terrain model from these typi-
cally sparse elevation data (e.g., isoelavation contours) by
interpolating a dense digital elevation map in the form of a
gridded, single-valued surface f(u,v). To do so, we supply
these data to our algorithm as elevation constraints d;, let-
ting the controlled-continuity spline serve as an interpolant
whose parameters afford local control over the continuity
of the surface and the tightness of fit to the data. At the
same time, the stochastic mechanism invents fractal de-
tail that enhances the realism of the interpolated terrain
model. Thus our technique solves the surface fitting and
detail generation problems simultaneously.

3 Variational Splines

Variational splines are characterized by the minima of en-
ergy functionals. To construct a variational spline, we
first define a deformation energy functional £ over a suit-
able class of functions, and then compute a function which
minimizes £. In the univariate case, the minimizing func-
tions approximate the steady-state deformations of elastic
strings and beams subjected to applied forces.

Suppose that we stretch an elastic string horizontally
along the z axis. Let z = u denote the coordinate along
the string and let y = f(u) give the shape of the string
as a function of u. The (linearized) deformation energy
associated with f is given by

Ef)=5 [fiaw

where f, indicates differentiation with respect to u.
Next, suppose that f(u) gives the shape of an elastic
beam. The (linearized) deformation energy of the beam is

&) =3 [ fauan

where fy, denotes the second derivative. Note that the
minimum of this expression characterizes the common cu-
bic spline [1]. Because the string has tension, it defines
a continuous curve f. Since the beam resists bending, it
defines a smoother curve f that is not merely continuous
in position but also in tangent.

3.1 Controlled-Continuity Splines

We can blend the above energies to create a model that
combines the properties of the string and beam. Introduc-
ing nonnegative rigidity p(u) and tension [1—7(u)] param-
eter functions that take values between 0 and 1 inclusively,
the hybrid energy functional is

&) =5 [ WAL= I + @} du ()

Note, that if we restrict p(u) = p and 7(u) = T to be global
constants independent of u, the above spline reduces to
the globally continuous “spline under tension” proposed
by Schweikert [11].

As functions of u, however, p(u) and 7(u) provide local
control over the continuity of the curve. Consequently, the
function f which minimizes (1) is a controlled-continuity
spline [16]. In regions of u where p(u) > 0 and 7(u) > 0,
the spline is continuous in both position and tangent, tend-
ing towards the string as 7(u) — 0 and towards the beam
as 7(u) — 1. In regions where 7(u) = 0, the spline is free
to have discontinuous tangents (creases), and in regions
where p(u) = 0, the spline is free to have discontinuous
positions (fractures).

The univariate controlled-continuity splines general-
ize to any number of variables, to any embedding space
dimensionality, and to arbitrary order of continuity (see
Appendix A), thereby providing a unified treatment of
curves, surfaces, solids, or higher-dimensional models (in
spacetime) [16]. Since in this paper we concentrate on ter-
rain modeling applications, we make use of the bivariate
case—surfaces. Appendix A defines controlled-continuity
surface splines based on the membrane and plate, the nat-
ural bivariate analogues of the string and beam.

3.2 Fitting Data

To formulate the spline fitting problem, we combine the
energy functional of the controlled-continuity spline with
a data compatibility constraint. In the univariate case,
the data is a collection of values {p;} = {(ui,di)}. A
simple data compatibility constraint measures the squared
(weighted Euclidean) distance between the data and the
spline f(u) using the constraint functional

1
Ea(fi{m}) = '2'206 (f(w) = di)? (2)
where the weights c; are inversely related to the variance

of the uncertainty (noise) in the data (¢; = o7t

To find the approximating spline, the functionals (1)
and (2) are combined to form the energy functional

E(f) = A& (f) + Ea(fi {mi}), 3)

where ) is known as a regularization parameter. This con-
tinuous formulation of the variational spline fitting prob-

4We can handle orientation (slope) data o; by adding the term

LY (fulwi) - 0i)? to (2) [16].
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Figure 1: Spline approximation

lem in terms of a functional applies to arbitrarily struc-
tured constraint data, whether gridded, contoured, or scat-
tered.

