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Abstract
We introduce a framework for advanced behavioral animation in virtual humans, which addresses the challeng-
ing open problem of simulating social interactions between pedestrians in urban settings. Based on hierarchical
decision networks, our novel framework combines probability, decision, and graph theories for complex behav-
ior modeling and intelligent action selection subject to manifold internal and external factors in the presence of
uncertain knowledge. It yields autonomous characters that can make nontrivial interpretations and arrive at ra-
tional decisions dependent on multiple considerations. We demonstrate our framework in behavioral animation
scenarios involving interacting autonomous pedestrians, including an elaborate emergency response animation.

1. Introduction

Creating autonomous characters with humanlike behaviors
is a serious challenge. Our goal is to develop advanced be-
havioral systems for virtual humans. In particular, we ad-
dress the level of decision-making that enables the characters
to interact appropriately with their perceived environment,
especially with other virtual humans. We focus on action se-
lection; i.e., on simulating how humans decide what to do at
any given time. To this end, we introduce a decision network
framework for specifying and activating human behaviors
that is easy to define and modify, scalable, and ostensibly
emulates how people make decisions.

Uncertainty and complexity are characteristics of human
behavior that make it especially difficult to simulate. Uncer-
tainty has largely been ignored in prior behavior models, par-
ticularly uncertainty resulting from the natural limitations of
perception, especially perception of the intentions of other
people. Furthermore, no systematic approach has been pro-
posed to deal with complexity. Our decision network frame-
work addresses both issues. Decision networks are a general-
ization of Bayesian networks [Pea88], also known as proba-
bilistic graphical models, which combine probability theory
and graph theory to capture uncertain knowledge in a nat-
ural and efficient manner. An attractive feature of the deci-
sion network is that it is a powerful tool for modeling de-
cision making under uncertainty. It provides an elegant and
rigorous mathematical formalism for modeling complicated

relationships among random variables and an intuitive visu-
alization of these relationships as a graphical structure, thus
facilitating comprehension and debugging. Furthermore, the
modularity of a decision network facilitates the intuitive re-
duction of a complex behavior into manageable components.

Our work should not be misconstrued as yet another ef-
fort on so-called “crowd simulation.” Our objectives dif-
fer. In particular, we are not interested in modeling multi-
tudes of rather simple characters. Instead, we seek to de-
velop complex autonomous individuals that, in addition to
motor and perceptual components, include broad behavioral
repertoires that are much more challenging to model. Our
self-animating pedestrians can independently assess the in-
terrelationships among all the relevant factors to make ratio-
nal decisions in the presence of uncertainty. Hence, they are
suitable for animating the detailed behavioral interactions of
small social groups.

2. Related Work

Human modeling is a broad, multifaceted subject in com-
puter graphics. The goal of our work is autonomous vir-
tual humans that behave intelligently in complex, synthetic
worlds [ST05]. To that end, we focus on human behav-
ioral modeling. Since the introduction of behavioral ani-
mation by Reynolds [Rey87], researchers have pursued the
ethological approach to modeling animal behaviors, where
the autonomous character takes actions based on its inter-
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nal state and its perceptual interpretation of external stimuli
[TT94, BDI∗02]. Human behavior, by far the most complex
of animal behaviors, is the subject of multiple disciplines, in-
cluding ethology, psychology, sociology, and anthropology.
Our work addresses the human character’s autonomy and in-
teraction in its virtual environment, aside from natural verbal
communication and dialog, nor do we consider the cognitive
level of decision making, which concerns what a character
knows, how that knowledge is acquired, and how it can be
used to reason and plan actions [FTT99].

In the area of human behavioral animation, Musse and
Thalmann [MT97] simulated crowd behavior using a rule-
based system. Badler et al. [BAZB02] proposed a Parame-
terized Action Representation (PAR), which includes speci-
fications for low-level animation concepts, and descriptions
of primitive or complex actions, with action selection based
on the conditions specified in the PAR structure.

Closer to our approach, Ball and Breese [BB00] encoded
emotions and personality using Bayesian networks. Unlike
our work, however, their emphasis was on conversational
agents with speech recognition and generation. Kshirsagar
and Thalmann [Ksh02] also used a Bayesian network to
model personality and mood in a chat application, as did
Egges et al. [EZKT03] to model mood in their conversa-
tional agent. The work closest to ours is that by Hy et
al. [HABL04] who simulated simple behaviors for a first-
person shooter game character by using a Bayesian network
to specify finite-state-machine-like behavior selection, and
to learn by imitating a human player. Unlike us, they did not
simulate human interactions.