Figure 1 illustrates a physical interpretation of (3) in
the univariate case. The first term defines the energy of
the spline curve. The second term corresponds to the en-
ergy of a collection of zero-length ideal springs (with spring
constants ¢;) connecting the spline to the data points. The
springs apply forces which deflect the spline such that it ap-
proximates the data (infinitely stiff springs result in strict
interpolation). When (3) is at a minimum, the physical
system is at equilibrium, such that the forces exerted by
the springs balance the reluctance of the spline to deform.

3.3 Finite Element Discretization

To minimize (3), we apply the finite element method,
which provides a systematic approach to the discretiza-
tion and solution of variational spline problems [15]. We
discretize f(u) on a regular “fine grained” mesh of nodal
variables (see Footnote 1).

When finite element analysis is applied to quadratic
functionals such as (1), we obtain a discrete energy func-
tion expressible as a quadratic form:

Ey(x) = %xTApx (4)

where x is the vector of nodal variables.® The prior model
matrix A is sparse, having at most 13 entries per row (see
(15,12] for details). Similarly, the discrete data constraint
in (2) can be written as

Fa(x,d) = %(x — AT Ag(x - d), (5)

®Actually, (1) is quadratic only if p(u) and v(u) are fixed
functions.

For example, in the univariate case X = [£(0),..., f(jh),...,
F((M — 1)h))’, where h is the spacing of a linear M-node mesh.
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Figure 2: Sparse data points

where d is a zero-padded vector of data values, and the di-
agonal matrix A4 has entries w; where data points coincide
with nodal variables and zeros elsewhere.

Using (4) and (5), we write the combined energy (3)
in discrete form as

E(x) = —;-xTAx —xTb+k (6)
where k is a constant, while
A=XMA,+Aq and b=A4d. .

This energy function has a minimum at x = x*, the solu-
tion to the linear system of algebraic equations

Ax=b. )

In principle, the solution to (7) can be found using ei-
ther direct or iterative numerical methods. Direct methods
are impractical for solving large systems associated with
fine meshes because of excessive storage requirements. Al-
ternatively, simple iterative schemes such as Gauss-Seidel
relaxation require relatively little storage but can be very
slow to converge. We resolve the difficulty using multigrid
relaxation, which accelerates convergence by solving the
problem at multiple resolution levels [15].

3.4 A Surface Fitting Example

To better visualize the fitting of variational spline models
to scattered data, let us consider a small example involv-
ing the bivariate controlled-continuity spline model given
in Appendix A. Figure 2 shows nine data points. The in-
terpolated thin plate (7 = 1) solution on the finite element
mesh is shown in Figure 3. Note that a jump discontinuity
(p = 0) has been introduced along the left edge and an
orientation discontinuity (7 = 0) along the right edge.
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Figure 3: Interpolated piecewise continuous solution

4 Converting Energies into Probabilities

The controlled-continuity splines presented in the previ-
ous section give us a powerful approach to interpolating
(or approximating) data with differing amounts of smooth-
ness. For many graphics applications, however, the result-
ing shapes have insufficient detail or random texture to
look natural. We will now show how to convert our spline
energy functions into probability distributions from which
we can draw random samples having fractal textures.

The idea of converting an energy function into a prob-
ability distribution comes from statistical mechanics. In
many stochastic physical systems, the probability of a
particular configuration is inversely related to its energy.
Many different equations for transforming energies to prob-
abilities are possible. For our application, we will use the
Boltzmann distribution, where the energy of a state E(x)
is related to its probability p(x) through a negative expo-
nential:

p(x) =  exp (= By(x)/T) ®)

(the partition function Z is used to normalize the dis-
tribution). The temperature parameter T controls how
“peaked” the distribution is with respect to its low-energy
states. The Boltzmann distribution has properties which
make it useful for modeling random fields [7]. For our pur-
poses, the most important of these is that multiplicative
interactions between probability distributions can be con-
verted into additive interactions between energies. This
becomes particularly useful when we look at fractal gener-
ation as sampling from a constrained (conditional) distri-
bution using the Gibbs Sampler algorithm to be presented
in the next section. )

4|

Figure 4: Sample from posterior distribution -

Interestingly, we can use the energy of the controlled-
continuity spline model to define a Boltzmann distribution
with a fractal spectrum. A Fourier analysis of this prior
model reveals that the resulting distribution is correlated
Gaussian noise with a fractal spectrum (i.e., self-affine over
scale) for the membrane or string (7 = 0) and for the thin
plate or beam (T = 1) [13] (see Appendix B).

When data d constrain the fractal shape, we may
obtain it by sampling from the conditional distribution
p(x|d). This posterior distribution can be calculated using
Bayes’ rule
p(d]x) p(x)

——" (9)
»(d)

where the distribution p(d) is a normalization factor. The

conditional distribution p(d|x) can be derived from a mea-

surement model which describes how the data d was ac-

quired from a sample shape x [12].

For a linear measurement model, the negative loga-
rithm of the posterior distribution p(x|d) can be written
as the sum of two energy functions

p(x|d) =

—logp(x|d) = E(x;d) = Ep(x) + Ea(x,d);  (10)

i.e., the posterior distribution is itself a Boltzmann dis-
tribution. We thus have a correspondence between our
Bayesian models and the constraints used in the previ-
ous section to fit the generalized spline. The measurement
model p(d|x) corresponds to the constraint data. The prior
model p(x) corresponds to the controlled-continuity spline.
As shown in Appendix B, we can control the spectrum of
this prior model through our choice of the order of the
spline.

The posterior distribution p(x|d) thus defines a class
of random shapes which are drawn from a family of fractals
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and which are also consistent with given shape constraints
(observations). The most likely sample from this distribu-
tion, the Mazimum a Posteriori (MAP) estimate, corre-
sponds to the minimum energy solution of (7), as shown in
Figure 3. A typicalsample from this distribution is shown
in Figure 4. Devising an efficient method for generating
such a random sample is the subject of the next section.

5 Multiresolution Stochastic Relaxation

The explicit evaluation of the Boltzmann distribution
given in (8) is very difficult because the computation of the
partition function Z requires a summation over all possi-
ble states. Fortunately, we can generate random samples
from this distribution using a simple algorithm known as
the Gibbs Sampler [7]. At each step of this iterative algo-
rithm, a new random state is chosen from the Boltzmann
distribution corresponding to the local energy function of
the variable being updated. This updating rule is guaran-
teed to convergence to a random sample from the overall
distribution (the ensemble is then said to be at thermal
equilibrium).

For our quadratic energy function (6), the local energy
function for the node z; (with all other nodes fixed) is

E(:c,-) = %a;,-:z:,-z + (Z a;;T; — b,) T; + k, (11)
JEN;

where a,; are the entries of A, and N; expresses the fact
that the a;; are nonzero only for certain neighbors of node ¢
(see [14] for details). When using Gauss-Seidel relaxation,
we choose the new node value which minimizes this local
energy

b,' - : Qi T4
t= _ﬁh"_’i (12)

Q4

z

(for pure interpolation, we set z} = d; at points coincident
with data). We can thus rewrite the local energy as

E(z) = %a,-.-(::,' —P) 4k (13)

For the Gibbs Sampler algorithm, we choose the new
value for z; from the local Boltzmann distribution

r; — :1:7'- 2
p(z:) o< exp (— B(z)/T) o exp (-é(—m—l) (14)

which is a Gaussian with mean equal to the deterministic
update value :1:,~+ and a variance equal to T'/a;;. Thus, the
Gibbs Sampler is equivalent to the usual relaxation algo-
rithm with the addition of some locally controlled Gaussian
noise at each step. For instance, the sample surface in Fig-
ure 4 exhibits the rough (wrinkled) look of fractals. The
amount of roughness can be controlled with the “temper-
ature” parameter T.
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5.1 Multiresolution Acceleration

Although the above iterative algorithm will eventually
achieve stochastic equilibrium, the convergence may be un-
acceptably slow in practice. To accelerate convergence, we
use coarse-to-fine relaxation on a multiresolution pyramid.
The problem is first solved on a coarser mesh, and the
solution is used as an initial condition for the next finer
level.