Although prior animation work and existing computer
game titles have used finite state machines, fuzzy logic, neu-
ral nets, scripting, smart environments, and Bayesian net-
works, to our knowledge, ours is the first effort in computer
graphics to develop and demonstrate a unified framework
for behavioral animation based on decision networks. The
decision network (or “influence diagram”), which was intro-
duced by Howard and Matheson [HM81] in the area of deci-
sion analysis, combines probability theory and utility theory
to provide a simple visual representation of a decision prob-
lem. Decision networks extend Bayesian networks by adding
actions and utilities.

Compared with other common decision-making mech-
anisms such as fuzzy logic [Zad88] and neural net-
works [Bis95], or rule-based architectures [LNR87], deci-
sion networks offer the advantage of providing an intuitive
yet rigorous way to identify and display the essential el-
ements of the problem, including objectives, uncertainties,
interpretations, and decisions, and how they influence each
other, as well as the clear attribution of outcomes to the in-
puts that generated them. We assert that decision networks
are significantly better able to simulate social interactions
among autonomous pedestrians.

Figure 1: Autonomous Virtual Pedestrian Model.

3. Virtual Human Model

To evaluate our framework, we have implemented a vir-
tual human model based on the software that was described
in [ST05], including the environment model of the original
Pennsylvania Train Station in New York City. Fig. 1 illus-
trates the architecture of our virtual pedestrian. Like real
pedestrians, the synthetic humans sense their virtual envi-
ronment, interpret the sensory stimuli, make decisions based
on their perceptual interpretations, and act in accordance
with their decisions. The important contribution of our hu-
man model is the behavior submodel, in which we exploit
decision networks to simulate complex interactions between
multiple pedestrians and to model the effect of different per-
sonalities on their decisions.

Each character acts autonomously within the virtual en-
vironment. To understand the structure of our system, let
us consider an arbitrary character, say Jane. At any given
time, Jane’s intention generator assesses her current inten-
tion based on internal attributes and memory. Jane observes
her surroundings to determine what objects are within her
180-degree field of view. The perceptual data Jane can gather
by querying the environment model includes the position,
speed, and orientation of objects in the environment, includ-
ing other characters as well as their gaze directions.

Jane’s attention mechanism guides her gaze depending on
which objects are of interest given her current intention, or
if an object attracts attention by making a sudden move-
ment [EY97]. When Jane attends to a character she recog-
nizes, or to a character with which she may be interested in
interacting, or when there is a potential collision with some
character, she draws inferences about the character using the
interpreter in her perception system and decides how to inter-
act with them. This decision making process is accomplished
within our novel behavioral framework.

In particular, Jane is equipped with the new behavioral
models that we develop in the next section. She also pos-
sesses a set of behavior routines that enable her to carry out
primitive actions, such as walking to certain locations. Once
an action selection decision is made, the relevant behavior
routines are invoked to carry out the necessary actions. At
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a lower level, her motor system is responsible for carry-
ing out the actual primitive movements such as walking and
running. Her geometric body model and its primitive move-
ments are provided by Boston Dynamics Inc.’s DI-Guy API.

Jane must remember the sequence of tasks she wants to
perform. For this purpose, we implement a stack based mem-
ory in her behavior system, as was done in [ST05], en-
abling her to maintain persistence in her behaviors, while
also adapting to the changing environment by storing new
interim goals that attract her attention.

We have designed behavior routines to couple the deci-
sions made at the behavioral level to the low-level DI-Guy
motor system. Unfortunately, DI-Guy characters suffer lim-
itations not just in their appearance but also in their motor
skills, which restricts the possible motions that may be used
in actions triggered by our decision network framework. For
one character to interpret the behavior of another, it must
make observations. Currently there are only a limited set of
cues upon which our virtual humans can base their observa-
tions, since their facial expressions and gestures are highly
constrained. The available cues include change in direction,
change in speed, gaze direction [Pet05], and body orienta-
tion. Change in speed is an especially unreliable visual cue
as DI-Guy characters cannot change their speed quickly.