The coarse-to-fine technique is thus similar to re-
cursive subdivision and successive addition techniques
(4,19,9]. Unlike these approaches, however, we do not just
add random detail as the resolution is increased. Instead,
we use the coarse (low resolution) solution as an initial con-
dition for the stochastic relaxation algorithm. The itera-
tive nature of this algorithm removes the nonstationarities
that are present in the interpolated initial condition, and
it also allows us to impose constraints at finer resolutions.
The disadvantage of this approach is that the coarse level
sample may no longer look like a subsampled version of
the fine level sample. This lack of “internal consistency”
becomes a problem when we wish to generate renderings
at a variety of scales [4].

We can avoid this discrepancy either by limiting the
number of iterations at the finer levels, or by “freezing”
the points derived from the coarse level and only iterat-
ing on the new points (which resembles random mid-point
displacement). The second approach is usually preferable,
since it allows the fine level shape to relax sufficiently so
that “creases” or other artifacts are not visible. However, if
this freezing procedure occurs at a resolution much coarser
than that of the data, the resulting shape will not fit the
data as well as it could. A strategy which allows full relax-
ation until the data resolution is reached and then freezes
coarse level points as more detail is added works well in
practice. In [14] we present examples of this approach ap-
plied to the generation of “zoom sequences” over fractal
terrain.

Using a multiresolution pyramid also gives us addi-
tional control over the spectrum of the fractal shape, When
we use a membrane (string) or thin plate (beam) model in
our stochastic relaxation algorithm, the resulting spectrum
is fractal, but it is limited to the form

Sp(w) o< |w|=2™,

which corresponds to fractal 3s of 2 and 4 respectively
(Appendix B). The simplest way to approximate an inter-
mediate fractal degree is to use the controlled-continuity
spline. If we choose w; = w3w; in (18), we obtain a power
spectrum which behaves as S, o |w|~2 in the vicinity of
wo. At lower frequencies, the model behaves as a mem-
brane, while at higher frequencies it behaves like a thin
plate.

We can extend the range of intermediate fractal be-
havior by modifying the coarse-to-fine Gibbs Sampler. In-
stead of implementing the same energy equation at each
level, we modify the algorithm so that a different blend of
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membrane and thin plate is used at each level [14]. Since
the relaxation at a given level mostly affects the short
wavelength Fourier components, we can use the coarse lev-
els to shape the low frequencies and the fine levels to shape
the high frequencies. The effective power spectrum of the
resulting interpolator (or random sample) now depends on
the number of iterations performed at each level.

An alternative to the Gibbs Sampler algorithm for
generating random samples is diffusion [6]. This approach
is closer in spirit to the usual forward difference equations
used in physically-based modeling [18]. Instead of adding
controlled (spatially varying) Gaussian noise to the result
of the relaxation step, we add uniform white noise to a pro-
cedure which descends along the energy gradient VE(x):

Xk41 = Xp — AtVE(xx) + V2T At gy, (15)

where g is a random Gaussian vector with unit variance.
We can thus think of the fractal generation process as a
dynamic system (with internal and external forces VE)
driven by small-scale uniform noise. The system eventu-
ally diffuses into a stochastic equilibrium which reflects
the likelihood of each state as a function of its energy. For
this diffusion equation to converge to the correct equilib-
rium distribution, the time step must be very small. In
practice, the Gibbs Sampler is preferred, since it attains
equilibrium much faster. Nevertheless, the diffusion equa-
tion provides an elegant intuitive model for the generation
of constrained fractals.

6 Constrained Fractal Examples

The multiresolution algorithm proposed in the previous
section can be used to generate a wide variety of con-
strained fractals. The controlled-continuity spline models
used to generate these fractals include parameters which
control the appearance of the final shape. In this section,
we will employ cartographic data to show how these and
the other parameters of the stochastic relaxation algorithm
lend flexibility to our method.