4. Behavioral Modeling Using Decision Networks

Our new behavioral modeling approach employs decision
networks as its core methodology. We have applied our de-
cision network framework to the design of interaction mod-
els between virtual humans, guided by our commonsense
knowledge of how real humans behave in similar circum-
stances. After motivating our framework in the next sec-
tion, we present in subsequent sections four specific behav-
ior models implemented within the framework—emergency
response behavior, acquaintance behavior, partnering behav-
ior, and collision avoidance behavior.

4.1. Decision Network Framework

A complex human behavior usually requires a sequence of
assessments and decisions to be made. To model the behav-
ior, the various contributing factors as well as their interre-
lationships must be identified, specified, and quantified. A
decision network encodes events, represented by nodal vari-
ables, and causal relationships between them, represented
by directed edges. This facilitates behavioral modeling as
it is natural to think of behaviors as causal relations be-
tween events. A decision network computes rational deci-
sions based on what the agent wants and what it believes,
whereas a purely logical agent would not be able to handle
uncertainty combined with conflicting goals [RN03].

We take advantage of the features of decision networks
that address the key issues identified in Section 1. The uncer-
tainties associated with various variables of interest are rep-
resented by the probability distributions encoded in the de-

cision network. The decision network’s powerful inferenc-
ing capability enables the explanation of observations made
about the world, as well as predictions based on the evi-
dence. The use of decision networks provides a convenient
way to control how the character makes decisions. Adjusting
the conditional probabilities and the utility functions will in-
fluence how the decision gets made. Another way to exert
control is to adjust internal parameters, which will be mon-
itored at simulation time by the network in order to make
inferences and assessments.

In our application, not every decision need take all sen-
sory and internal factors into consideration. To avoid the po-
tential intractability of large decision networks, we build the
behavioral model as a hierarchical set of relatively small de-
cision networks. The hierarchical structure helps to ensure
a manageable number of variables in each individual net-
work and reusability of the functionality of component net-
works. At the lower level, a separate, smaller decision net-
work structure is implemented for each decision item, while
at higher level(s) the decision network structure at each node
represents how a decision is made based on results from its
children nodes. Decision network behavior models are also
readily extensible, as we will demonstrate in Section 4.2.4.

Fortunately, there is no need to reinvent the wheel
when applying decision networks. We use Netica
(www.norsys.com), which is a commercial-quality im-
plementation of Bayesian and decision networks along with
a convenient GUI. It uses the junction tree algorithm to
evaluate the networks and draw inferences. †

Applying our decision network framework, we have de-
veloped a set of networks that implement each of the four
behavior models. Each network is responsible for drawing
an inference or making a sub-decision that contributes to the
final behavior. They are invoked only when there is a need
to make the corresponding inference or decision.

4.2. Emergency Response Behavior

Our highest-level and most elaborate new behavior model
is the emergency response behavior, which simulates how
people might respond to an emergency situation in a public
space like the train station. This behavior will serve as a con-
crete example to explain in detail how the decision networks
are constructed, how the network parameters are adjusted
and, subsequently, how we can obtain various possible deci-
sions automatically from them and even extend them.

4.2.1. Network Construction

Our framework facilitates the application of commonsense
knowledge. Regardless of the methodology that one uses to

† The role played by Netica, and DI-Guy for that matter, in our
work is no different than the role played by, say, Matlab and Maya
in many CG research projects. Netica serves simply as a software
tool.
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design a behavior model, it is natural for the designer to
think in terms of what factors cause what effects, eventually
leading to a decision underlying action selection. For human
character animation, it often suffices to consider the various
factors that contribute to making the appropriate decision in
some real-life scenario. Since decision networks represent
causal relationships, one can start the construction process
by considering the root cause. Once we have determined the
variables representing the factors we would like to consider
and have understood the causal relationships among them,
we effectively have designed the network topology. It then
remains to complete the network by filling in the associated
probability or utility values. Given sufficient data, it is possi-
ble in principle to train decision networks automatically. In
modeling human behaviors, however, we often lack the nec-
essary data to do so. Hence, we rely on intuition and com-
mon sense to tune the network parameters.

In particular, we approach the task of modeling how peo-
ple respond to an emergency situation by considering their
possible reactions when encountering such a situation. When
someone collapses in a public place, for example, some peo-
ple may approach to investigate, while others may prefer to
avoid the situation and carry on with what they were do-
ing. Of the people who do decide to approach the scene, the
more concerned among them will run over, while the less
concerned will walk. These will be the three possible intitial
reactions from which our virtual pedestrian character can se-
lect.