We present an example of fitting constrained frac-
tal surfaces to isoelevation contours [5] extracted from a
256 x 256 digital terrain map. Figure 5 shows the digital
terrain map rendered as a Phong-shaded surface. Aside
from the addition of the horizontal blue plane to introduce
a “sea level,” we forego the usual texture mapping and
environmental embellishments in this and subsequent im-
ages, using instead a uniform surface reflectance to better
reveal the features of the synthesized terrain. We subsam-
pled the digital terrain map using 200m elevation contour
lines and we input to our algorithm the resulting sparse
contour data rendered in Figure 6.

First we illustrate the reconstruction of smooth
controlled-continuity spline surfaces to the contours in Fig-
ure 6. The result of using membrane reconstruction (equa-
tion (16) with 7(u,v) = 0) on these data is shown in Fig-
ure 7. Evidently, the membrane is insufficiently smooth
because it has C° continuity only. It looks like a “tent”

Figure 5: Original digital terrain map

or “soap film” stretched over the contours, and it flattens
peaks and valleys. Figure 8 shows the thin plate recon-
struction (7(u,v) = 1). In this case, the surface is perhaps
too smooth, producing a large depression that forms the
“lake” at the lower right. The thin plate under tension
model (intermediate ‘p(u,v) and 7(u,v)) appears to yield
a good compromise, as shown in Figure 9.

Next, we invoke the noise process in our multiresolu-
tion stochastic relaxation algorithm to synthesize fractal-
textured terrain which fits the contour data of Figure 6.
Figure 10 shows the result of using the thin plate under
tension model with a temperature T' = 50. If we desire a
“rougher” looking surface, we can use a higher tempera-
ture; for example, T' = 500 yields the reconstructed surface
shown in Figure 11. The roughness of the surface can also
be controlled by changing the fractal degree.

The degree of smoothness and the amount of noise
can, of course, be controlled locally to generate spatially
varying textures and different kinds of terrain. Figure 12
shows an example of the complicated fractal surfaces that
can be generated using our multiresolution Gibbs Sampler
algorithm. This fractal scene is constrained by some data
points defining the peaks of the mountains and the bottom
of the “ravine.” Note that it also has a crease coinciding
with the “ravine” on the upper right side, and a depth
discontinuity on the lower right. Four different param-
eter value combinations are specified for the controlled-
continuity spline in each quadrant of the (u,v) domain—a
thin plate under tension in the upper quadrant, a mem-
brane in the right quadrant, a thin plate in the left quad-
rant, and a very stiff thin plate in the lower quadrant.

7 Conclusion

We have proposed constrained fractals, a new free-form
shape modeling technique which-combines the complemen-
tary features of deterministic spline and stochastic fractal
models. This combination enables us to synthesize realis-
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Figure 6: Rendered contour data Figure 9: Interpolated thin plate under tension surface

Figure 7: Interpolated membrane surface Figure 10: Fractal surface (thin plate under tension model)

Figure 8: Interpolated thin plate surface Figure 11: Fractal surface with more noise
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Figure 12: Constrained fractal with spatially varying frac-
tal degree and variance

tically detailed shapes that interpolate data or match pre-
scribed shape constraints. The deterministic component of
our technique employs variational splines which can gen-
erate piecewise continuous shapes that satisfy sparse, ir-
regular position and orientation constraints. The stochas-
tic component of constrained fractals injects noise into the
spline energy minimization procedure in order to imbue the
shapes with fractal characteristics. Using the constrained
fractal model, we can locally control the continuity of the
underlying shape and the amount of random detail added.
Such controllability makes our approach extremely flexible.

The constrained fractal computation is performed on
a regular, fine-grained mesh using stochastic relaxation;
hence, it is amenable to massively parallel implementa-
tion. We use a multiresolution pyramid to accelerate the
convergence of the relaxation process. This coarse-to-fine
procedure bears some similarity to existing recursive sub-
division schemes. Unlike these other schemes, however,
constrained fractals avoid the artifacts that are introduced
during the subdivision process, and they can assimilate
constraints at any resolution (instead of merely refining a
coarse map).