Next, we consider the factors that affect this action selec-
tion decision. Three main factors come to mind: how serious
the character thinks the situation is, how much the character
wants to help others, and how courageous the character is. A
timid character may shy away from an emergency situation
in order to avoid confronting a potentially unpleasant scene
at close range. Having identified these three factors, we sim-
ply use a random variable to represent each factor, and create
a chance node (circle) for each variable, as shown in Fig. 2.
The action selection decision is represented with a decision
node (square). We also need to add a utility node (diamond)
to indicate the character’s preferences over the three input
factors on the decision.

To complete the network, we must define the prior prob-
abilities for the three chance nodes (upper table). The seri-
ousness of the situation must be assessed, so its value should
be set based on the interpretation result. To keep the network
structure modular and hierarchical, the interpretation result
can be obtained from a separate network. The prior probabil-
ities for the Help and Courage nodes are set directly based
on the character’s internal factors and personality, which are
represented on a continuous scale from 0.0 to 1.0. The util-
ity table entries (lower table) are set based on our intuition
about the character’s preference over the three possible ac-
tions given the state of the input factors. For example, for
a strong, helpful character, when the situation is considered
serious, the character is most likely to run over and investi-
gate, less likely to walk over and check out the situation, and
least likely to ignore it. The corresponding utility values are

Util

Serious Help Courage

Dec

P(Serious) P(Help) P(Courage)
yes no yes no s w
sr 1.0-sr he 1.0-he n 1.0-n

Serious=yes Serious=no
Help Courage Dec Util Help Courage Dec Util
yes s ig -10 yes s ig -5
yes s run 8 yes s run 5
yes s obs 6 yes s obs 3
yes w ig -8 yes w ig 3
yes w run 6 yes w run 2
yes w obs 7 yes w obs 4
no s ig 1 no s ig 5
no s run 3 no s run 1
no s obs 5 no s obs 2
no w ig 3 no w ig 6
no w run 1 no w run 0
no w obs 2 no w obs 2

Figure 2: Network to determine how to respond to the emer-
gency. Variable values s: strong, w: weak, ig: ignore, run:
run over to check, obs: walk over to check.

Serious

Age Gender Care

P(Serious)
yes no
0.5 0.5

P(Age) P(Gender) P(Care)
Serious y p o male female yes no

yes 0.3 0.2 0.5 0.3 0.7 0.9 0.1
no 0.3 0.5 0.2 0.7 0.3 0.1 0.9

Figure 3: Network to assess the seriousness of the situation.
Variable values: y: young, p: prime age, o: old.

accordingly set for this input combination, with the highest
utility assigned to the run action, since the network evalua-
tion will choose the action with the highest utility value.

The Serious node represents the character’s interpretation
of the emergency scene that it is observing. This interpreta-
tion process is captured by a separate network (Fig. 3). Sim-
ilar to the construction of the network of Fig. 2, we create a
chance node for each of the cues people look for when en-
countering such a scenario in real life, and which are also
observable in our characters given their limited DI-Guy mo-
tor system. In our current implementation, we selected the
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Util

Serious Resource Called Saw

Dec

Figure 4: Network to decide if should go fetch a police offi-
cer.

Called

Run_away Better

Figure 5: Network to assess if someone else is calling the
police.

age and gender of the patient, and how caring the character
is about others. The conditional probabilities are set based
on the seriousness judgment and the chances that the corre-
sponding cues will be observed.

The aforementioned procedure constructs the networks
needed to decide the initial reaction to an emergency situ-
ation. Among the characters who have chosen to investigate,
some may decide to seek assistance using the decision net-
work shown in Fig. 4. This decision depends on how seri-
ous the character regards the situation and how resourceful
the character is in finding help, including whether or not the
character has noticed a law enforcement officer earlier and
can estimate the officer’s current location, and the charac-
ter’s assessment of whether someone else is already seeking
assistance. This assessment is made by observing whether
another character is running away from the emergency scene
and if it seems likely that the character can summon help
more quickly (Fig. 5).

Some characters may choose to leave the scene after be-
ing present for some time and unable to do much to help, a
decision process implemented by the network of Fig. 6. The
contributing factors include how impatient the character is,
if the character is in a hurry, the time that it has been idling at
the scene, if someone is already summoning help, and how
altruistic the character is.

Thus, we have constructed all the networks that our virtual
characters use to decide how to respond to emergency situa-
tions. The probability and utility parameters are set based on
the designer’s intuitions, but they may need to be fine-tuned
to truly reflect how the designer wants the characters to make
decisions. The next section describes the tuning process.

End

Patience Hurry Inaction Handled Care

Figure 6: Network for deciding to end the emergency re-
sponse behavior.

4.2.2. Adjustment of Network Parameters

Each network can be tested separately to ensure that its pa-
rameter settings allow it to make reasonable decisions in
accordance with the designer’s intentions. Netica provides
a GUI for defining and evaluating the networks. Therefore,
once the networks have been constructed, one can easily fine
tune the parameters through the GUI by testing various val-
ues and assessing the corresponding network evaluation re-
sults in order to make the necessary adjustments.

Since our framework makes it easy to trace how a con-
clusion is drawn, when we see an undesirable result, we
can quickly identify the cause and fix it. For example, con-
sider the network of Fig. 3. Suppose that we initially as-
signed P(Care = yes |Serious = yes) = 0.6 and P(Care =
yes |Serious = no) = 0.4. Trying the input combination of
a male patient in his prime and a fully caring character, the
situation is interpreted to be not serious. This is undesirable,
since we want the caring character to consider the case seri-
ous even when the patient is a male in his prime. This evalua-
tion result indicates that we have not given enough influence
to the Care variable and need to increase the probability of its
value being yes when the situation is serious, and similarly
increase the probability of its value being no when the situ-
ation is not serious. Setting P(Care = yes |Serious = yes) =
0.9 and P(Care = yes |Serious = no) = 0.1 yields desirable
results.

In our experience, the probabilities need not be set pre-
cisely for the decision process to work well; a range of pa-
rameter values will usually work. Fine tuning the parame-
ters in this way is a quick and intuitive process. Given the
same network structure, by modifying various conditional
probability and utility parameter settings, the behavior de-
signer can create a variety of characters that will decide to
take quite different actions when faced with the same inter-
nal and external factors, even “irrational characters” if that
is what the designer wants.

4.2.3. Network Capabilities

Our decision network framework includes theoretically
sound inference algorithms. They make interpretations
based on the evidence collected, including uncertain ev-
idence. Once the networks have been constructed, corre-
sponding decisions based on various input combinations are
automatically generated. Regardless of the number of influ-
encing factors and how many possible states each factor can
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take, for every possible combination the network is able to
draw a corresponding conclusion by executing the inference
algorithm.

Input factors include observations made about the char-
acter’s external environment and the character’s own inter-
nal factors and personality traits. Differences in these factors
lead to different decisions. There can be many possible input
factor combinations, but the same networks can automati-
cally accommodate them. In the network of Fig. 2, all the
input factors are binary. When we know for certain which
state they are in, they are entered as hard evidence. How-
ever, most of the time, these factors are not strictly in one
state or another. For example, the assessment of seriousness
that comes from the network of Fig. 3 is represented with
probability values to indicate different degrees of serious-
ness. In the real world, people can vary in their willingness
to help others and their level of courage. In our network,
these assessments can be represented on a continuous scale
from 0.0 to 1.0, rather than as binary variables, and entered
as the prior probability for their corresponding nodes. Differ-
ent degrees of various personality traits may lead to different
decisions. The network is capable of drawing inferences and
making decisions incorporating these uncertainties and vari-
ous other parameter inputs.

4.2.4. Network Extension

Since our framework supports a modular representation, it is
easy to make extensions. When we need to add a new factor
to be considered in a decision process, all we need do is add
a node for it in the corresponding network and add the asso-
ciated links to indicate its relationship with existing nodes.
We must also add the associated conditional probabilities for
the new node and make the necessary adjustments to nodes
affected by the node addition.

For example, suppose we want to consider the effect of
emotion on the emergency response behavior. A depressed
character that is feeling low may lose interest in other things,
including helping others. This would involve adding to the
network of Fig. 2 a new chance node, Depress, which repre-
sents the state of depression, and links from it to the utility
and decision nodes, since it is also an input factor for the
decision process. Under the assumption that when the char-
acter is not depressed, it should act the same as before the
inclusion of this new emotional factor, then the utility values
when Depress = no should remain the same, and we need
only update the utility values when Depress = yes. Given
this extended network, with the same seriousness assessment
and the same helpfulness and courage for the character, it
will decide to ignore the incident instead of walk over to the
scene.