The ideas developed in this paper are applicable to
other deformation energy based models, such as those de-
veloped in [18,17]. By augmenting these dynamic models
with a closely related method for fractal detailing, we can
synthesize a greater variety of realistic, three-dimensional
shapes and motions which, in principle, can be readily con-
trolled and constrained. The generality of our approach
makes it suitable for a wide range of modeling and com-
puter graphics applications.
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A Multivariate Spline Interpolation

There exist natural multivariate extensions to the defor-
mation energy functionals given in Section 3 [16]. The
bivariate extension of (1) is the “thin plate under tension”

E(f) = = / / o, v){[1L = (u, 0)](f2 + £2)

+ 7, v)(f2, + 22, + £2,)} dudbv, (16)
where, the (f2 + f2) gives the stretching energy density of
a membrane, while the (f2, + 2f2, + f2,) term gives the
bending energy density of a thin plate. As in the univari-
ate case, the rigidity and tension functions can be used to
introduce discontinuities in position and orientation. The
bivariate extension of the data compatibility constraint (2)
is

Ealfi tpi)) = 3 i (flwyw) =i (47)

The functional (16) is a second-order instance of

the general d-variate, p-order controlled-continuity spline
model

E(f) = = Z / wn@ Y 5

"‘ o Jite +Jd—"l

2
ot |

al o)t - .- Bul

(18)
where u is the d-dimensional domain of f. This more
general formulation allows us to specify interpolators of
arbitrary smoothness. A generalized version of the data
compatibility term is

1= [c@lf(w - dw)? du (19)

where d(u) and c(u) are now continuous functions.

B Fractal Nature of Prior Model

By taking the Fourier transform of the function f(u) and
expressing the energy equations in the frequency domain,
we can analyze the filtering behavior and the spectral char-
acteristics of the spline model.

Using Rayleigh’s energy theorem we can rewrite £,( f)
in terms of the Fourier transform F(w) = F{f(u)} to
obtain the new energy function £,(F). Using the gen-
eral form in (18) with the simplifying assumption that the
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weighting functions are constant, wm, (u) = wp,,” we obtain

&) =5 [lGwF@PwL  (20)
where »
(G = Y wmul™. (21)
m=0

For the membrane interpolator, |G(w)|? o |w|? and for the
thin plate model, |G(w)|? « |w|*.

We note that since the Fourier transform is a lin-
ear operation, if f(u) is a random variable with a
Boltzmann distribution with energy E£,(f), then F(w)
is a random variable with a Boltzmann distribution
with energy £,(F). Thus, p(F) is proportional to
exp (—1 [ |G(w)|?| F(w)|?dw) from which we see that the
probability distribution at any frequency w is

pF®)) x exp (- HG@IIF@ )

Therefore, F(w) is a random Gaussian variable with vari-
ance |G(w)|~2, and the signal f(u) is correlated Gaussian
noise with a spectral distribution

S1(w) = |G(w)|~2. (22)

From this analysis, we can conclude that using a

controlled-continuity spline is equivalent to using a cor-

related Gaussian field as the Bayesian prior. The spectral

characteristics of this Gaussian field are determined by the

choice of spline parameters. For the membrane and the
thin plate models, we have

smembrane(“) X |“’|—2 (23)

and
Sthin—plate(“) & |“"—4' (24)

These equations are interesting because they correspond
in form to the spectra of Brownian fractals, which can be
characterized by the power law

So(w) x w™P. (25)

This spectral density characterizes # fractal Brownian
function vy (u) with 2H = 8 — E, whose fractal dimen-
sionis D = E+ 1 — H (where E is the dimension of the
Euclidean space) [19]. Comparing (23) or (24) to (25), we
can conclude that a random sample drawn from a Boltz-
mann distribution constructed using the energy model of
a membrane or a thin plate is indeed fractal [13].

"While this assumption does not strictly apply to general piece-
wise continuous interpolation, it provides an approximation to its
local behavior away from boundaries and discontinuities.
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