The hierarchical structure of our networks keeps the scale
of addition and modification to associated probability and
utility settings manageable. For example, suppose that we
want to model multiple emotional factors. We can reduce
the number of entries that must be added to the utility table
by building a subnetwork, where the overall effect from the

emotional components is assessed first, and then only add
that effect to the utility table. Hence, extension can be easily
accomplished within our framework as the changes needed
are isolated to the concerned network(s), with the addition
of the corresponding nodes and links.

4.3. Acquaintance Behavior

Interpretation becomes more important in interactions be-
tween pedestrians. For example, when two pedestrians who
know each other meet on the street, how they react to one
another depends not only on their own intentions, but also
on their interpretation of what the other pedestrian will do.
We have developed an acquaintance behavior model to sim-
ulate this interaction. When two characters meet, they will
choose among talking to each other, acknowledging one an-
other without stopping to chat, or ignoring one another. For
the acquaintance model, two pedestrians will not talk with
each other unless both are willing to talk; hence, a reason-
ably accurate interpretation is needed.

Character A’s interpretation of character B’s intention is
divided into an assessment of whether or not B is just start-
ing to do something with A (showing an intention to talk, or
to greet), or was already in the process of doing something
with A, as they exhibit different cues. When B is just starting
to do something with A, it would most likely be looking at
A; if it wants to talk with A, it would most likely start to walk
towards A and slow down. The absence of these cues is evi-
dence that B intends to ignore A. When B is in the process of
carrying out its intended action with A—for example, trying
to talk with A—it may already be in the course of walking
towards A, hence need not change direction at the moment.
The prerequisite is that the previous interpretation already
indicated that B had the intention of doing a certain action
with A.

The difficulty in making such an interpretation is further
complicated by the fact that B may intend to do something
with A, but is temporarily interrupted by the need to avoid
collision. Hence, an assessment is required first of whether
or not B is in collision avoidance mode. Such an assess-
ment is made based on change in direction, change in speed,
whether B is facing some obstacles, and determination of
whether B is just starting to avoid collision or is in the mid-
dle of collision avoidance. B talking with a third party will
also prevent it from talking with A. Figs. 7, 8, and 9 show the
networks for interpreting B’s action at the moment, whether
it be meeting with others, avoiding collision, or just walking.

Once this observation is made, further decisions are made
based on its result. If the interpreted action for B is talking
with another character, no further action is taken (in future
work, we may implement the possibility of A joining the
conversation). If B is in the middle of avoiding a collision,
the previous interpretation for B was maintained. In the ab-
sence of any special action detection, A will continue to as-
sess B’s intention (Fig. 10). In addition, A evaluates its own
intended action based on how friendly it is with B, if it is in
a hurry, and how much it desires to greet or talk to B.
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The decision network which determines the action to be
taken is depicted in Fig. 11. The distance factor is added
since the character may be uncertain about the interpreta-
tion and, hence, may take several time steps to decide. In the
meantime, it is not committing to any action. However, as
the two characters approach each other to within a certain
threshold, a decision must be made based on information
available at the time. The distance factor here indicates if
such a threshold has been met. The utility function is a bal-
ance among the internal desire and the interpreted intention
of the other party. The decision can take on the value of talk,
greet, or ignore the other party, or uncertain, which means
further observation is necessary.

SAC

Ch_Dir Ch_Spd Face Obs

Figure 7: Network to assess if B is starting to avoid a colli-
sion.

ICA

Ch_Dir Ch_Spd Face Obs Prev Interp

Figure 8: Network to assess if B is already in collision
avoidance.

Meet

Op’s behav

Ch_dir

Ch_spd

Face Agt

Stopped?

SAC ICA

CA interp

Figure 9: Network to interpret B’s behavior.

4.4. Partnering Behavior

It is quite natural for friends meeting unexpectedly to form
partnerships if circumstances permit. We have developed a
partnering model to simulate such behavior. There are sev-
eral possible scenarios. When one character sees another
friend character ahead, it needs to decide whether to catch
up and try to partner with that character; then the other char-
acter must decide whether to accept the advance. When two
characters meet on the street, they may have a chat and then
decide if they want to partner. In the first case, the initiating
character A must first decide if it wants to catch up and form

Start Meet

Saw A?

Toward A?

Look A?

Slow?

B’s intent

In Meet

Dir to A?

Prev intent

Figure 10: Network to interpret character B’s intended ac-
tion with A.

Util

B’s Behav

Friendly Hurry? Desire

Internal

Distance?A’s Decision

Figure 11: Network to decide the action to be taken by A
with B.

a partnership with character B in view. This decision must
take into consideration A’s intention, personality, if A feels
its goal matches that of B, and its perception of B’s intention.
Fig. 12 shows the decision network for deciding whether or
not to form a partnership with the potential partner.

Once A decides to form a partnership with B in view, it
will try to catch up and express its partnership request. B
must then decide whether to accept this request. As shown in
Fig. 13, how friendly B feels about A, if B is social, and B’s
desire all affect the decision. In addition, how persistent B is
in pursuing its own intention and how long A has persisted
in making the advance also play a role in B’s reaction.

As B makes up its mind, A is observing B and tries to
assess if B has accepted its advance (Fig. 14). Not all ob-
served data have equal reliability. For example, when trying
to interpret B’s response to character A’s request to partner,
B looking at A and stopping are much stronger indications
than B turning to face A. When B accepts A’s request, B may
or may not choose to face A directly. To accommodate this
difference in reliability of the observed data, some adjust-
ments are made in the network; hence, the additional relia-
bility chance node (Fig. 14).

If B accepts A’s request, the two characters will form a
pair and proceed. Should B refuse the request, A must then
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Figure 12: Network to decide whether to form a partnership.
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Figure 13: Network to assess whether to accept a partnering
request.

Response

Look Stopped Face A

Reliability

Figure 14: Network to interpret B’s response to A’s pair-up
request.
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Figure 15: Network to assess how to take rejection.

decide how it will react to the rejection; i.e., give up or con-
tinue its persuasion effort (Fig. 15). This cycle of A making
a request, B deciding whether to accept it, A’s interpretation
of B’s response, and decision about what to do next contin-

ues until either B is persuaded to accept the partnership of-
fer or A gives up. Once a partnership is formed, negotiation
continues between the partners to maintain the partnership
and handle unexpected events, such as collision threats, and
making decisions together as a team.

4.5. Collision Avoidance Behavior

Our framework is also applicable to low-level collision
avoidance behavior modeling. Much behavioral animation
research has focused on collision avoidance. Our framework
incorporates the interpretation of the opposing character’s
avoidance intention, which is absent in earlier models. Our
model implements a local object avoidance strategy rather
than global path finding.

The character first tries to avoid any static obstacles. The
avoidance strategy includes the options of steering to the left,
steering to the right, or stopping when in imminent danger
of collision. As for dynamic obstacles, a collision possibil-
ity value is computed for each obstacle and the one with
the highest value assumes priority for avoidance. The op-
timal avoidance strategy can be one of the following: no
avoidance, speed up, slow down, stop, steer towards left,
steer towards right, steer towards left with speed change,
steer towards right with speed change, stop while steering
towards left, and stop while steering towards right. Due to
the limitations of the motor system, where a speed change
command has a delayed effect, currently we do not use the
speed change options, but have left them in place in case
a better motor system becomes available. The utility val-
ues are weights associated with the avoidance strategy op-
tions, which are determined by our observations of how real
humans balance avoidance choices under different circum-
stances.

The details of our collison avoidance decision networks
are presented elsewhere [Yu07].

5. Animation Results

We have equipped our virtual humans with the aforemen-
tioned behavior models which take advantage of our de-
cision network framework’s ability to handle uncertainty
and behavioral complexity. As described above, the collision
avoidance model anticipates the opposing character’s avoid-
ance strategy and makes a decision accordingly. In addition
to simulating the interpretations that a character draws about
its environment and about its potential partner’s intentions,
the acquaintance, partnership, and emergency response mod-
els also take into account the effect that personality and in-
ternal factors have on decision making. Decisions are made
based on observations and the analysis of objects that fall
within the character’s focus of attention. Our accompany-
ing animations demonstrate the effectiveness of our decision
network framework.

Our most complex animation is the “emergency response”
animation illustrated in Fig. 16. A young female commuter
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(a)

(b)

(c)

(d)

Figure 16: Still frames from the emergency response ani-
mation. (a) Female fainted on floor in concourse. (b) Com-
muters gather around to attend to patient; a woman runs for
help. (c) Woman finds a security officer in the main waiting
room. (d) The officer attends to the patient.

feels ill, staggers, and then faints to the floor of the concourse
area in the virtual Penn Station. Some commuters around
her turn their heads to look, but keep on walking. Others
walk over to see what happened. The most concerned run
over to investigate. After observing the patient’s situation,
a female commuter recalls seeing a security officer in the
main waiting room of the station and, hoping that he is still
there, decides to run over to ask for help. While she is gone,
some of the commuters attending to the patient decide to
leave as they determine that they cannot do much more given
that someone has already gone to summon assistance, while
some new passers-by approach to investigate the scene. The
security officer who was summoned eventually reaches the

scene, examines the patient and decides to radio paramedics
for further assistance.

Shorter simulations demonstrate the functionality of the
partnering behavior model, differing only by internal factor
and personality settings. One animation shows pedestrian A
eventually giving up on the decision to partner with B, after
repeatedly being shunned by B. A second animation shows a
pedestrian A who notices a friend B walking ahead, catches
up, and tries to partner with B. Because of an earlier quarrel
with A, B initially refuses A’s advance, but reconsiders upon
A’s insistence.

Our framework is efficient. The network with the largest
utility table takes from 1 to 2 msec to build and compile in
Netica and usually less than 1 msec to evaluate. The emer-
gency response network takes about 1 msec to compile and 1
msec to evaluate. At run time, the behavior models are event
triggered—i.e., whenever the circumstances trigger certain
behaviors, the corresponding networks are evaluated to make
the necessary decisions, but they are invoked only on a need-
to-use basis. Collision detection takes place every few time
steps, but the collision avoidance networks are invoked only
when a potential collision is detected. These networks are
invoked the most frequently. Each character independently
makes its own decisions based on what it can observe of its
environment and its personal internal factors. Although dif-
ferent execution times are needed to arrive at different deci-
sions, this does not adversely affect the parallel simulation of
different characters. On an Intel Xeon 3.2GHz PC with 1GB
RAM, the behavior system for a single pedestrian usually
takes under 1 millisecond to execute.

6. Conclusion

We have introduced a decision network framework for ad-
vanced behavioral animation in virtual humans. To our
knowledge, ours is the first virtual human behavior modeling
system and architecture that is based on decision networks,
and the first use of decision networks in computer graphics.
Our decision network framework offers several advantages.
It has the ability to handle uncertainties, which are largely
ignored in previous behavior models. Having the characters
act based on the often imprecise interpretation of their sur-
roundings rather than on exact information gained through
querying the world database results in more realistic sim-
ulations that more faithfully approximate how real people
behave. This also facilitates the simulation of interactions
between characters.

Because decision networks offer a formal yet easy to un-
derstand representation of the world and the behavior sys-
tem, our framework makes it easier to translate the charac-
ter designer’s commonsense knowledge into code that gov-
erns the characters’ decisions. It facilitates parameter fine-
tuning and debugging, and makes it easy to identify what
factors contribute to the final decision. Modifications take
only minutes to complete, as the structure is so clear, com-
pact, and modular. Given the same network topology, we
can have characters reasoning and acting quite differently
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by specifying different probability and utility settings. Deci-
sion networks also make the behavioral model flexible and
able to respond sensibly to a wide range of changes in the
character’s internal and external environment. Our results
demonstrate the effectiveness of our framework. Its hier-
archical structure keeps computational complexity at bay,
and its clarity provides insights into behavioral mechanisms
while facilitating the design, implementation, and debugging
of behaviors. The network construction and parameter ad-
justment took less than a day of effort for each of our behav-
ior models.

Although our decision network framework is general and
largely independent of the underlying motor system, the spe-
cific behavior models we have built rely on the limited cues
that our virtual humans can observe about one another to ar-
rive at interpretations. As better motion APIs become avail-
able that provide a richer variety of human-like visual cues,
more varied and accurate interpretations will be possible and
the quality of the behavior model will improve.

Decision networks are not suitable for handling domains
with co-related decision factors [Jen01], as the large com-
putational requirements for such domains would make it in-
tractable to handle complex problems. Given its acyclic na-
ture, the decision network is also not appropriate for model-
ing behaviors that involve cyclic causal chains or recursive
plans. One way to resolve this is to use dynamic decision
networks which handle time series of decision problems by
regarding causation as a temporal phenomenon.

In future work, we plan to expand our interaction models
to simulate more sophisticated coordination and cooperation
behaviors among multiple characters. We would also like to
develop an intuitive user interface to facilitate the graphical
construction of behavior models, enabling the user to input
parameters that specify personality traits and internal factors
on the fly; these values will be entered as evidence to the be-
havior models so that the simulation will immediately reflect
the changes.
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